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ON THE TOTAL DIFFERENTIAL METHOD AND ITS
EFFICIENCY IN THE CASE OF A LINEAR REGRESSION(Y)

L Introduction. The paper is divided in two parts. The first presents
shortly a method of estimating regression coefficients when the regression
function is assumed to be linear. The second part is devoted to the
discussion of the efficiency of this method as compared with the efficiency
of the classical method of estimating linear regression coefficients. The
method which is discussed here was sometimes used in the past and some
authors called it the method of finite first differences (because first
differences are used in the process of estimation instead of the values
of original, i.e. observed, ‘“‘dependent’” and ‘“independent” variables),
but this term was never generally accepted.

Instead of the first finite differences method the name of the total
differential method is proposed. The reason is that — as will be shown
later in section II — the estimation procedure by this method reduces
to the estimation of the parameters of the regression function by using
the observed values of the total differential of the dependent variable
Yt_ when the independent variables X,, X,,..., X; change by the
(observed) amounts AX,, AX,,..., AX,. -

The total differential method can be used when statistical data
are time geries data, i. e. when the observations are ordered in time.
Although it has been generally held that the method is especially
Suitable when there is a trend in the data, nobody — as far I know — has
investigated under which conditions this method is more efficient than
B. A. Fisher’s classical theory of regression. The present investigation
brings some new light on this matter and gives a formula which ean be
used for the comparison of the efficiency of the two methods.

Although it deals with first finite differences of observed variables,
the total differential method should not be identified with the wvariate-
difference method explored by O. Anderson [1] and G. Tintner [3].

e

(1) The main ideas of the paper were presented at the Seminar of the
Statistioal Institute of Uppsala University (Sweden) on May 23rd 1958.
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98 Z. Pawlowski

The assumptions underlying the fwo methods and their aims are different.
The statistician uses the variate-difference method in order to get some
information about the importance of the random element affecting the
time series he deals with and in order to find the degree of the polynomial
by which the non-random component of his time series can be repre-
sented. He can also try to eliminate the spurious correlation between two
variables due to an influence of time on those two variables (see “Stu-
dent” [2] and Tintner [3]). On the other hand, the total differential
method is devised for the estimation of regression parameters when the
regression function is given, i. e. when its functional form and all
its independent variables are specified. :

1L A short outline of the total differential method in the case of
a linear regression. Let us assume that Y, is such a random variable
that its mean value is linearly dependent on the 2 fellowing variables
(which are not random in the sense of the -calculus ot‘ probability):
Dy Bogy - . We have therefore

| B
(1) E(Y) =2at'wit+ Go
=

where «; (¢ = 0,1, ..., ) are unknown constant parameters which have
to be estimated. Because of random fluctuations we shall have for
consecutive values of time parameter ¢ the following relations relating
observed values of ¥, and of a's:

h
@) Vo= oyt a+Z,
i=1 ‘

where Z; is a random variable which is assumed to form a stochastic
process, stationary to the second degree (see Wold [4], page 156) with
zero mean and finite variance o2.

Let us assume further that our statistical data are time series referring
to n different time points (periods) and that they can be represented by
the matrix

Y1 Ty Ty ... Ty

& ¥ eee I
(3) (9, i) = Ya F12 Tgy 2

_yn T Pay -« a"lmJ
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_ In order to estimate the unknown parameters o we introduce the
first finite differences of y; and x, defined by the equations

(4) CA®y = Byppg— Byt
(5) Ay, = Yeqr1— Yz

Transforming the original sample data into first differences defined by
(4) and (5) we get another matrix of statistical data:

(6) [Aye, Awy] =

As is easily seen, if (1) and (2) hold true, we also have
. h ‘
(N Ay = 2 oy Awy+ A2y,
=1

where Az, ig a residual term with zero mean and variance o%, for all i.
Equation (7) is a basic one for the estimation of unknown regression
Parameters by the total differential method. In view of (2), equation (7)
can be interpreted as the total differential of y; with respect to @y, @y, ...
++y B Plus a residual term Az. It is more convenient to regard (7) just
a,.s a total differential because such an interpretation permits a generaliza-
tion of the total differential method also for non-linear cases, as will be
8hown in the last section of the paper.

In the linear case which we are discussing here the estimation proce-
dure has two steps. In the first, the coefficients a,, as, ..., @z are esbi-
mated and in the second the constant term e, is obtained on the grounds
of the results obtained in the first step. In order to obtain estimators

for U1y Ggy ..., o5 We apply the least squares method to minimize the ex-
Pression ‘

n-1 b

8; =2 (A?/tﬂzaillwu)g
K =1 de=l .

with respect to oy, ay, ..., az. Let @y, Gay ..., & denote the estimates
of the unknown coefficients obtained by that device. Obviously these
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estimators are obtained by solving with respect to 4., a,,...,q, the
following system of linear equations:

...................
n—1 n—1

ag Awpy Aty = Z’ Ay Ay,
=1 )

Consequently, the estimator a; of the parameter o; ({ =1, 2, ..., k) is
given by the ratio of the two determinants

