ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
20,2 (1990), pp. 291-297

Z. CYLKOWSKI (Wroclaw)

SUMMATION OF SERIES BY SOME SUBSTITUTIONS

The method of integration by variable transformation is adapted to
Dumerical summation of some functions. Some substitutions provide valuable
Methods at least for analytic functions with singularities of algebraic-logarith-
Mic type at infinity. Any details about the kind of singularity are unnecessary
While making use of these methods.

L. Introduction. The Euler-Maclaurin summation formula is commonly
NOwn. Sometimes it yields the very useful method of calculating sums of some
SeTies. It is then employed in the form

1 i ) 1 m B i
( ) ngo S(n) = (_‘; S(X)dx +§S(O)—J§1 ﬁs(z 1)(0)
1 o] .
" @mt § P,

Where ; i natural, B,; denotes the 2j-th Bernoulli number, and B%,, is
4 periodic function, with period 1, which in the interval [0, 1) is identical with
€ 2m-th Bernoulli polynomial (see [2]).

We assume that the function s and its first 2m derivatives are integrable in
the interva) [0, o0), and s®™ is absolutely integrable.

There are different applications of summation formula (1). Perhaps its
‘0st important advantage is the fact that it shows how the error with which an
IMtegra] approximates a sum (or vice versa) depends on the behaviour of the
Unction s pear the zero-point.
int Wh-ile computing an integral one can, as is well known, change t.he

C8ration variable. Certain substitutions are specially useful and lead to quite
g°_°d methods of numerical integration (see, e.g., [1], [3], [4]). The problem

:l‘l§es whether similar ideas can be taken advantage of in calculating sums of
Cries,

2. Summation by substitution. Let ¢ be a function which in the interval
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[0, cc) has a continuous (2m+ 1)-st derivative and which maps this interval
onto itself in such a way that ¢(0) =0, ¢(c0) = oo. Let us put

r(x) = ¢'(x) s(¢(x)).
Using the Euler-Maclaurin formula to the function s—r, we obtain
THEOREM 1. If formula (1) is true for the functions s and r, then

@ 3 st)= 3 i+ 20§ o geion) i)
~om g B3, (x)(s?™(x) — r®m(x)) dx.

Let us notice that it is possible for (1) to be true for s but not for r. For
example, if

_sin(x+1)

$(x) = (x—-l-l)_l'?’

QD(X) = ex_l,

then

~x/2

r(x) =e **sine*, r'(x) = e"*cose*—Le *sine*,

and there is no limit of 7'(x) as x — oo, which means that r” is not integrable in
the interval [0, oo0).
In spite of that we may take the expression

Qo @

2=} %5, where @, = ¢'(n), & = o(n),

n=0 n=0

for the approximation of the sum of the function s. The method arising from
that will be called a summation by substitution.

Formula (2) shows that in the method the main part of the error is usually
(s(0)—r(0))/2. The value can be decreased to zero if we assume ¢'(0) = 1.

THEOREM 2. If for X near zero the functions s, r and ¢ have the expansions
S(X) =so+5x+5,x*+ ..., r(x)=rotr,x+rx>+...,
P(x) = x+@x* + @ X1+,
where k = 4, then
To =S50, Ty =S85, vy Tpoy=S5_s
Te—1 = Sx_ 1 +kys,, re = S+ (k+ 10481 + @ 4 150)
Trer1 = Skt g H(R+2NPu82 + Pt 151 + Pt 250),

Tir2 = Spr2H(k+3X@u83+ @44 153+ By i 251 + 04 350)-

Furthermore, if k is odd and k < 2m—3, then (2) takes the form



Summation of series 293

B) Y stm)= Y r(n)+Bys1 (0451 + @ps150)

n=0 n=90
+ Byt 3(@)S3+ 04152+ Pp 281+ Ppi350) + -
Proof. Since

O(X) = X+ QX+ @ KT X AL

P2(x) = x>+ 2@, X 1 420, X2+ L,
@3(x) = x>+ 3@ 2+ ...,
etc., we have
W 1) = (1+k@x* 14 (k+ 1)@y p X5+ . Yo +51x+ .o+ 5 X7
+ (S QS )X+ (S + 20485 + Prr 51X
F(S5s2 T 3083+ 2054 152+ Prp 25X 24 )-
Ordenng the terms on the right-hand side of (4), we obtain the required
identities of the first part of the theorem. Now we substitute the obtained
values in place of
s~ () — H2I- D()
2i—1)! = 82j-17 1251

dppearing in (2), and we have got formula (3).

$(0)—r(0) = 5,7,

3. Two propositions of substitutions. Of many possible substitutions we
Propose here two. In both cases the function ¢ depends additionally on
4 parameter w.

The first proposition:
3
(5) ex) = ﬂ(wx)

w(wx)?’

It is easy to check that

2(p(x) 6 w12
’ — 3_~=vnvs — R —_—
@' (x) = 3ch(wx) o p(x) = x+ 6 x’+ 120x 3+,

Formula (3) is now of the form

51 5.5(0
S st =3 r(n)—‘%(ﬁs'w)—ggs . )+_ )

n=0 n=

Slnce By = —35 and B, = &.
The second proposition:

(6) o(x) = ! (sh(sh(wx))——-(wx)3 : (wx)s).
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In this case we have

@' (x) = ch(wx)-ch(sh(wx)) — (wx)* — 3 (wx)*,

qo(x)—x+—wx Wi+ ..,
2520

* i 8 1 5/s"(0) 13
Y s(n)= ), r(n)—mw (%s’(O)—gg(s 3(! )+aw s(O))—}T )

n=0 n=0

As can be seen, in both propositions the error of summation by
substitution is of order O(w®) for w—0. We have also ¢'(x) > 0. Hence it
follows that if s(x) = 0, then r(n) > 0, i.c., while summing the components r(n),
the influence of rounding errors is of little importance.

