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1. Definitions and notation. This paper is a continuation of [2],
Where we investigated extended piecewise Markov processes in contin-
uous time. The definition of an extended piecewise Markov process
In discrete time is analogous to the definition of such a process in contin-
U0us time. Also, the obtained relations are analogous to the relations
8lven in theorems 2 and 3 in [2]. The method of proving the theorems is
that of extension to a Markov process. The obtained results are applied
%o the investigation of generalized Moran’s models of a dam.

Let us introduce the notation obligatory in the whole paper:
2, = (0, o), #, stands for the o-algebra of Borel subsets of Z_,
% 4 for the o-algebra of all subsets of /* = {1, 2, ...}, %, for the o-algebra
of all subsets of the set {0, 1}.

Assume that on the measurable space (Z, &) there are given:

@ set of measurable stochastic kernels {Poy(®,A), 2 X, A e F},
¢ = 07 17 Y e T ;

two stochastic kernels {Q.(,A),2eX, A F}, a =0,1;

& set of probability distributions {f,,(n),n =0,1,...}, a =0,1,
YeZ, such that, for every y € &, f,,,(0) = 0.

Definition 1. A stochastic process {X(f), ¢ =0,1,...}, defined
011. & Probability space (£, o, Pr), valued in the state space (%, %), is
Sald to be an extended piecewise Markov process if the following conditions
(@)-(d) are tulfilleq:

(a) There exists a sequence of random variables 0 =7, < 7, < 7,
S %< ... defined on (2, o, Pr), with integer values, such that the process

{X )

? 72m+a<t< r2m+a+17 t - 0’ 1’ no-}’ a = 0,'1’ m = 0’ 1, eese
(Tam+a+r —Tamta = 1)

1§ a homogeneous Markov chain with transition probabilities P, ,(, A)
Pendent on a4 and on the condition (X (Tymya) = Y}
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(b) At the moments 75,4, ¢ =0,1, m =0,1,..., for which
Tomta 7 Tomiasr1y UD€ state change of the process is a composition of two
consecutive independent jumps: a Markovian one with the stochastic
kernel P,,(x, A) dependent on the condition {X(7,,.,_;) =y} and
a regencrative one with the stochastic kernel @,(y, 4).

(e) At the moments v,,, m =0,1,..., for which z,, = 7,,,, the
state change of the process is a composition of three independent jumps:
a Markovian one with the stochastic kernel P, ,(#, A) dependent on the
condition {X(7,,_,) =y} and two regenerative ones with stochastic
kernels @,(xz, A) and Qy(x, 4).

(d) For arbitrary ¢ =0,1, m =0,1,..., f,,(n) is the probability
distribution of the distance between 7,,,,,, and 7,,,, dependent on a
and on the condition {X (7,,.,) = ¥}.

Let X,,, m =1,2,..., denote the state of the process at the mo-
ment 7,, before the last regenerative transition. Consider four sequences
of random variables

{Xonarm=1,2,...}, {X(vupnie), »m=0,1,...}, a=0,1.

It is easy to see that they are Markov chains, since 7,,,.,, ¢ = 0,1,
m = 0,1, ..., areregenerative moments of the process {X(¢),¢ = 0,1, ...}.

Assume that there exists a probability measure N, being invariant

for the chain {X;,, m = 1,2, ...}. Hence it is easy to find the invariant
measures N;, N, N; for the chains

{Xom1ym =1,2,...}, {X(tgw), m=0,1,...},
{X (tomya)ym =0,1,...},
respectively.
In the sequel of this paper we find relations between the stationary
probability distribution of the process {X(t),¢ = 0,1, ...} and the prob-

ability measures N;, N}, ¢ = 0,1. Sufficient conditions for the ergo-
dicity of Markov chains on a general state space are given in [4].