. . D,
(8) v ai:‘ﬁ, _D;é(),

where D is defined as

[N
3

)
I
83
N
&8

]
|
=

"Mﬁ

[N
3

[n
Y

(9) D= t=1 f=1

----------------------

n—1 n—1
7 2 A»’”m A-’L'u ‘Z: Aa.’/'m Ath cee tZ: A(UM Aﬁm‘

while D; is the determinant obtained from the determinant D when its
i-th column is replaced by the vector -

n—1
tz: Az, Ay,

n—1
tzl Azy Ay,

-------

In the next section the estimators a,, a,, ..., a; will be shown to be un-
biased and in section IV the proof of their consistency will also be’ given.
In the same section we shall also deal with the problem of standard error
of the estimator for a regression coefficient.
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The estimation of a, is done in the second step of the estimation
Procedure. The constant t@m a, is estimated under the assumption
that a; = g,, 0, = @ay ...y Op = 8y, which leads to the minimization of
the expression

h
8, = j(%‘-za@%—%)
i=1 i=1

with Tespect to a,, so that we get the following estimator of a,:
1 n n 3
1o o= g[S 3 S
=1 t=1 i=1

EXAMPLE’L We assume that B(Y;) = a, %+ a,. We are to estimate
@ and o, on the basis of the following statistical data (table 1).

TABLE 1
Time

period yt e Ayt Azg
1 1,07 1,05 0,01 0,02
2 1,08 1,07 0,00 0,03
3 1,08 1,10 0,03 0,02
4 1,11 1,12 0,05 0,03
5 1,16 1,15 — —

The first step gives us the estimate of a,:

s |
2, Az Ay, 0,0023

= — f—
S (dayr 0026

[

0,88.

al =

[

o
]
-

S‘letituting 0,88 for a, we assume that F(Y,) = 0,88x,+ «,. Minimizing
the expresgion : :

5
8 = D (45— 0,880~ a)?
fu 1
e get a, = 0,13. In the following sections it will be shown that also a
'8 an unbiased and consistent estimator.

i II. The problem of unbiasedness of the total differential method
estimators, In thig section we shall investigate the problem of unbia-
Eednt?ss of estimators for regression coefficients in the case of a linear
relatlonship when these estimators are obtained by the total differential
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method. As we shall see, such estimators are unbiased as long as our
assumptions about the regression function,i.e. about the independent
“variables of this function, are correct. On the other hand, these estimators
will generally be biased if we omit in the regression function one or more
explanatory variables the first differences of which are correlated with
the first finite differences of the dependent variable, or with the first
finite differences of other independent variables of the regression function.

We shall prove our statements under the assumption that the x;’s,
i. e, the explanatory (independent) variables of the regression function
are not random — in accordance with the Gauss-Fisher theory of re-
gression (%).

TaEOREM 1. If Y, i8 such a random variable that

h

(11) B(Y,) = Zai%’u‘l‘.%
iz
and therefore
3
(11" B(AY}) = ) o Awy,
i=1
then the estimators Ggy Byy ..., Ay Of the paramelers oy, &y, ..., oy, oblatned

by the total differential method, are unbiased.

Proof. We shall prove first that the estimators a; for ¢ = 1,2, ..., h
are unbiased and afterwards we shall show the unbiasedness of the esti-
mator of the constant term a,. As was shown in section 1 (see formula (8)),
the total differential method estimator of a; is given by

D,
Ay = 7)— .

Expanding the determina,_nt D; with respect fo the i-th column, we get

n—1 Ton-—-1 n—1
.A.li tZi' A$1tAyt+ A—zitz: AmztAyt+ e +Ahit2 Aa}‘m A?/t
a; — = = D =1 ,

where Ay is the cofactor of the determinant D (a.nd also of D) when
the i-th column and the j-th row of this determinant are cancelled. Taking

(*) See H. Wold [4], p. 205-207.
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the mathematical expectation of a; we have, since the a;’s are assumed
to be fixed, '

' An; Az B(Ay,) ‘}'Azt;‘ AmztE(A?/t)+---+Ahi;‘ Az BE(Ay,)
B(ay) = —
- D

oa | h : s
A AwujZ oy Awy-t-Ay ; Amuj}{ ay Az .. +'AM%-,‘ AwmfZ; a; Axy
t =] = =
D

‘beca;use of (11'). Rearranging the terms in the numerator we can write

" h A , A
a; 2 A,s,; Aw?-,, Amu + az_z Aﬁ Aﬂ'/‘ﬂ A.’Ir"ﬁ)r*]- et ahz Aﬁ A:Uﬂ Amht |
12)  B(a) = I=L is1 = =1 _

But, by a well-known theorem of linear algebra, when i s r, we have
the equality

h
ZAﬁ:A-WﬂAwrt = 0,
j=1

while for { — » we have
%
‘ ZAjiijtAwﬂ = D.
=

The numerator of formula (12) therefore equals «; - D, whence H(a;) = o,
1. a; ig-an unbiased estimator of a;. As the index ¢ was chosen freely,
‘the same relation holds for estimators Gyy By, ... dy. We have shown thug
that q, @35 ..., ay, are unbiased estimators of the parameters a,, ay, ..., ay.

