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1. Introduction. The paper deals with the following physical problem.
Suppose we are given a cylindrical reservoir filled with water, surrounded
by a dry soil. The bottom of the reservoir touches a horizontal imper-
meable layer having a plane upper boundary. In such a situation the
flow percolates from the reservoir into the surrounding unsaturated
Tegion. Obviously, the water-table and the reach of the moisted region
are time-varying. If we suppose that the reservoir is continuously refilled
Wwith ‘water (so that its height is constant) and that the surrounding region
Is sufficiently great, the described process may be observed during a large
time interval. If we want to describe the time-dependence of this phe-
nomenon, we are led to the non-stationary percolation problem, which is
considered in the sequel. The described problem is closely related to
a method of cleaning copper ore by plunging it into a large reservoir with
Water (the so-called flotation method). After the cleaning process the
Water in the reservoir contains much toxic substances and it is very impor-
tant to know in what manner the impurities percolate into the surround-
ing region. The report [2] was the first step in studying this problem
and the present paper contains a more detailed study.

Our investigations are based on some physical simplifications. We
Suppose that the soil is homogeneous and isotropic. Thus the coefficients
of hydraulic conductivity K and of permeability of the soil m are constant
Scalar values. After neglecting the effects of capillarity we can assume
that the water-table divides the soil into two regions: a saturated one and
a dry one. We use the hydraulic model of filtration (called also the Dupuit
approximation; see [6] and [7]). In this model the non-stationary perco-
lation is described by Boussinesq’s equation

1

m
(1) 5 Aoyl =M.
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~ Here the upper boundary of the impermeable layer is taken as the
(@, y)-plane and h denetes the height of the saturated region (thus the
surface 2 = h(w, y, t) is the water-table at time). 4, , denotes, as usually,
the plane Laplace operator. We assume that the z-axis is at the same
time the axis of the reservoir whose radius is equal to one. Accordingly
we have the first boundary condition k|,_, = const or, for simplicity,
we assume that

(2) hi,—-y = 1.

We may expect that in the described model the percolation process
has a radial symmetry. So we are interested only in the solutions of (1)
of the form

=h(r,t) (r =Varty?).

After introducing polar coordinates in the plane zy we obtain the
Boussinesq equation in the form

1 2 1 2
(3) 2 (h )rr+ o (h’ )r_ h’t
(for simplicity, in the sequel we put m/K = 1).

To obtain the second boundary condition we suppose that the reach
of the saturated region is finite at each moment ¢ > 0. This is rather
natural from the physical point of view if we know that water percolates
with a finite speed and that at the beginning the soil surrounding the
reservoir is dry. If we denote by 7,(f) the reach of the infiltrating water
at the moment ¢, the second boundary condition claims

(4) hlr=r0(t) = 0.

In our considcrations we deal at first with approximate solutions
of the problem. We scek namely the function % in a simplified form (3)-
It will be shown in Section 2 that the problem reduces in this case to the
non-linear integral equation (16) (with the parameter A defined by (13))
which can be uniquely solved by the method of successive approximations
(see Section 4). The solution u(z) describes the free surface of the saturated
region after changing the scale on the r-axis by means of substitutions (6)
and (10). After solving the integral cquation we obtain the approximate °
solution p, of our basic problem (see formula (19) and Theorem 1). In
Section 5 we give (formula (48)) an estimate of the p.c. error between 4
and the exact solution. This error tends to zero with ry — oo if the perco-
lation process satisfies conditions (C,)-(Cj;). It is shown that these condi-
tions are satisfied in a simplified modcl if the function kb depends linearly
on r. In this model, estimate (48) has a particularly simple form and may¥
be used in numerical calculations.
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' The authors would like to thank Professor A. Rybarski for the
Stimulating discussions and helpful remarks during the preparation of
the paper.

