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MINIMAX CONTROL OF A MULTIVARIATE
TIME-CONTINUOUS LINEAR STOCHASTIC SYSTEM

- In the paper the problem of minimax control is: considered for the
linear, time-continuous stochastic system defined in (24) when  the loss
function is given by (9).

1. Processes* with independent increments. Processes belonging to thé
€Xponential  class with quadratic variance *function. ‘Let’ ((1), ‘'t >0 be
4 ‘multidimensional, homogeneous, ‘stochastically confinuous process with
'ndependent increments and finite moments of the second order. This ‘process
admits the representation

(1) ()= Mwt)+ | vE@, dyy+u(t) = {0+ 0+ ul),

R!
“hcrc M is a matrix: with constant entries, w(7).:t = 0. is & multidimensionak
Wiener process,

(2) t(t, Ay =uv(1, A)—14(A),

tr, A) is a Poisson measure on (R', #.), #. is a o-field consisting of Borel
S¢S in R’ such that their closures do not contain the point O,

(3) 1q(A) = E(6(, A)).

The processes (.(t) and (,(r) are independent.

Obviously, u(1) = E({(1).

The meaning of the measure v(t, 4) is the following: v(t, A) is equal to
the number of jumps of the process {(t) with the values in A4 in the interval
of time (0, 1.

Let %* be the o-field of Borel sets in R*, ' = &,

The process ¢(t), t = 0, belongs to the exponential class if

@) {(0) =, (1), ..., L (1)}, where the processes §y(t), ..., (¢) - are
'Mdependent and take their values in (R!, 4); '

~ (b) {i(1), t =0, are homogeneous, stochastically continuous processes
With independent increments, PO({0Y) = 1, where:P{(-) are the measures
'Mduced by the random variables {,(t), réspectively, E ({7 (1) < o0
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(c) there are o-finite measures y; defined on (R!, #) such that

dPY
_d;_(zt) = §; (zu t)exp [A (A)I+B (i)
where ie A is a parameter.
It is assumed that a natural parametrization is chosen for all measures
P and that the variances D?({;()) are quadratic in A. Then we can assume
that

@ E(@)=ri, DZ(CI(t)) = (A tandtay)s G=1,2,..,k),

where r; > 0, ay;, oy;, a3; are constants.

Random variables and processes’ belonging {0 the exponential class are
considered in [1], 2], [4] and [6].

In [6] it is proved that there are only five infmitely - divisible
distributions (and linear transformations -of. .them) .belonging to the
exponentlal class for Wthh the variance is a.quadratic-function of the. mearl-
Thus there. are only five. _one-dimensional processes belonging to the
exponential class. with quadratlc variance function. and also. processes
belonging to this class obtained from the above by a linear transformation of-
the phase space. (By a linear transformation we mean here a transformation!
of the form y=ax+b in R!, where a and ‘b are ‘constants.) These five
processes are the following (the measure u with respect to which the densities
dPO(z)/dy: are given is the Lebesgue or the counting measure):

(a) The Wiener process with drift:

ar ] exp_[ (z—-).t)z]
de 7 2w L 2 [

By a Wiener process we mean the process, w(t) = w,(t)—At, where the:
distribution of the process w, (1) is defined above. Almost all sample
functions of a Wiener process are continuous.

(b) The Poisson process:

cﬁiﬁlﬁ’f(‘ - (rit):

Almost all sample functions of ‘the Poisson process are nondecreasing
integer-valued and they’ increase by jumps of magnitudé 1. This is the ‘only
process with independerit increments which has these properties.

(c) The negative binomial process:

apr? I'rt+z) A

du @) = F{rt)z' (E4A)yt+=
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Almost all sample functions of: this process are nendecreasing and integer-
valued but the magnitudes of jumps may be different from 1.

(d) The gamma process:
dP® 1
dp I‘(r'r) AT

M- 1 e-—zll_I(o' . (z),

Where I, is the characteristic function of the set A. Almost all sample
functions of this process are nondecreasing functions of jumps.

(¢) The generalized exponential hyperbolic secant process (the GEHS
Process):

AP®
d

(z) = exp(zarctgA)S(z, 1),

(1+ 22y

Where

2'rt— 2 > pt ;
S0 == B_(rz__,-_z ."—+.ff)

g2 g
_27Irr) ( &y
1+
al(rt)  (=p (rt + 2k)?

Almost all sample functions of this progess are.functiens of jumps which may
be positive and negative.

For the processes listed in (b)(e) the measure g defined in (3) is the
bllowing:

(b) CI({Z") = "1-1-(3),

(©) q(iz) —r(li )‘IIN(Z) where N = {1, 2, .