We come now to the proof for @,. From formula (10) we infer that
the total differential method estimator of the comstant term g, is

Therefore

n n k-
E(a,) = %[Z E(?!t)_‘z Z-’b‘itE(%)]
=

t=1 i=1 :

because of the assumption that the x’s are fixed. USing (1_1) we get

S 1.& i ' S
B(ay) — ;[2( 0+ o) —Z 2 i) = aq,
t=1 i=1 =1 t=1

and ay is an unbiased estimator of the constant term a,.
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The estimators a,,a,,...,a; will be biased, however, when our
assumptions about the form of the regression function are not correct.
Below we shall give an example in which it will be assumed that the
specification of independent variables entering the regression function
is wrong, i. e. that we have omitted in the regression function a variable
V: such that the mathematical expectation of ¥, depends on V,. In order
to avoid tedious algebra we shall take the simplest case.

Let us suppose that our assumption about a regression function is

(13) E(Y) = a; X+ a,
while the ‘true’ regression function has the form
(13) - B(Y) = a Xt a Vit o,

where a, 7 0. In this case the estimators a, and a, of the parameters a,
and a, will no longer be unbiased. In fact, we have

n—1 n—1
z‘Z: Az Ay, z21 Az B (Ay,)

(14) Bla,) = B {45 = Th-1
2> (A2 D (Azy)?
i=1 i=1
n—1 n—1
D [Aw(ay Adwy+ ay Avy)] > Aw, Av,
= = n—1 =t a, t;.ll ’
t;: (Aw,)? t;: WitAL

which proves that &, will be biased unless the sum ZAw,Av, equals zero.

By using the argument which will be fully expla.med in the next section,
it can be shown that this sum is equal to the expression

2607 (¢, V1) — €OV (g, Vgyq) — 0OV (41, ) +0 (n™")

This result is different from the well-known result obtained by H. Wold
(see [4], chapter XII, theorem 3) for the case of the classical regression
analysis. He proved namely that the estimator a, can be unbiased. in
spite of the specification error simply if the correlation coefficient between
@ and o, is zero. That statement, however, does not hold true in our
case of the total differential method. Ou the other hand, it can be seen
from formula (14) that the bias of @, is generally not serious when the
coefficient a, is near zero.
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When relation (13') holds true instead of (13), the estimator «, will
also be biased. This can be shown by simple calculations involving some
algebraic transformations. We have now

15 By = (8] 3 e S
t=1 t=1

1 1
=~ D@t vt a)~— 3 dia,)
t=1

" t=1

n—1
" n n 2 Awt A'Ut
O Oz 1 ; : {=1
=— $t+~21’t+ao*“'2mt e P S
® i n i3 "3 _ : 2 (Amt)z
' ' i=1
n=-1
n 1 2 Ath'vt
t=1

+2 | Mo Y
= Gyt — V= ) Wy |
n n-1

=1 =1 2 (Amt)z

t=1

Which shows the bias of the estimator a, in the case of a specification
éIror in the assumed form of the regression function.

IV. Standard errors of estimators in the case of one independent
Variable. In this section we shall derive the formula for the variance of
the total differential method estimator a, of the coefficient a; in the
regression function B (Y;) = a, X;+ ay. This will permit us later to com-
Pare the efficiency of the method discussed with the efficiency of the
classical method of regression analysis and to find cases when the new
method is better, i. e. has smaller standard errors of estimates. In this
Section we shall show also that the two total differential method estima-
tors of. a; and a, are consistent. First we find the variance of a,.

TEEOREM 2. Let us assume thal Y = o, Xy+ ag+Z; where X, is
& non-random variable and Z, is & random variable such that E (Z;)) =0
ond DZ) = o2 < oo for all t, so thai Z forms a stochastic process, sta-
itonary to the second degree. Then the variance of a,, the total differential
method estimator of a, defined by (12), is given by

fn—1 n--2 A—~1-2

(16) D;(al) = UZAZtél‘ (let)2+20?zu§ tg’: Awidwt“"@:
' [;21' (day)?]*

where the oy’s are autocorrelation coefficients of AZ;:

17) o _ BAZAZe)

@y = O'ZAZ
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Proof. From (13) we can write the variance of a, as

n—1 n—1
Z AygA$t 2 AZtA:L’t
D¥ay) = D 55— | = D2 | S |
3 (dap S (4zy

bub as X’s are not random variables we can put the non-random term
before the operator :D* and write

—1 n—~2 #—1-v
2 Oﬁzt(dwt +2 ) 2 Aa?tﬁmtwo'az,%ztﬂe:
_D2 t=1 v=1 ¥=1
(@) = n—1 )

[tg: (dm)?]

Because the variance of Z; is assumed to be the same for all ¢ the same
must hold true for the variance of AZ;, and therefore putting in the
formula above o%z,= o4z, ,= o4z We get (16), which completes the proof.