2. Invariant measure for an extended Markov process. Let {X (i),
t=0,1,...} be an extended piecewise Markov process with regenerative
moments {r,, m =0,1,...}. Assume that

supr, = + oo Pr-almost everywhere
mz=0

and for t = 0,1, ... define the following processes:
Y(t) = -X(sz-;-a)’

Z(t) = tymiar1—1, Tomta S 1< Tomyayry @ = 0,1, m =0,1,...
a(t) = a,
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The process {¥Y (t),t = 0,1,...} is said to be a semi- Markov process,
{Z(t),t =0,1,...} a residual-time process and {a(t), t = 0,1, ...} a break-
down process.

Let us introduce tﬁe following notation:
T =N %x{0,1}, T=(2,9,2,i)ecZ,
F = FxB,xB, A=AxBx{jix{a}e#F,
X(t) = (X(1), Y (1), Z(t), a(t)),
P@E,4) =Pr(X(t+1)ed | X(t) =7), t=0,1,...

THEOREM 1. The process {X(t),t =0,1,...} is a homogeneous Mar-
kov chain with transition probabilities P (%, A) defined by the formula

1) P, 4) = P; (0, A)I5(y)0,_,,;0;4+
+0,.00_s0 [ Piyl@, du) [Qu(u, d8)Ip(8)fi-s,s(5)+
x A

+6,, fPi,u(w, du) fQi(“, d8)f1-1,5(0) le—i(S’ d2) I5(2)f;,. (),
& & 4
FeX, Ade #.

Proof. From definition 1 it follows immediately that this process

is homogeneous. If z > 2, then the moment ¢+ 1 is not regenerative and
we ha,ve

Pr(X(t+1)ed | X(t) = %) = P, (@, A) Ip(y)0,_1,j8ia-

If z = 1, then the moment ¢+ 1 is regenerative and the next distance
between regenerative moments may be equal to j > 1 with probability
Ji-i,s(j) dependent on the state of the process at the moment ¢ +1 or may
be equal to zero with probability f,_;,(0) (in that case we have two re-
8enerative transitions at the moment t4+1). Hence we have -

Pr(X(t+1)e 4| X(t) = z)
= 001 [1ia [ Puy(, du) [Qu(w, ) Ip(s)fi_ca () +
x A

00 [ Poy(@, du) [Quw, d)fy1a(0) [Qu_ils, o) In(a)fue()],

Where the second component on the right-hand side is equal to zeroif i = 0.

. THEOREM 2. T f the probability measures N are invariant for the Markov
chaing {X(

b Tamsa)y M =0,1,...}, @ = 0,1, then the measure N defined
Y the formula

18

2)  N) = [ N @) Ip(@)foali+ B) Pk, 0, 4), ZeF,
x

k=

o
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where

~2fN+ (@) ggy Moy = D fay(n), a=0,1,yed,
n=1

a=0 &

8 an m'vama/n,t measure for the transition probabilities P(z, A), provided
the right-hand side of (2) is finite.

Proof. By the definition of the invariant measure and by formulas (2)
and (1) we have

3) [ N(@Z)P@E, A) =v ) [Ni(ds)Ip(s)fas(i+k)Poslk,s, A)+
x

T k=1
+o [[( [ Nia(ds) ffl —as(k) [ Pi_go(ky s, dn)+ [ NF(ds) f‘fa,sw)x
x k=1 x x k=1

A
X [Poo(ky s, du) [Qu(w, @) fi_4,4(0)) Qu_al@, dw)] I5(10)fsw()
x x .

By the definitions of the measures N7 and N, we have

Ny (4 f Ny (ds) Zf(,s(k)PoS(k,s,AH

k=1

+ f N (ds) me(k) f Py (kys, du) [Q(u, d2)fy,q(0),
k=1 A

fN+ ds)Zfls Py (k,s, A).

Hence the expression in the square brackets on the right-hand side
of (3) equals N7 (dw). Thus we obtain

[ N(@z)P(&, 4) =0 ) [ Ni(d8)I5(8)fas(i+F)Paslk,s, 4)+
x

The constant v is computed from the condition

1 1

DIN@ xHx{a)) =1 =0) [Ni(ds)m,,.

a=0 a=0%
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COROLLARY 1. The marginal measure

N(4) = ZZV(A X I XN X {a})

a=0

and the measures N fulfil the relations

DM

(4) N ) = ZfN )Foo(k)Pyy(ky 4, A), Ae &,
x

k=0a=0

I
°

Where
K) = D fay(d)y @=0,1, yex,
j=k+1

Provided the right-hand side of (4) is finite.