‘—ylA'

(d) q(dz) =r

exp (z arctg i)

©) 9d2) =1 hma2

1(0, 20) (Z) dZ,

The measure g in (b) and (c) is discrete, and in (d) and (e) is absolutely
Yntinuous.

From (d) and (e) it foilows that for gamma and GEHS, processe the
%pected number of jumips in an interval of time of posmve length is mtsl’mte

2. Stochastic system. Let us consider a time-continuous: stochastic
System' defined by the stochastic differential equation

) dE = a(t)Edt+aA(udt+dn+oin)dt, E(0) =&,
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where ¢ is the ‘state process, u is the control,

6) dnp= Z b; (1) dw;(t)+ f c(t, y)0(dt, dyy = dn, +dn,, n(0) =0,
=1

Rd

b;(t) and c(t, y) are vector functions, w;(t) are standard Wiener processes,
#(t, A) is the random measure of the process {,(r) defined in (1) and (2),

§

7 o) = Z (O A+ felr, Maldy),
) d
q(A) is defined in (3). and / is a (known) parameter.

Here u(t) and a(1) are (d xd)- and (d xd)-matrices, respectively, and the
column vectors b;(r) and c(t, y) have dimension d.

It is assumed that the process n(t) has finite moments of the second
order, and the matrices a(r), @(r) and (1) have entries uniformly bounded
and belonging to the space D.

Assume that #(r) is a standard. process. Let .7, be the least o-field with
respect to which all #(s), s < 1, are measurable. We say that the function u(t)
belongs to % if it is a Borel function and equation (5) has for the control u(t)
a unique strong solution ¢(t, u(:))-such that almost all realizations of the
process ¢(t, u(-)), 0 <t < T, belong to the space D. Denote by (%, the
current of g-fields, 4, = .#,, generated by the variables (s, u( )), s < t, for
all possible u(~ye%. Any. family of functionals

ult, x()) = Vt.u,(t, x(*)), ..., ug(t, x())), rel0, T], x(-)eD,

with values in U = R7 is called a control policy if

(a) for each x(-)eD, u(t, x(-)) is a Borel function of t;

(b) for each 1e[0, T], u;(r, x(*)) depend only on'x(s) for s <1

(c) the process u(r, &(-)) = {u (1, S( )) Loug(t, €Y, rel0, T1,
being the solution of (5) given u(t, &(*)), is dehned the random varlables

u(t, () are measurable with respect to %_,= ) %, the processes
s<t

u;(t, (7)), te[0, T], i =1, ..., d, are measurable and the random variables
u;(t, ¢(-)) are Fi-measurable(®); '
(d) we have

_ a
@) Z( wj(t, £(+))*dt < 0.

OQ-—';"'!

We call also the process u(t, £(-)) a control policy.
Control policies u = u(t, ¢(-)) for which equation (5) has a unique
strong salution J(#):are. called admissible.

('Y 77 is the least o-field with' respect to which all 2(s), s < f. are measurable.
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- Put y(t) = u(t, £()). A'control pelicy y(1), te[0, T] is called a step
control policy if there exist 0 =1, <t; < ... < t, <t,4y = T such that y(1)
=% for te(ty, t,,,], where y, is a %, ,~measurable random variable with
values in U. The class of all admlssnble step control policies with given

, t, 18 denoted by #(t,, ..., t,).

The class of all admissible control policies is denoted by #, the class of
all admissible step control policies by %,, and the class of all admissible
control and step control policies in the interval [t. T} by #[t, T] and
Uy (r, T], respectively. Obviously,

U= ) Ulty,...,1,).

The matrix transposed to the matrix A is denoted by A’
Define the loss function in the ‘interval [¢, T] as

©) Fo(x(-), u(+)) = [x(TY, 23S [x(TY, AT+

T
+ [ [[x(s)’, LY F(s)[x(s), A +u(sy F(s) u(s)] ds

T
g [x(TY, A}STx(T), 21+ [ f(t. x, u)ds,

Where u(s) is the control, [x(s), 4] is the vector x(s)’ with the coordinate 4
added.

We assume that S is a ((d+ 1) x(d + 1))-matrix nonnegative definite, F(s)
and F(s) are ((d+1) x(d+1))- and (d xd)-matrices, respectively, nonnegative
definite, with entries umformly bounded and continuous. Moreover, we
assume that the matrix F(1) is positive definite uniformly in

(10) (F(yu, u)= clu*  for each te[0, T], ueR’,

}Nhere (a, b) is the scalar product of the (column) vectors ¢ and b, and ¢ > 0
IS a constant.
For stochastic equations and systems see [3] and [5].