- Expression (16) can be written in a simpler way if we infroduce
into it the coefficients », defined as follows: '

n—-1-v

Z Am,AmH_,,
(18) Ky = — ok :

n-1

(da,)?

231

-

Inserting (18) into (16) we get

(19) D(ay) = 5 (1+2 2 0 03 -
' 2 ( Ay
=1

Computing the variance of 4, in practice we shall find two difficulties
which, however, appear also when the classical regression formula is used.
The first of these difficulties is that we usually do not know the value
of the variance of AZ;. This difficulty can be overcome by computing
the sample variance of AZ; and using it as an approximate value of the
true parameter. The seeond, similar difficulty arises because we do not
know the autoregression coefficients of 4Z;. Again, we can compute in-
stead the sample values of those coefficients. It is interesting to note
that we usually need only a few first coefficients g, because in general
absolute values of », will decrease rapidly to zero so that for large v prod-
uets x,0p will only little differ from zero. The practical impossibility
of computing the exact value of D?(a,) cannot be considered, though,
a8 & weak point of the total differential method because the same
situation usually holds when one uses classical methods of estimation.
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It is easy to show that both a, and a, are consistent estimators of a,
and ay respectively. In fact, we shall prove below the following

THEOREM 3. Under the assumptions stated in theorem 2 and assuming

n—2
that either the series A, = ) %,05 18 comvergent when n — oo or that
: =1

>

(20) | tim An 0,

n—oo MW
the statistic a, defined by (12) is a consistent estimator for a; and the statistic
@ defined by (22) i8 a consistent estimator for .

Proof. As is well known, it follows from Tchebyschev’s inequality
that an egtimator ¢ of a parameter @ is consistent when it is unbiased
and when its variance tends to zero as the sample size increases to infi-
nity. In our case we know from section 3 that a, and @, are unbiased,
and thus we need only to prove that their variances tend to zero as n — oo.

To prove the consisteney of a, let us denote by Mazy? the mean value
of (Az)'s, i. 6. lot -

. n—1
1
(21) = — E Awy)?.
N azy2 n—1 £ { ‘u’”t)

Of course as X’s are finite this mean will be bounded for all n. Using
(21) we can rewrite (19) as follows:

) Uiiz - *
D¥*a,) = 1+2 p Yo
( 1) (%—l)m(do&)2 ( é: Hy O )

which is easily seen to tend to zero as n — oo and therefore @, is consis-
tent. Whether (20) will hold true depends on gy and these depend on the
type of the stochastic stationary process which the AZgs represent. In
Particular (20) will hold true when AZ, form a process of moving averages
or the so-called autoregressive process because then, as has been shown
by Wold [5], the autoregression coefficients of the process are all zero
for all » > v, where ¥, 18 & natural finite number. In such cases the
series A, is obviously converging. _
Now we shall prove that also a, is consistent. Under the assump-

“tions about the regression, function the total differential method estima-
tor of g, is

2 Yt L
(22) Ay = i=1 —— ﬁ!— : Py = g_alit.
"

. =1
Therefore we have

Di{ay) = D*(g)+D*(a,)&~ 2% D(H) D (61) g, 4, -
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But D?(7) = o} /n = oi/n and therefore it tends to zero as #» — co. The
same has been proved for D?(a,) and as ¥ is finite we find that the
variance of a, tends to zero. This shows that a, is a consistent estimator
of a,. ‘ '

By similar arguments it can also be proved that also in a more
general case of the function (1) (i. e. when there are more than one inde-
pendent variables in the regression function which are not random) the
total differential method estimators of parameters are unbiased and con-
sistent. The proof is essentially the same but needs much more tedious
algebra. '

V. The efficiency of the total differential method estimators.
The present section is devoted to the comparison of the efficiency of
estimators obtained by the total differential method with the efficiency
of estimators used in Fisher’s theory of regression, which was later gener-
alised by H. Wold (see [5] and [6]) to the case of time series data where
consecutive observations are tusually not independent in the sense of
the calculus of probability. ‘

‘In order to perform such comparisons we must transform formula
(19) in sueh a way as to get D?(e,) in terms of parameters for the original
variables X; and: Z; only, and not in terms of parameters of their first
finite differences. For this purpose we shall prove below several simple
relations which connect parameters of Z, and of X, with those of AZ,
and of 4X,. :

TEEOREM 4. If Z; represents a stochastic process stationary to the
second degree, them

(23) Taz = 205(1— gy)

where p; is the coefficient of autocorrelation between Z; and Z,+1.
Proof. We can write down the following identities:

osz = B(Zy — 2,2 — [B(Zy 2y 12
= B(Zi1) — [B(Z )P+ B(Z3) — [B(Z) P — 2B( 231 Z1) -+ 2B (Z) B(Zy,)

= O’%t+1+0;%t———200\7(zz+1, Zy) = 20%—20% 0.

