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ON PROBABILITY GENERATING FUNCTIONS
FOR MATCHING AND OCCUPANCY DISTRIBUTIONS

The three distributions which Irwin [11] derived by Whitworth’s
heOl‘em, namely the classical matching, the classical occupancy and
% line-division distribution, are re-examined in this paper. It is shown
that thege distributions, together with certain important generalizations,
all belong to the class of distributions which Kemp and Kemp [13] called
eneralized hypergeometric factorial-moment distributions, i.e., they all
hayve Probability generating functions of the form ,F [1(s—1)].

1. Introduction. Almost twenty years ago Irwin [11], in an exposi-
tory baper, attempted to unify certain areas of discrete distribution theory
Y the use of Whitworth’s theorem. The three discrete distributions
discusseq by Irwin were the following:
(i) the classical matching distribution,
_ (ii) the distribution of the number of occupied classes when N
Objects are assigned at random to % different classes,

(iii) the distribution of the number of intervals greater than u/k
When a line of fixed length « is divided into » intervals by n —1 randomly
Placed points.

. Barton’s [2] paper contains a short historical survey of the matching
aVI‘lS(;H‘ibution. Generalizations include Gumbel’s matching distribution
di%tr?he Laplace-Haag matching distribution, Fréchet [8], Anderson’s [1]

Stribution of matching K-tuples for K identical packs of N cards (see
4180 [21). The classical occupancy distribution is known also by the names
Arf“'edson, coupon-collecting, cigarette card, and Stevens-Craig. Har-

€88 [10] reviews previous work on this distribution, together with a more
ﬁgneral .form of the distribution, where each object has a probability p
Temaining in the randomly chosen class and 1 —p of escaping (see also
‘EFS]) Irwin’s third distribution is closely related to Fisher’s modification
con Chufsiter’s criterion in harmonic analysis, and to a result by Garwood [9]
Cerning the operation of vchicular-controlled traffic signals.
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Whitworth’s theorem is a consequence of the principle of inclusion
and exclusion (see [b], p. 102); hence methods utilizing Whitworth’s
theorem are closely related to Fréchet’s (see [7] and [8]) treatment for
matching distributions (which was based on earlier work by Haag and
de Finetti) and to David and Barton’s use of characteristic random varia-
bles. The prineciple of inclusion and exclusion was used as long ago as 1714
by Montmort in his study of the game of Treize (Rencontre). Czuber’s [4]
proof assumed the independence of events; Broderick [3] appears to
have given the first proof not assuming independence.

Suppose now that the events of interest can be defined in terms of

more elementary events A4,, 4,,..., 4, one, two, or more of which can
occur simultaneously with probabilities

P{A;}, P{A;A;}, ..., P{A;4;...4,}, ...,
and that

8, = DP{A}, 8.= D P{4;A}, ..,
i 1,7

c,-
i<j

8, = D P{4;4;.. A}, ..,

.i,j,...,r
t<j<.e<r

where 8, is the sum of ,C, probabilities (see [6], p. 88 ff.). Using the inclu-
sion-exclusion principle both Fréchet and also David and Barton show
that ;) = 8, X r!, where ,ufrl is the r-th factorial moment, and that

Py =8, —.1.0 Sr+l +r 42028 — oo +(— 1)V "NOn_, Sy

N '
B 2 (—1)""C, g
N ¢! ’

t=r

where P, is the probability that exactly » among the N events 4,, 4,, ...
..., Ay occur simultaneously (this “inversion” formula was given by
Steffensen [16]). Hence the probability generating function (p.g.f.) for
the required distribution is

N N ,
Q , Z ~(8—1)
G(S) = 2 S,.(S—l) = ﬁ[—]—;.'——‘—-*.
r=0 r=0

2. Matching distributions. We begin by considering the Laplace-
Haag matching distribution (see [8], p. 148 ff.). Suppose that there are
N objects na of which carry the labels 1, 2, ..., n, each label occurring @
times, and that N —na are unlabelled; a coincidence (match) occurs if
an object with the label j occurs at the j-th (random) draw. In Barton’s [2]
notation the compositions of the target and matching packs are (1V)
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and (N —an), a"), respectively. Fréchet shows that the distribution of
the number of matches has the factorial moments

, an!(N—r)!
Mol = T INT
and that the probabilities are

—1)"aln! (N —1)!
(t—r)!(n—1)!N!

n
1 (
'P[T] == —r! tv
=r

Hence we deduce that the p.g.f. may be stated in terms of the confluent
h}’Pergeometric function as

G(8) = ,Fi[—n; —N;a(s—1)].