3. Optimal control. Define the risk function for control policy u as
R(G,uy=E(Fo(2(-) ulr, ECN)).

Where ¢ is the solution of (5) given u.
We say that the control pnhm i helongs to A (ue A if it is admissible for
€ach Aie A. From (8) it follows that if-ue 4, then R(4,u) exists for all ie A.
Let us introduce the function being the optimal cost of control in the
interval [t, T

(11 Z(t, x(-)) = essinf E(F, (&2 (+), y(*))).

et . T}
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where y(t) is: the control and & (s) = x(s), se[0, ], &7 (-) being the solution
of (5).for the control y.
From the assumptions: it.follows that
Z(t, x(+)) = essinf E(F,(§"("), 7("))
ye¥glt.T]

and that there is a Markovian control y(z) = u(t, (1)) such that the essential
infimum in (11) is attained for y(t), and Z(t, x) = Z(t, x(z)) satisfies the
generalized Bellman equation

_aZ(t’ x) = lnf{i‘uz(t, X)+f(t, X, U)},
at uel
(12) Z(T, x) =(x", AS(x', &),

assuming this equation has a solution. I, denotes here the infinitesimal
operator of the process Z(t, £(t)) corresponding to the process &(r) fof
a given u (sec [3], p. 180).

This theorem is applicable for the control system with () =0, but
putting aii = du+ @, ie. # = u+ad" ¢, in equation (5) and in the loss functio®
(@~ is a pseudoinverse matrix to the matrix @) we can apply this theoref
and get the equation for ¢ # 0 defined in (7), u being the control under
consideration,

(13) Lo(Z)+(x', ) F(x, A +inf [(VZ, au)+u' Fu] = 0,
where .,
Lo(2) = LP(2)+K (1) +(VZ, ¢),
L2y = —66—?—+(VZ, ax)+%Sp(BVz Z),
K@y= [ [Z(t, x+c(t, )-Z (¢, 9)—(VZ(t, %), c(t, )] 9(dy),

Rd

VZ is the vector with coordinates 8Z/dx;,, x = {x,, ..., X}, V22 is the
matrix with entries &22Z/dx, 0x;, and

B~ 3 b0k

We seek the solution of equation (13) in the form
(14 Z(t, x) = X' D) x+2E@) xA+ G @A +H{t) A+1(1),

where D(f) is a symmetric matrix nonnegative definite. Under this assumg
tion the expression (VZ, du)+u' Fu attains its infimum in u if

& (Dx+E W)+ Fi =0,
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Which gives
1s) u= —Px—04,
Where
(16) P=F1'aD, Q=F'dE.

Introducing expressions (14) and (15) into ( 13) we obtain

dD dE dG ., dH , dI
(17 X — s 3 a2 77 =
) X " x+2 o XA+ A + 7 2+-dt

+x'(a’' D+ Da) x+ 2Eax/ + Sp(DB)+

+2¢' Dx+2E@i+ | c(t, ) D(t)ct, y)q(dy)+
Rd

+x' F Y %4 2fxd o+ fo A2 =
—2(x' DaPx+Q' & Dxi+ EaPxi+ EaQi?) +
+x' P'FPx+2Q FPxi+Q' FQi? =0,

F(,l) r
S
A
fo being a scalar.

The boundary condition (12) should be adjoined to equation (17).
Equation (17) holds surely if D(r) satisfies the matrix equation

Where

ID _
‘—h~+a’D+Da+F<“—2DaP+P'FP=0
€

1231

and the expressions by x4, 4%, 4, 1 in (17) are equal to 0. (The function ¢ and
the integral in ( 17) depend on A. It is assumed that ¢ is a linear function of A

and the integral is a quadratic function of this variable.)
Taking into account (16) we obtain

(13) ‘;3+a'D+D'a-DaF—15'D+F(“=o
f
With the boundary condition obtained from (12) and (14):
(19) D(T) =S,
‘Where

{20y § = [Sm s ]

S_ SOI
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Sp being a scalar. Thus any solution D(¢) of equation (18) with the boundary’
condition (19) is symmetric. _
Equation (18) is very familiar in control theory. It is well known that the
solution of this equation with the boundary condition (19) exists and is
nonnegative definite.
Now we give the condition under which the process n,() in (6) surely
satisfies the assumptions

(2la) () —.Z bi() A+ [ c(t, Y)g(dy) = @, ()+@,(1) is linear in 4,

R

(21b) [ c(t, Y D(t)c(r, y)q(dy) is quadratic in A.