It should be noted that formula (23) is not a new one. It can be
derived from a more general expression, obtained first by O. Anderson
([2], page 114), relating variances of higher degree differenices to the
variance of an original variable, say Z,.
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n
TaEOREM 5. If Y, = D} oy&yu+ a,+Z; where w; are not random

1=1

variables, while Z; 18 random and represents a stochastic process stattonary
to the second degree with B(Z) = 0 and D*(Z;) = o} < oo, then the follow-
Mg equalities (24) and (25) hold true:

200 0011~ 0o
(24) 9: = Q(AZ;, AZt+v) = - 2(11’1191) > 17
(25‘ cov(Yy, Yipp)  cOV(Zy, Zy,,)
) Qv == ] .
azYt GZZ

Proof. First, in order to prove (25) we need only to observe that
we have

h
DY) = D*( Y] eyt a9 +-Zy) = DHZ) = .
im1
Furthermore we ha.ve Z, = Yt—'E(Yt) and Zy,, = Y;,,—F(Y;,). Then
COV(.Z” Zt+v) = E(ZtZt-w) = E[(Yt”'E(Yt))(YHv _E(Yt-;-v))],

which proves relation (25). Now in order to prove (24) we shall trans-
form the covariance of AZ, and of AZ, ., in the following way:

0ov(4Z;, AZy,,) = B(AZ,AZ,,,)—BAZy BAZ,,,,
0ov(4Z;, 4Z;.) = B{(Zy 011 —Z10)(Zy 1 —Zy)]—
—B(Z4 1\ —Z) B(Zy 011 —Zp o)y
which, after the multiplication and rea,rrahgement of terms, gives
0OV (AZ,y AZy,,) = €0V (Zysora, Z411) — 00V (Zy 15 Zy) —
' —eoV(Zi, 1, Zyio) + 00V (Zi sy, Zy).

Dividing now both sides of the last equation by ¢ and using formula (23)
we fina,]ly get '

* 200+ Got1 — 0o
’ 2(1—¢,)

?

‘Which completes the proof.

Theorem 5 has a great practical significance. It shows that under
Some definite conditions we can find such situations that though con-
secutive observations-made, for instance on a variable W, are strongly
correlated, the first differences of them may not be. This can sometimes
be useful in practical applications of the total differential method to the
estimation of regression parameters. | -
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THEOREM 6. If we introduce the notation

l
My = 1 . D1y My = 1 zxta
n—1 n—1
8, = 1 (B —My,)2, 8 = e (y— M,)?
1= 1~ M) ¢ = t— M g)%
=1 =1

R COV(W;_,_I,.’L“)
L =
88441

where the z’s are observed values of X, at different time points, then the
following equality holds:
n—1

(26) ' (dw)? = (n—1)[ 8}, + 8F — 20, 8,81+ (Myyy — My)2T.

t=1

Proof. We can expand the sum of the squares of first finite differ-
ences as follows:

n—1
2 (Axy)? 2 (@1 —@g)* = 2 (@41 — Myy1) + (My— @)+ (M, — M) T2
= )

t=1 t=1
n—1 n—1 n-1

D) (A = ' (@ — Myt 3 (@ M+ (n—1) (M — M) —

=1 =1 t=1
n—1

—22 (@1 — My pq) (20— M),

=1

Z(Awt)ﬂ—(n D08 85— 218y (Mg — M1,

which _Was to be proved.

When the sample size n is large the parameters 8 and 8%, will
differ from each other only insignificantly, just as M,,, will not differ
much from M,. It is therefore legitimate to look for a new, simpler for-
mula for large » in which only the general sample variance of X, would
appear instead of 8} and §f.,. To do this, however, we need to know
the order of the error committed by using such an approximation.
The derivation of formulas for those errors is easy but requires some
tedious algebra, which will be mostly omitted here. First we shall try
to express S?.H and 8} in terms of the parameter S defined as follows:

= —Z(m,—MF where M = ——Zm,

i=1 t=1
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We can write the following identity:

»n n
1 1
8 — 8 = Wg;(%—M)z— p—] Z (@42 — My )?

t=1

n n—-1
(""—1)t§ (wth)z—ng,: (g4 — Myyq)?
- n(n—1)
n n-1
(n—1) d'wi—nn—1)M>—n Y a} ,+n(n—1) M2,
. t=1 {=1
N n(n—1)
nat— Y af—n(n—1)M2+4n(n—1)M2,,
R =
B n(n—1)
. x— M2 Q2 ;
- (M)
and finally
| ME— gt nS2
@0 b = g o (M- M),

By using similar arguments it can be shown that

o . 9
(28) S§=M In 4 ns +(M*—M3),
n—1 n—1
80 that
208t MP—af  MEP—a?
(29) SE+S?+,=n_1+ — + — T M+,

Now the probem is reduced to finding the order of magnitude of the

eXI’I'elss'ioms standing on the right side of equation (29). These calculations
are quite simple. We have for example

n—1

ne1 i o Yg—(n—1) Ya,
(30) M—M = L _1 — =1 =1
‘ n—1 g;‘”‘ " ;m‘ n(n—1)

n
"_”mn"l'zmt
=1

oo M—w,,__ S
T Tam—1) T a—1 _‘O(—)
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because the difference M —a, is of the order of 8. In 2 similar way it
can be shown that the following relations hold true:

N
(31) My, —M =0 (——),
n
M8
(32) M} — M2~0( ),
n
S
(33) (Mg — M) = 0(?{)’
M2—oh M2yl (MS)
(34 : — = 0l—).
(34) n—1 n—1 n
It can also be shown that if ml,a:;, cooy @, and vy, vy, ..., v, represent

the observed values of the variables X; and V, respectively, and if
cov(xzy, v;) denotes the sample covariance of these two variables, then

n-—1
(35) Z (@11 — ) (Vg1 — V)
t=1
= 200V (&, V) — COV (2,1, V) — €OV (&g, vy 1)+ O(n77).