The evaluation of ¢(x) and ¢'(x) is not so expensive as it seems. Using, e.g.,
substitution (6), we only need to perform 10 additions, 9 multiplications,
4 divisions and calculate 1(!) exponential function value (the ¢ and ¢’ can be
tabulated, if necessary).

TABLE 1
Substitu- ‘
tion w . (@ (b) (©) (d)

038 4696188 5 7303722 5 0.860599 4 3082478 3
©) 0.4 4594984 10 7493632 9 0.808481 7 3913795 5
0.2 4.595112 20 7.491400 17 0.808510 14 3997695 8
0.1 4.595109 38 7.491400 34 0.808509 26 4.000000 15
1.0 4713135 5 7732122 5 0.834331 4 3.349187 3
©) 0.5 4.593062 10 7493370 9 0.807773 8 3.899829 5
0.25 4595111 19 7491401 18 0.808510 15 3997818 9
0.125 4.595111 38 7.491400 35 0.808509 28 4.000000 15

In Table 1 we give the results of calculations for the series

In(n+2)\'*
@) Z(+1)125, (),,go( n+2 ) ’

©) f(n+1+~/n+1 S5 (d) §0.75".
n=0

n=0

The summing of components in the transformed series was abandoned after
encountering the first component of modulus not greater than 1075, The
number of that component is given beside the obtained sum of the series.

One of the best methods for sequence (and series) convergence acceleration
is the Levin u-transform (see, e.g., [51). Especially, series of type (a) and (d) are
model examples 1ndlcat1ng the power of that method. It can be verified that
about 10 terms of series (a) are enough for getting the absolute error 106, but
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then — as can also be verified — at least 12-digit floating-point arithmetic
(deCimal) must be used; whereas the results of Table 1 were obtained by using
10-digit arithmetic, and 9 digits would be enough, too. From Table 1 we see
that the methods of summation by substitutions (5) and (6) do not make the
reater difference among the given examples. The Levin u-transform, however,
does not work well in cases (b) and (c). For instance, in case (b) it gives the
fOllowing results (the n-th result is obtained by the first n terms):

020, -0.06, 106, 3.82, 905 1109, 1069, 10.09,

9.62, 928, 902, 882,

Remark. If a given series is very slowly convergent and the computations
are made on a computer, then the limited range of floating-point numbers can
Obstruct obtaining the required accuracy. For instance:

i 1 © dx 20

"=§255 n1.05 25.;5 xl.OS 212.75

= 0.0029...

4. Error in summing analytic functions. Let us consider now the sum

500 =. % s)f (n+1)

and its approximation

(7) A(f) = f a,f(x,+1).

We assume that the series Y s(n) and Za, are absolutely convergent.

Let f be a complex variable function that is regular at infinity, continuous
On a contour C and analytic outside C. As is known from the theory of analytic
functions, if the contour C includes point 0 and a point x lies outside C, then

i_@xdz

®) 169 =

(to Prove (8), one can use the substitution z = 1/{ and take advantage of
auchy’s integral formula). Putting (8) into the error expression

0

E()=8()-4(f)= ¥ mf(n+1)—a,f(x,+1)

n=0

A0d assuming that the arguments 1, 2,..., xo+1, x, +1, ... of f lie outside the
ontour C, we obtain

X

1 .
3md (j;@ E(g,)dz, where g,(x)= —

E() =

That means that the estimate of the error E(f) is of the order of the



296 Z. Cylkowski

estimate of E(g,). It is evident then that to verify the methods based on
approximation (7), among them the methods of Section 3, we should test them
on the series

ad ad n+1 X s(n)
s(n)g,(n+1) = s(f) ——— = A o —
L sg:nt D)= 3 s T = X T et
where z ranges over a neighbourhood of the zero-point.
For the methods of Section 3 and for the functions s from examples (a)}{d)
such calculations were performed. The parameter z was given values z = a+ib,
where

a=0, £0.5, +1, £1.5,2,25 b=0, £05, £1, £1.5,

obviously excepting z = 1 and z = 2. As previously, the components were being
added as long as their moduli were greater than 1072, and as previously the
parameter w was halved. Every time the number of components was the same
as in Table 1, and almost every time the rate of getting digits fixed in the results
obtained was also as there. Merely for z = 2.5 and in a small vicinity the rate

TABLE 2
Substi- .
tution z=—1+i z=25
0.8 6.735113 +i0.392868 5 " 6.364513 5
) 04 6.972847+10.322928 9 8.068223 9
0.2 6.969543+i0.323752 17 8.125136 17
0.1 6.969542+i0.323752 34 8.126083 34
1.0 7.1784624-i0.377780 5 6923675 5
©) 0.5 6.973444+i0.321760 9 8.087991 9
0.25 6.969544 +i0.323752 18 8.125523 18
0.125 6.969543 +i0.323752 35 8.126090 35

was 'dir.ni.nished. It will probably be worse and worse as z departs from
0 remaining near the positive real semi-axis. Table 2 shows some results

obtained for the series
i In(rn+2)\*> n+1
o\ n+2 n+l—z

Roughly speaking, the summation of terms s(n)f(r+1) proceeds similarly to
the summation of s(n).
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