2. Reduction of the boundary-value problem to an integral equation.
We ask about the solutions of (3) in the domain 1< 7 < 7,(¢), t > 0,
Which satisty the boundary conditions (2) and (4). As we do not know
the free, boundary 7,(t), we have here two unknown functions: » and r,.
In the sequel we deal only with solutions of a special form

(3) hir, t) = p(s),
Where
(6) § = "

ro(t)
We make also one further assumption about the character of our
Percolation process, namely we suppose that

(7) ro(1) 7o (t) = ¢,

Where ¢ ig g positive constant. Since it is supposed that at the beginning
the s0il ig dry, we have the initial condition 74(0) = 1 and the integration
of (7) yields

ro(t) = V1+26t.
Substitution (6) allows us to consider the ordinary differential equation

1
7o(2)

1
®) (p’)2+pp”+?pp’+osp’ =0 (b<s<1l,b= )

With the boundary conditions
(9) p(b) =1 and p(1) =0

A8 describing the percolation of water. Introducing new variables v and ¢(7)
by means of

(10) s =0 and gq(r) =p(s) (0<z<1)
Ve obtain the new boundary value problem

(1) (¢ = 2BA~C,

12) g(0) =0, q1) =1,

Where

13) 4 =n

and

(14) B = —olnb.



252 J. Goncerzewicz et al.

Let us now integrate twice the equation (11). If we change once more
the unknown function

(15) u(r) = B~ q(v),

we obtain, after using the first of the boundary conditions (12), the inte-
gral equation

(16) u?(7) =2fA"’(1+(r—o‘)lnA)u(a)do 0<7v<1).
0
To satisfy the second of the boundary conditions (12) we have to
assume that

(17) w(l) = B,

Suppose that equation (16) has the solution u,(z) for every 4 > 1
(it follows from the physical meaning of the parameter A that this ine-
quality has to be satisfied). If we put

2B
18 B = 1! b = A~12 —_—
(13) [u, ()], y ¢ A
and
(19) 24(8) = Bg(2)]__sume: \
Ind

then the function p, is the solution of (8), (9). In this sense the integral
equation (16) is equivalent to the boundary-value problem (8), (9) if we
fix the value of the parameter A and introduce the constants B, b, and ¢
by means of (18).

3. Properties of the solutions of the integral equation. Our next
step is the investigation of equation (16) following the methods used in [3].
We are going to prove its solvability by means of the Banach fixed-point
theorem (see [4], p. 323). We suppose from now on that 4 > 1.

LEMMA 1. If & non-negative function f satisfiés the integral equation (16)
for T e[0,1),then
(i) f 7s conttnuous #n [0, 1),
(ii) there ewists lim f(r) << oo,

T=1—

(iii) f may be extended to a continuwous solution of (16) in the interval
[0, 1].

Proof. The kernel of (16) may be estimated from below by A~
Since the lemma is evidently true for the trivial solution f = 0, we may
assume that f does not vanish identically. Thus it follows from (16) that
f is integrable in each interval [0, 7] with =< 1 and, therefore, both
f? and f are continuous for 0 < 7 < 1. Let us introduce now the function

p(z) = sup f(o).

’ o0<<ot
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It follows from (16) that y(z) is finite for 0 < v < 1 and

(20) ) <2 +nA)p(r) (0<T<1).
As yp is a non-decreasing function, it follows from (20) that
p(r) <2(1+Ind).

Thus f is bounded in [0, 1) and one may take the limit with v > 1 —
On both sides of (16). This completes the proof.

LEMmA 2. If f is a continuous solution of (16) for 0 < v <1, then
(i) f is non-negative,
(ii) there exists a mumber a e [0, 1] such that
J(r) =0 for 0<r<a,
f(r)>0 fora<rv <L.
Proof. Let us write

= {r €[0,1]: f(z) = 0}.
It is easy to see that E is closed and 0 € E. We show that F has the
following property:
(D) For each 7,, 7, € B (1, < 7,< 1), the intersection EN(z,, 7,) is

It follows from the integral equation and the continuity of f that f*
I8 differentiable in (0, 1). It has its minimum at every point of F, therefore

af* ()
dt

O, in another form (after calculating the derivative),

=0 (vreE, 0<r<]) .

fA"’f(o)dor =0 (rel, 0<T<]).