Using the relations written above and theorems 4 and 6 we can
rewrite the formula for D?(a,). We shall write it down assuming that n
i sufficiently large to make the terms of the order O (n~!) small. We get

| 9%(1— 1) v
36 D*(ay) = ——(1
(36) (@) (n—1) (Tl-—l)Sz + g "v@'v
This formula is adequate for comparisons of efficiency of the total diffe-
rential method with the classical method. As is known, the variance
of the estimator of the regression coefficient o, of the regression functmn

B(Y;) = ay Xy+aq is given by(?)

n—l

(37) mh%—mﬂ+2nw

Pl

We can compare now the efficiency of the total differential method of
estimation and we come to the following

THEOREM 7. L6t the regression -function be Y, = ala;t—i- g +Z, where
%y 18 a non-random variable while Z; forms a stochastic process, stationary
to the secand degree with E(Z;) = 0 and with finite variance of. Let D*(a,)

(*) ¥ormula (37) was obtained first by H. Wold. See [6].
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and Dj(a;) denote respectively the variance of the total differential method
estimator of a; and the variance of the estimator of a, obtained by the classic
device. If for n — oo the ratio

n—2

2 My Q:;

v=1
n—1

. Z Ts 0y

v=1

lends to a real number R or if ils absolute value is bounded, then the effi-
ciency of the total dszerentml method estimator of @ is given for n — oo
and such that O(n™') ~ zero, by:

*
o,
D) _1-g &%

38 — — .
(38) Dﬁ(wl) 1—7r "o

As is eagily seen, the efficiency of the total differential method
depends on the values of the four sequences of autoregression coefficients:
those of AZ,, Z,, AX; and X,;. When, however, the efficiency of the to-
tal differential method is discussed, another point must be emphasized.
Az iy well known, very often in practical applications of the regression
analysis with more than one independent variable a serious difficulty
arises — the collinearity in the statistical data. When dealing with time
Series data the collinearity is much more likely to occur because usually
we find a strong correlation between the variables which will play the role
of independent in our regression. The use of the total differential method
may sometimes permit us to overcome that difficulty. In fact, it is
Pposgible that even when there is a very strong positive (or negative)
correlation between X; and V;, it may not exist for their first differences —
a8 can be seen from formula (35). This possibility is a strong a.rgument
in favour of the new method when time series data are to be analysed
by statistical methods.

VL. An attempt to generalize the total differential method to the
non-linear case. In this section we shall make some comments about
the possibility of a generalization of the total differential method proce-
dure of estimation also to the casée when the regression function is not
linear but has a well-defined non-linear functional form and when all
independent variables entering into it are known. In particular let us
assume that '

(39) E(Y,) = F(oy, mzh oy Bpgs Oyy Ogy o ony Q)+ ag,
Zastosowania Matematyki V ] » 8
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where ag, ay, ..., @, are unknown parameters which must be estimated
from our statistical data. We assume furthermore that the function #
has derivatives with respect to each of the variables @, y, ..., 2.
For these derivatives we shall use the following notation:

oF

(40) Fw""‘zfi(‘vltamitr”ymht;alr Uoy ooey Q) = fiy.
it . :

Because of random fluctuations we shall have for different time points
(41) Ye = F(@rey Doty «.oy Tt; Uy gy oevy ) | g2y,

where z; is a random element. We assume that its mean is zero and
variance o for all time points .
The expression

h .
(42) Ay = D) fu Awy+ Az,
=1

can be interpreted as the total differential of ¥, plus a disturbance term
Az Obviously (42) depends on regression parameters a,, ag, ..., az.
If the number »—1 of the observed first finite differences of observed
variables is larger than the number of the parameters entering the right
hand of the equation (42), then the estimation of a,, Ogy +++y O Can be
done by applying the least squares method to the expression

n-1 R
(43) | 8y = DM {dy— > fuday)’
t=1 i=1

because this procedure is equivalent to the minimization of the distur-
bance term Az;. ' |

The normal equations obtained as the result of this minimization
may not be linear with respect to unknown parameters Gyy Ggy oeey Oy
Solving a system of several non-linear equations might be a hopeless
problem, but for a large class of regression functions this difficulty can
be overcome by using the following simple device. Let us suppose thab
the partial derivatives f;; appearing in (42) can be expressed as functions
of y; and of xz;'s. Let these functions be:

fi = Gu(¥s, @14, @y, viey Bpg),
(44) ‘ th = g?i(yf’ mlh Lgpy ceny wM)’
fht = ght(yt’ Frgy oy ooy mhl)

Now, if on substituting (44) into (43) we get normal equétions which
are linear with respect to the unknown parameters a,, oy, ..., @z, our
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Problem is solved and estimators of these parameters can be obtained.
This possibilify of using substibution (44) makes the total differential
method useful in non-linear cases because owing to it one can deal with
regression functions whose parameters would be impossible to estimate
by the classical least squares method. '

ExampLE 2. Let us suppose that y, = sinaz,+ 2. Obviously the
Parameter o cannot be estimated by the classical method, but it can be
by the total differential method. We have namely:

(45) ; Ayy = acos amy- Awy+ Az,.