Formula (4) gives relations analogous to relations (8) in [2]. The
following theorem is analogous to theorem 3 in [2] for the stationary pro-

cess {X(t),t = 0,1, ...} (for the definition of a stationary process see [1],
D. 165).

THEOREM 3. The marginal measure
N(AxBx{a}) = N(A xBxH x{a})
end the measures N, and N} fulfil the relations
) FAx&x{a})— [F(doxdyx (o), ((®,9), A x %)
P

= 0(Ni_,(4)—NF(4)), a=0,1, Ae#F,
Where

,(2,y), AxB) =P, (¢, 4)Iz(y), & =0,1, s,yc%, A,Be &.

Proof. From the definition of the invariant measure N and from
formula, (1) we obtain the equation

©®) N@) = [ N(dexdyx{j+1}x{a})Pgy(, 4)+

Z'xB

+ flV(dm x dy x {1} x {1—a}) fPl_a,”(a:,-ds) X
22 z

X [ @i_als, @) fau(i) + f N(de x dy x {1} x {a}) X

AnB

% [ Puy(@,d5) [ Qules )fima(®) [ @ialw, d)fo ().

ANnB

4
Zastosow. Matem. 16.2
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Thus for »(j, a) = N(2?x {j} x {a}) we have
(7) »(j,a) =»(j+1,a)+ [ N(dexdyx {1} x {1—a}) X
a2

X f-Pl_a,y(w’ dS) le—-a('g, du)fa,u(j)"'
x x

+ [ N(dex dy x {1} x {a}) [P, (=, ds) x
2 T

8

X

R

Qu(8, ) f1-0,6(0) [@1_a(u, d2)f,,(j).
x

Transforming the right-hand side of (7) it is possible to verify that
this equation has a solution of the form .

v(j,a) =v [ NI (@s)F,,(j—1), j=>1.
x

The constant v is determined by the condition
o 1 1

D, a) =1=0) [N}(ds)m,,.
=1 a=0%

a=0

J

Introducing the notation
N*(AxB) = N(AxBx{a}|1)
= Pr((X (1), (1), a(t) e AXBx{a} | Z(t) = 1),
we have

(8) N(AxBx{1}x{a}) =v [ N} (ds)F,,(0)Ni(4 x B).
x

By the definition of the measures ¥, we have

(9) [ Nia(d@8)(1—fias(0) [Ni_o(dwx dy)P,_, (2, A)+
x 72

+ [N} (ds)F,,(0) [Na(dwxdy) [Po,(@,ds) [ Quls, du)f,_q.(0)
z x

x? ANB

—N;(4), a=0,1, de &.

Summing (6) over j from 1 to infinity and using (8) and (9) we obtain (5)-

In the case of a discrete state space, from theorem 3 we obtain the
proposition of theorem 3.1 in [3].

If f,,,(0) = 1for every y € Z, then the process {X(¢),t =0,1,...}isa
piecewise Markov process and from theorems 2 and 3 we obtain the following
theorems:
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THEOREM 4. If the probability measure N+ is invariant for the Markov
chain {X(z,), m =0,1,...}, then the measure N defined by the formula

(10) F@)=»3 [N+ @) @fG+0P.ka,4), deF,
k=_0.‘l’

where
1 oo
== [Fr@)m, m,= D'nfn), Py0,,4) = L),
Z n=1

v, Yye%, Ae F,

i8 an invariant measure for the transition probabilities P (%, A), provided
the right-hand side of (10) is fimite.

THEOREM 5. The marginal measure N(A x B) = N(A X BxA) and
the measures N~ and N fulfil the relation '

11) NAxZ)— fﬁ(dwxdy)ﬁ((w,y),Ax.%‘) = o(N~(4)—N*(4)),
3-2

Ae #F,
where

I(#,y),AxB) =P,(z,A)I(y), %,yeZ%, A,Be ZF.