This yields
2
fA“"f(o)da =0 (7, 7€ E\{1}),

131191‘(%fore it follows from the continuity of f that it vanishes for some
%3 € (14, 7,). Thus (D) is proved.
Now there are two possibilities: F is the whole interval [0, 1] or
ld:n{tl} [0, a], where a < 1. In the first case, a =1 and f vanishes
ically. In the second case we have

@1 i) =2 fA“’(l—i—(l—cr)lnA)f(o)da
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and thus f(1) does not vanish since, in the opposite case, f had to change
its sign in (&, 1) which is impossible. So the integral on the right-hand
side of (21) is positive and f takes on positive values in (a, 1]. If we go back
to the calculations of Section 1, it is readily seen what is the physical
meaning of vanishing the number a in Lemma 2. If namely « is the solu-
tion of (16) such that

(C) u(tr) >0 for v> 0,

then the corresponding solution p(s) of equation (8), given by formula (19),
is positive for s < 1. In other words, 7y(¢) is exactly the reach of perco-
lating water. Therefore, in the sequel we deal only with solutions of (16)
satisfying condition (C).

LeMMA 3. Every continuous solution of (16) satisfying (C) has the
following properties:

(i) fe0*[0,1],

(ii) f'(z) >0 for 0 < <1,

(iii) f'(0) =1,

(iv) f'(z) <0 for 0 <7<,
(v) the imequality
(22) L2 <
ma STST

holds for 0 < v < 1.

Proof. It follows from the integral equation and from our assumptions
that f? is continuously differentiable in (0, 1], and so is f. Differentiation
of (16) yields, after dividing by f,

’ -7 ]nA : -0
(23) fir) =4 +f(—’)—ofA flo)yds (0<z<l),

80 (ii) is true. Therefore, f increases in (0, 1]. and it follows from (23) that
AL (7)< A“’—l—lnAfA"’da 0<v<1).
0

Calculating the integral on the right-hand side we obtain
(24) AL (7)1 (0<T<1).

So f'(0) exists and (iii) is true. After integrating both sides of (24)
we obtain (22). It remains to prove (i) and (iv). Since f is of class C', it
follows from the integral equation that it is of class C?(0, 1]. Differentiation
of (23) gives |
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(25) Jr0) = ~mA TfA”ﬂ (0<v<1),
T

therefore (iv) holds for v > 0. To investigate '’ (0) let us take the limit in (25)
3 7 0 +. Applying the de ’Héspital formula we obtain

. —InA
lim f(v) =—
70+

< 0.

This completes the proof.
4. Solvability of the integral equation. We introduce the notation

(Lf) () = fA“’ 1+(r—0)lnd) f(e)ds and T(f) = V2I.

For two arbitrary functions fi (7 = 1, 2) the inequality f, < f, means
that £, (z) ) < fa(7) for 0 < 7 < 1. It is easy to show that
Lfi<Lfy and T(fi))<T(fo) if fi<[s;

the Operators L and T are monotone. Let us denote by P the set of all
ontinuous functions satisfying (22). We prove
LEMuma 4. T maps the set P into itself.
Proof. Let us put
) - 1—-A"F
9(v) = —o7 G(z) =7,

and Suppose that the inequality g<f<@ holds. Then
(26) T(g) < T(f) < T(@) .

?nd We have to prove that g < T(g) and T(G) < G. The elementary calcu-
ation shows that ’

(L—A"" [ (Q—A70) \
Tl = '/2( (2 A) +0f 2InA d")

and thig yields the left-hand side of (26). Similarly, after calculating the
lntegl‘al we have

Ve

hlA (A""+7lnAd —1)*2,

T(G)(r) =

Now the right-hand side of (26) is equivalent to
(27) 2(MAP—2(A +7Ind—1)>0 (0<r<1).
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Denoting the left-hand side of (27) by ¢(r) we have

(28) ¢(0) =0
and
¢'(v) = 2(Ind)y(v),
where
(29) p(r) =rlnd4+A47"—

As »(0) =0 and 9'(7) > 0 for = > 0, the function y is positive for
7 €(0, 1], and so is ¢’(z). Therefore, ¢ is increasing and this fact together
with (28) gives (27). The proof is complete.