But cos ax; = V1 —sin? axy = V1— yi. Substituting therefore cosaz; in
(45) by the last expression we get

Ay, = aV1—y; Am+ Az.

Asf Y, Ay; and Awx, are known, the parameter o can easily be estimated.
Minimizing the expression below with respect to «

n—1
8 = D (dy,—aV1—yi Any
i=1
we get for the estimator of o
n—-1 .
D V1—yi Ay, A,
=]
—1

a4 —

3!

) (1—yz)(day)*

EXAMPLE 3. Let us suppose that y, = Vax,+1+2. The estimation
of the parameter « can be done by the total differential method because

oy
i

a a
Ay, =

Az A2y but

_* , —
2V az+1 2Vax,+1 29

and therefore
a
Ay, = —— dw+ A%,
2y,

Wl'leflee it is easily seen that the resulting equation obtained after the
tiimization of (43) will be linear with respect to the parameter a.

- In general, ag in the linear case, the estimation procedure will have
1"W.o steps. In the first, estimates a@,, @s,...; @ Of 0y, @gy ..., G ATE Ob-
taaned,_ while the second step is devoted to the estimation of the con-
Stant term a,. We put 0y = Gy, dy = B, ..., O = @ and then minimize
the expression ‘

n o
8, = 24 (yt._F'(-wlh coey Tpgy By Ay ooey a'ré)_ao)z
f=1 .
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with respect to a,. The estimator a, of a, will be that value of ao for whick
S, has the smallest value.

The total differential method estimators, got in the non-linear case
in the way mentioned above, may happen to be biased. This, however.
is not a serious difficulty and it can easily be remedied because
in general it would not be too difficult to find the expected values of

estimators.
Let us assume in particular that we find

E(ay) = ogby, §=0,1,...,k,

where b; # 1, so that a; is biased. However, if instead of a; we take as
the estimator for a; the expression a; defined as

we get an unbiased estimator of o.
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Z. PAWLOWSKI (Warszawa)

O METODZIE ESTYMACJI ZA POMOCUA ROZNIOZKI ZUPELNEJ
I JEJ EFEETYWNOSCI W PRZYPADEU REGRESJI LINIOWEJ

"STRESZCZENIE

Przedmiotem artykulu jest oméwienie pewnej szczegélnej metody estymacji
parametréw funkoji regresji stosowanej w praypadku, gdy materialem statystyoznym
83 szeregi ozagowe. ~Autor nazywa te metode metoda estymacji za pomocq rééniceki
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zupelnej, gdyz w procosie estymacji podstawows role odgrywa wyrazenie, ktére moze
byé traktowane jako réiniczka. zupeina zmiennej zaleZnej wizgledem zmiennych
niezaleinych funkeji regresji Xy, Xat, ..., Xps. Omawiana metoda estymacji stoso-
wana byla juz niekiedy w .przeszloéci przez réinych autoréw, jednak nie badano
?ig(’iy joj efektywnogei i innych wiasnodci otrzymywanyech za jej pomocg estyma-
oTdw.

Rozdzial IT omawia sposéb szacowania parametréw regresji, w przypadku gdy
funkeja regresji ma postaé (1). Dla poszezegdlnych, obserwowanych momentow
ozasu zachodzié wiec bedzie zwiazek (2), gdzie Z; jest skladnikiem przypadkowym
0 Sredniej zero i stalej dla wszystkich ¢ warianeji o%. O zmiennych Xy¢, Xot, ..., Xnt
zakladamy, iz nie 83 one losowe. Parametry ag, a,, ..., op 82 nieznane i nalezy je
o8zZacowaé na podstawie zebranych materialow statystycznych dotyczacych wartosei
Y, X,, X,, ..., Xp w réinych okresach (momentach) czasu. '

’ Wprowadzajae pierwsze skoficzone réznice obserwowanych zmiennych, okre-
Slone wzorami (4) i (3), szacuje sie parametry a,, ay, ..., ap za pomocs metedy naj-
mniejszych kwadratéw. Uszyskane w ten sposéb estymatory a,, ay, ..., an 83 zgodne
1 nieobeigzone, jezeli tylko rzeczywifcie funkeja regresji ¥; wizgledem Xy ma po-
staé (1). Staly skladnik g, jest szacowany w ten sposéb, ze przyjmuje sie o, = a6,
%2 = @y, ..., ap = G, & nastepnie minimizuje sie wartosé wyrazenia (9) wzgledem q,.