For the Laplace matching distribution, N = an (see [8], P» 150);
for the Gumbel distribution, N = n (see [8], p. 192); and for the classical
Matching distribution, N ==, ¢ = 1.

The p.g.f. for the Laplace-Haag distribution bears a striking resem-
blance to that for the Poisson-beta distribution, i.e., to

Jile;a+b;4(s—1)], a,b,21>0.

The method given by Kemp and Kemp [13] for obtaining a recurrence
formula for the Poisson-beta probabilities yields immediately, for the
Laplace-Ha,ag probabilities,

(r+2)(r+1)Ppyy = (r+1)(a+r—N)P, ., +a(n—7)Py,
Where
Py = Fi[—n, —N; —a] and Py =na,F,[1—n;1—N; —a]/N.
This result may usefully be recast in the form
a(n—r)P[,] = (r+2)(1‘+1)P[,+2]+(r+1)(N—a—r)P[,+1],
Where
Puy = a®(N—n)!/N!  and P,_,; = (1+ N —n—a)(N —n)lna""'/N!.
The class of distributions with p.g.f.’s of the form
Fal(a); (B); A(s—1)]

form the subject matter of Kemp and Kemp [13], where they are called
eneralized hypergeometric factorial-moment (gh.f.) distributions (since
they have factorial-moment generating functions of the form ,F, [1t]).

Three limiting formulae for generalized hypergeometric functions
Were stated in [12]. Application of these formulae to g.h.f. distributions
leads to the following general results:
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The distribution with p.gf. ,F,[(a);(b); A(s—1)] is the limiting
form, d > 4+ o0, of that with p.g.f.

p1lg[(a), ¢ +d; (b); A(s —1)/d].
It is also the limiting form, d - 4 oo, of the distribution with p.g.f.
pFasl(a); (), o +d; dA(s—1)].

It is furthermore the limiting form, d - 4 oo, of the distribution
with p.g.f. '

p+1Fq+l [(a')7 d; (b)7 G-I—dk; k)*(s _1)]°
The penultimate limiting forms of these three distributions are

oPal(@); (0); A(L+c/d)(s—1)], ,F,[(a); (b); A(s—1)/(1+0/d)],

and
oFql(a); (b); A(s—1)/(1 +c/dF)],
respectively.

For the Laplace-Haag distribution, we find that as both N and @
become large, the penultimate limiting form of the p.g.f. is Fy[ —n;
; #a(1L—8)/N], i.e., it is binomial and, as is well known, when both n» and N
become large, the ultimate limiting distribution is Poisson with parame-
ter an/N.

Consider now the Levene [15] type matching scheme, where one pack
of composition (2%) is randomly split into two equally sized packs. Barton
[2] shows that the factorial moments for the distribution of the number
of matches are

, NY(N—}—1r)!
b= N —m@m—pre’

whence the p.g.f. can be obtained as ,F,[—N; } —N; (s—1)/2]; as N be-
comes large, this tends to exp[N(s—1)/(2N —1)],and so to exp[(s—1)/2].
Barton p.oceeds to give the generalization to a pack of composition (KV),
randomly split into K equally sized packs; he shows that if a match is
defined as existing when all K cards in the same position are of the same
kind, then in this case the factorial moments are

,  NINYK!)(KEN—Er)!
b = N N —n)(EN)!

~ Hence, using the Gauss-Legendre multiplication formula for the
y-function, we deduce that the p.g.f. is

1 2 K-1 K!(s—1
P

1FK_1[—N; K TCEE |
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As N becomes large, this tends, via the Poisson distribution with
Parameter (N?/yxCx), to the degenerate distribution with all probability
Concentrated at zero.