Let us write now

(30) ﬂJz—sp——ﬁﬁ —fa(9),

0<<r<1

where y(7) is given by (29). In a simple way we can prove the following
LeMMA 5. The set P is a complete metric space with the distance @
defined by (30).
We prove now the crucial step in our considerations.
LeMMA 6. The mapping T is & contraction in the space P, namely

1
(31) ‘ Q(T(f1)7T(f2))<?9(f17f2) (f1, f2 €P).

Proof. We write (31) in the equivalent form

(32) IT() = L) < 5y efa Fo)-
It follows from Lemma 4 that
2
(33) T(F)+T() >

with g(z) =1—A77 (0 < v<1). We have also

Ifi—fal < lnAQ (f1s f2)

and, therefore, according to the monotonicity of L,

elfy, fo) o

. (34) ILfi—Lfsl < 0
Since
2|Lf,— Lf,

AN T AN

T(f)—T(f)
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by (33) and (34) we obtain

L
(35) T =TGN < olfar fo) =
To prove (32) it is enough to show that
(36) ﬂ < _¥
g 2lnA

After integrating by parts the integral Ly we obtain the equivalent
form of (36):

(37) 1—2¢(lnd)A"—A4"%>0 (0<r<1).
Denoting by v() the left-hand side of (37) we have
(38) v'(7) = 2(Ind)A " p(r) (0<Tv<1).

It has been remarked in the proof of Lemma 4 that v is a non-
Negative function in [0, 1]. Thus v is non-decreasing in this interval
and v(0) = 0. Therefore, (37) is true and this completes our proof.

It follows from Lemmas 4-6 that for given 4 > 1 the mapping T
a8 exactly one fixed point in P. This fixed point is the unique solution u
of (16) satisfying condition (C) and can be computed by the method of
Successive approximations (see [4], p. 323).
Going back to our basic problem we have now the following

. THEOREM 1. Let A > 1 be arbitrarily fized and let us introduce nota-
tion (18). Then the function p 4 given by (19) is the unique solution of (8), (9),
Wnd it has the following properties:

(1) p, e C*[b, 1],

(ii) p, is positive and decreasing in [b, 1),

(iii) p, (1) = —2/InA4.

. The theorem follows immediately from the proved properties of the
Integral equation {16).

5. Final remarks. Since the solution p 4(8) of equation (8) depends
on time by means of the variable s and of the parameter A (according
%o (13)), it i readily seen that the function kb , defined by (5) with p replaced

y. P4 i3 not an exact solution of the Boussinesq equation (3). We are
80Ing now to estimate the error which arises if we treat the function h 4
38 describing the water-table in the Boussinesq model.

Let us suppose that the solution 4 of (3) has (in new variables s and 4)
the fonn

h(r,t) = P4(s).

Then for the function P 4 We obtain the ordinary differential equation

oP, dA

(39) -
04 dt’

R(P,) =24
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where R is the differential operator on the left-hand side of (8). Denoting
by F(s; A) the right-hand side of (39), after simple calculations we have

(40) F(s; A) = 208V Ah,+2 Ah,.
Let us put
(41) 2 = (Py—p%)';
then equations (8) and (39) yield the identity
1
(42) '+ —s—z =Q
with
(43) Q = F+20s(p,—P).

It follows from the physical meaning of the function P, that it satis-
fies the same boundary conditions (9) as p,. Therefore, z is the solution
of the first order differential equation (42) with the initial condition
2|,—; = 0 and it may immediately be written in the form

1 1
(44) 2 = —?sfo-Q(a)da.

Going back to notation (41) and using the boundary condition at
the point s = b, after integrating (44) we obtain

8 1
1
(45) Py —pY = —f?faQ(a)dadg.
b e

We estimate the right-hand side of (45). Let us write
a = sups|P, —p|.
Then (40) and (43) after elementary calculations yield
(46) sup tP% —p%| < ork sup |h,|+73 sup |ky| + calnr,.