3. Applications. Consider a dam with finite capacity k. At discrete
moments ¢ = 0,1, ..., into the dam there flows a water stream being
2 mixture of two streams. In the first input stream the quantities {4 (¢),
t=0,1,...} flowing in at consecutive moments are independent random
Variables with identical distribution functions G(y), where G(y) = 0 for
Y¥ < 0. In the second input stream the flow appears at random moments
0 = ¢y< 7,< ... with probability distribution of the distances {f(n),
n =1, 2,...} and forms independent random variables B(t) with identical
distribution function H(y), where H(y) = 0 for y < 0.

We denote by X (t) the water level in the dam at the moment ¢ in-
cluding the input of this moment. Since the capacity of the dam is finite,
for X(t) > k a quantity X (t)—% overflows. After an overflow, at every
Moment there flows out of the dam a constant quantity of water ¢ <k,
unless X (t) < ¢ in which case the quantity equals X (#). This can be ex-
Pressed by the formula :

" [min (X(0), B~ + A+ +BEHD, 41 =1,

Where m = 0,1, ..., and [a], denotes max(a,'O)‘.
From the description of the model it follows that the chain {X (¢),
t=0, 1,...} is a piecewise Markov process with state space (#,, %.)
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and with regenerative moments {r,, m =0,1,...}. Between regen-
erative moments the process {X(t), 7, <t < 7,,;} is a Markov chain
with transition probabilities defined by the formula

G(y), 0<z<ec,
Pz, (0,y9]) =1G(y—z+e¢), c<z<Ek,
Gly—k+e), Ek<a,

where y > 0.

At the regenerative moments ¢ =17,, m =0,1,..., besides the
Markovian transition with kernel P(s,(0,y]) we have a regenerative
transition with kernel given by the formula

Q(-’D, (O,y]) =H(y—=), x,y>0.

Using (10) and (11) and writing shortly

N(y) =N(0,v]), N (y) =N"(0,y]), Nt =DN*(0,y]

we obtain the following theorem:

THEOREM 6. In Moran’s model of a dam with an additional input
stream, the distribution functions N (y), N~ (y), and N7 (y) of the stationary
probability distributions defined for the, process {X(t),t = 0,1, ...} fulfil
the relations

(o]

(12) N@y) =0 D Fm) [Pn,,(0,y])dN* (),

n=0 %

(13) N(y)— [Pz, (0,y])dN(@) =v [ [L—H(y—a)]aN" (),
£+

(0,71
where y > 0.

The considered model of a dam may be modified in the follow-
ing way. Assume that there exist random variables {7,,.,,a =0,1,
m = 0,1,...} with probability distributions of the distances denoted
by {f.(»), n =0,1,...}, ¢ = 0,1, in which the water demand changes
deterministically. In the intervals 7,, << 73,,,, m =0,1,..., the
demands are equal to ¢, (the output is min (¢,, X ())), and in the intervals
Tomi1 < < Tyygy m = 0,1,..., the demands are equal to ¢, # G-
In a particular case ¢, = 0, in the intervals. 7,,, < t < Ty, m = 0,1, ...,
there is no output but only accumulation of water.

Under these assumptions, the process {X(f),t = 0,1, ...} is an extend-
ed piecewise Markov process with regenerative moments {z,,,,4,a@ =0, 1,
m = 0y1,...}. Theorems 2 and 3 enable us to write relations analogous
to (12) and (13).
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MARIA JANKIE WICZ (Wroclaw)

UOGGLNIONE PROCESY PRZEDZIALAMI MARKOWA W CZASIE DYSKRETNYM

STRESZCZENIE

Definicja uogélnionych proceséw przedzialtami Markowa w czasie dyskretnym,
Metoda ich badania i otrzymane zwiazki sg analogiczne do definicji, metody i zwiazk6w
Jawartych w [2]. Otrzymane wyniki stosuje si¢ do badania pewnych modyfikacji
Modelu tamy, podanego przez Morana.