. Suppose now that the initial pack with composition (EK%) is split
Into K packs each of composition (1V); Anderson [1] shows that the
Probabilities are now
N (L[ —r =) e
Py =2 rij! [ N! ] ’
j=0
Whence we deduce that the new p.g.f. is

Fr,[-N; —N,..., —N;(_l)K(s_l)]-

' As N becomes large, this p.g.f. tends, via the Poisson distribution
With parameter (1/N%~?), to the degenerate distribution.

3. Occupancy distributions. David and Barton ([5], p. 243), using
. the method of indicator functions, derived the factorial moments for the
Dumber of classes unoccupied in the classical oceupancy problem as

, B (k—r\Y
M=%t \ & )’

Where N i the number of objects and k is the total number of classes
(cells). We can deduce from these factorial moments that the p.g.f. for
the numper of unoccupied classes is

NPy l—Fk, .., 1—k,; —k, ..., —k;1—s].

Note that when N < k, the first k— N probabilities, i.e., Py, ...
vy P [k-N—1}5 ale Zero.

David and Barton ([5], p. 251) examine the problem of specified
OCCupancy, Let N objects be assigned to k classes ! of which (less than k)
aTe specified. David and Barton show that the distribution of the number
of empty classes amongst the I specified classes has the factorial moments

, Al E—r\Y
P ==\ % |-

The corresponding p.g.f. is
N+1F}\r[—l,1—k, ...’1—'70; ’—k’...’ —k;l—'s:l,

XThieh reduces, of course, to the previous p.g.f. for I = k; for k large (and
= 1) the p.g.f. tends, via the binomial distribution with p.g.f.

Fol =15 5(k—1)V (1 —9)/kV],
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to the degenerate distr/bution with probability that all I specified classes
are empty equal to unity.

This distribution is treated again in [5], p. 269 ff., under the title
“golliwog problem?”; it is also equivalent to the randomized occupancy
distribution of Harkness [10] and Kotz and Srinivasan [14] in which ¥
objects are assigned at random to k classes, and each is then allowed to
stay in its class with probability p and to escape with probability 1 —p.
In this notation the p.g.f. becomes

N+1-FN[—k’1_k/p7 °-°71"‘k/p5 —~k/py..., —k[p; 1—s].

4. Irwin’s line division problem. Irwin’s [11] line division problem
concerns the distribution of the number of intervals greater than u/k
when a line of fixed length « is divided into » intervals by n — 1 randomly
placed points. He shows, using the Whitworth theorem form of the inclu-
sion-exclusion principle, that the probability that exactly r of the intervals
exceed u/k is

k-7 r+j n—1
= (—1Y]1—
P[r] nor j;; n—rCJ( 1) [1 L ] °

This expression for the probabilities yields the p.g.f.
nirFn| — K], —n,1—F, ..., 1—Fk; —[k], —Fy..., —k;1—3s],

where [k] denotes the integer part of k. (It is necessary to introduce — [%]
into the p.g.f. since Pp; = 0 when » > [k].) When k is an integer, the
p.g.f. reduces to

Epal—n,1—k,...;,1—k; —k,..., —k;1—58],

which closely resembles the p.g.f. for the problem of specified (randomized)
occupancy. Note that Py, = 0 unless n > F.
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dZeni

0 FUNKCJACH TWORZACYCH PRAWDOPODOBIENSTWA
DLA ROZKLADOW SKOJARZENIA I ROZMIESZCZENIA

STRESZCZENIE

W pracy rozpatruje sie trzy rozklady, ktére Irwin [11] wyprowadzil z twier-
a Whitwortha: klasyczny rozklad skojarzenia, klasyczny rozklad rozmieszezenia

Ora-.z Pewien rozklad podzialu.prostej. Pokazuje sie, ze rozklady te oraz pewne ich
Wazne uogélnienia nalezg do klasy rozkladéw, majacych funkeje tworzace prawdo-
Podobierstwa postaci ,Fg[A(s—1)], a nazywanych w [13] generalized hypergeometric
factorial-moment distributions.