Rozdzial III poswiecony jest dowedom nieobeiaZonofei estymatoréw para-
metréw ) Qys covy Qp.

W rozdziale IV znajduje sie wariancje estymatora parametru e, funkeji regresji
B(Xy) = a; Xy+ a, ‘wyznaczonego za pomoca metody rézniozki zupeinej. Wariancja
1_33 jest dana wzorem (19), w ktérym o) oznaczaja wspoélozynniki autokorelacji 4Z;
1 474\, & wspblozynniki », sa okreSlone wzorem (18). Poniewas wariancja ta daiy
do zera, g4y n — oo, a estymator a, jest nieobeigiony, przeto wynika stad, Ze esty-
mator ten jest réwniez i zgodny. W podobny sposéb dowodzi sie, Ze zgodny jost
réwnies estymator statego skladnika ag, aq. : : )

Celem poréwnania efektywnofei metody estymacji z klasyeznymi metodami
eﬁtymaeji parametréw regresji liniowej za pomocs rézniczki zupelmej waér (19) tak
819 przeksztalna, by wariancja estymatora wyrazona byla za pomoca parametrow dla
¥ t1 Xy (i =1,2,..., k), a nie za pomocy parametréw ich pierwszyeh réinic. Wyka-
Zuje sig, ze odrzuecajae skladniki rzg¢du O (n~1) i wyiszych, wariancje tego estymatora
Mozna przedstawié w postaci (36). Wzér (38) daje stosunek wariancji estymatora a,

0 Wwariancji estymatora parametru «, uszyskanego za pomoca metody klasycznej.
Jak. widaé, efektywnosé nowej metody zaleiy od wspotezynnikéw autokorelacii of
(zmionnej 4z, i AZt,4), 0 (zmiennych Z¢i Zgyy), 7o (zaobserwowanych dla Xy i Xyio)
oraz od wspélezynnikéw sx,.

Ostatni rozdzial po&wigoony jest prébie uogélnienia motody estymacji za po-
006g rbézniczki zupelnej, w praypadku gdy funkoja regresji nie jest liniowa. Autor
Wskasze na fakt, iz za pomoog nowej metody mozna szacowaé parametry takich
funkeji regresji, ktére nie pozwalaja na uiycie klasycznej metody najmnicjszych
kwadratéw, jak na przyklad funkeji K (Y¥;) = sinax;. |
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8, HABJNOBCKHEY (Bapmasa)

O METOJE IONHOI'O JUHODEPEHIIHAJIA H EI'0 3®OEKTHBHOCTH
B CAVYAE JIHHERHOHU PEI'PECCUH

PESOME

Pabora moceAmeHa CHELMATLHOMY MeTOLYy OLCHKM NAPaMeTpPoB (QYHKIUK pe-
rpecenn

h
E(Y) = D waitay,
- i=1

a TamKe cpaBH'eHmo 3P PeKTHBHOCTH HaHHOro MeTona (HasHBaAEMOro aBTOPOM Memodom
noamnozo Ougpeperyuaia) ¢ KIACCHYECKHEM METONOM ONGHKE HAPaMeTpoB (QyHRITH
perpeccun. BepA mepBHE PASHOCTH 0TMEYCHHHX SHAUCHWE NePEMORHLIX ONpejensH-
Hule fopmynamu (4) u (5), oueHKH ®ys Ggs -o., Gp TAPAMETDOB Gy, g, « .0, G BEHBOGATCH
myTéM MEHEMAQJIUSALUKE BHpameHuns S, IO OTHOIIEHUI ap, Gg, o0y 0p. OHEHKY, C¢BO-
Gonmoro wieHa ag nonyqae'rca upn HOMOINE NPUMEHCHUS METOHA HAMMeHLIINX RBa-

APATOB K BHPAKEHHIO ‘2 (yg-miz‘ ai @)%,
=1 =1

ApTop NOKA3EIBAET, UTO NMOAYYGHHHE TAKEM 0GDPA3OM OHMEHKE ABIAAITCH COCTO-
ATEALHEIMA ¥ HeCMOIEHHHMU. B fnaabmeltmed#t wacry paGoTs uccaemyerca sddexrs-
BHOCTH MeTOAa moxHoro aupdepermmana pua cxydas b = 1. DpdexTHBHOCTs 5T,
BHpaennEan $opMmymoit (38), saBMCHT OT BHAUEHHA YETHPEX DOCIELOBATETHHOCTEM
KoepPHIHEHTOB ABTOKOPPENANMN: OT BHAYEHWA HEBABHCEMON IepeMeHHOK &, OT
NePBEIX PABHOCTEN 5TOM HepeMeHHON, OT SHAYEHHUA OCTATOUHOTO YJNEHA 2, 4 TAKMKE
0T HePBHX pPasHOCTe#l TOr0 WieHA.

ITocepuan 4dacTs paGoTs ABIAETCH NONHTHOK 000OGmEHHS MeTona IOIHOLO
Andpdepennumana HA cayualt HeamHeHHHX PyHkuUl perpeccmm.