. 1<r<ry 1<r<rg
It follows from Lemma 3 that the solution u, of the integral equa-
tion (16) satisfies the inequality 0 < w'(7r) <1 and this, according to
(18) and (19), gives

(47) —c< sp(8)<O.

We ask now what suppositions concerning the function - have to be
made in order that P, may satisfy an analogue of (47). Obviously, it follows
from the definitions of the function P, and of the variable s that P, = r,h,
and, therefore, (47) is valid with p, replaced by P, if we assume that

(Cy) —e<<rh, <0 (ASr<r, t>0).
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In this case we have a < ¢ and (46) may be rewritten in the form
(48) 7y 2sup |P% — p%| < esup |h,| +rosup |By] + 27y 2 Ing,.

Inequality (48) gives an estimate of the error which arises after
Teplacing the exact solution P, of Boussinesq’s equation by the approxi-
Ihate one p,. This error may be arbitrarily small for sufficiently large 7,
¥ we make further agsumptions concerning the character of the de-
Scribed percolation process, namely, for 7, — oo,

(C.) sup |h,| -0
1<1‘<7‘0

and

(Cy) 7o Sup |h - 0.
l<f<70

In order to conclude our considerations we examine a simplified model
of the free surface of the saturated region which satisfies (C,)-(Cg). We

7 0 )

Fig. 1

suppose namely that this surface is linear, thus its vertical section is the
Straight line through the points (1, 1) and (r,, 0) in the plane (r, h) (see
Fig. 1). In this case we have

r—7, .
h(r,t) = 1_r° A< r<n),
80 °

1 r—1
h, = and b = ———5 1.

157, (1—1,)

Therefore
r
sup |hy| < _° and rh, = )

7o (7, —1) 1—r,

80 conditions (C,)-(C,) are satisfied if ¢ > 1. Estimate (48) is then valid
I the form

ryisup |P% —p%| < 2ery '+ c*ry? Iny,

and may be used in numerical calculations.

e
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Remark (). After suitable change of the independent variable and of

the unknown function, (16) may be brought to the form of a non-linear
convolution equation. Let us put namely

z=7vInd and w(z)=A%(Ind)u(r).

A simple calculation shows that (16) is equivalent to

(49) w? = K*w,
where
2(1+2x)e** for >0,
(@) = 0 for x <0,
and the boundary condition (17) yields

2
wl:z:=lnA = 7'

The equation of form (49) has interesting properties which have

been studied independently of its physical meaning (see [5]).

(1]
[2]

(3]

[4]
(5]

(61
[7]

(1) This remark is due to Prof. C. Ryll-Nardzewski.
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O PRZESIAKANIU WODY ZE ZBIORNIKA WALCOWEGO
DO OTACZAJACEGO GO GRUNTU

STRESZCZENIE

W pracy badane jest zagadnienie nawiliania ofrodka porowatego przez ciecz
Zebrang w zbiorniku o ksztalcie walcowym. Zagadnienie to zwiazane jest z metods
ﬂPtacyjnq oczyszezania rud miedzi, polegajaca na zanurzaniu ich w zbiorniku wypel-
Monym wods. Z punktu widzenia ochrony $rodowiska niezwykle wazna jest znajo-
Mmogé procesu przenikania zanieczyszczen ze zbiornika do otaczajacego go gruntu.

T2y zatozeniu prawa Darcy’ego oraz hipotezy hydraulicznej (tzw. przyblizenie Dupuit)
Powierzchnia swobodna cieczy nawilzajacej opisana jest przez nieliniowe réwnanie
Tozniczkowe czastkowe Boussinesq’a. W pracy badane s3 wlasnosci analityczne pew-
lej klasy przyblizonych rozwiazan problemu, ktére mozna otrzymaé rozwiazujge
Jednowymiarowe nieliniowe réwnanie catkowe. Podano rownies oszacowanie bledu,
Jaki popelnia si¢ zastepujac rozwigzanie dokladne przez rozwigzanie przyblizone.