RrY

Let us put y = ex, where e is a (d.x [)-matrix with constant entries, and
c(t, y) =c(t)y, where c(t) is a (d xd)-matrix. Then

(22) N2 (1) = c(t, y)o(de, dy)

R4

d .
c(t)ex——(t Xx)U*(dt, dx).
Rl

If
-}

Let v be such that
(i) (dB/do*)(r, x) = 1;
(i) the measure &*(t, ') =, (t, *)u ... U (t, *) is concentrated on the
subspace
(R*x0x ... xO)U(OxR'x ... xO)uU...u(O0x0x ... xR
(0 is the null element in R'); moreover, if
q*(A xB) = E(v*(t, AxB)), *(t, C) =v*(t, C)—tq*(C),

then

Iq*(Al x0 b, SR XO) = I‘II(Al) if AIE.%(I),

1qg*(0x0x ... xA) =tq,(A) if Ae#;

(iii) B;(t, A) =0 (t, 0x ... xA; x ... x0), T(r, A;) = v (t, A)-tq,(Ac)f
v;(t, A;) is a Poisson measure for the one~dimensional process ;(f) belonging
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to the exponential class with pararieter 1 satisfying conditions (4), {;(s),
1=1,..., 1, are independent,

Calt) = (o () —ry 22, .., (D) =1 Ar).
‘Under these assumptions, from (22) we obtain
dn, = c(tye [ x*(dt,dx) = c(t) ed(, SE()dL,

Fl
and

.(2'3)' @2() =c(t)e | xq*(@x) =c()eri L&A
M

,il;?i,ﬁre‘r = [ry, ..., n], where the r, are defined in (4). Equation (5) takes the
orm

(24) &= a(t) Edt + () udt

+ Y byt dwy(0)+ E(0) L (1) +
i=l

+(}"_“: bi(O)+E@)r)idt, {(0) =&,
d=1

Moreover,
(25) J et )Y DO, aldy)
R
= [ x'diag(Z(t) D(t)E(1)) xq*{dx)
R}
= ay,y;2diag (@) D) E(D)ay, 2 A%+
+aj3,y2 diag (E"(t)' D) E"(t)) %2172 A+
+aj 1.2 diag (E(t) D(O).S(0) 3,12,
Where

%; are defined in (4).
Comparing the terms by x4, A%, 4, 1 in (17) and taking into account
®Quations (21), (23) ‘and (25), we obtain

(262) %‘?+E(a—'ap)+ Y (bj+&)D+f =0,
: i=1

dG - . .
(26b) E—E&Q+2E(Z‘ by +&)+fo+ay,,/2 diag (€ DO ay =0,
i=1 :
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daH. e .
(26¢) E"“"“z.uz diag (T DO)a, 5, =0,
ar ., - . .
(26d) 2 T diag (€ D),/ +Sp(DB) =0
with the boundary conditions obtained from (12) as
(27) E(T)=s, G(T)=s,, H(M=I1{=0.

Equations (26b), (26c) and (26d) have solutions for any E and D.
Equation (18) has a splution. From [3], pp. 196-199, it follows that equation
(17) has a solution. Thus also equation (26a) has a solution. |

From this dicussion it follows that the function Z (t, x) given by (14?
with D, E, G, H and I defined by (18) and (26) and by the boundary
conditions (19) and (27) is the optimal cost of control of the system (24) and
that the control policy obtained by (15) and (16) is the optimal control
policy.

Obviously, if u is the optimal control policy for a given parameter 4,
then for this parameter we have R(4, u) = Z(0, Eo).

4. Determining the risk. Let u,, = —Px~Q4o and let AeA. In this
section we consider the problem of determining the risk R(4, Uip):
Let

Z,(t, ) = E(F, (7 (), ()
for y(t) = —P()£()—Q (1) g, EP (1) = x, &/(-) being the solution of (5) for
the control y. We have
(28) R(i, ;) = Z,(0. &)

and Z,(t, x) satisfies the equation
Lo(Z)+(x', WF (X', Y +(VZ,, auy )+ uy Fuz, =0.
In the same way as in the previous. section We prove that
(29) Zy(t, 9 = x D) x+2E(@) xi+G(0) 2+ H) A+ )+
+J (1) 23+ 2K (t) Ao A,
where |

-~

ab . . )
= t@D+Da—DaF '@ D+F =0,

%?+,E(a——aP)+_(Z B+&) D+ =0,
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G ., nr : S
E+2E(z b,-+5)+fo+oz'1.1,2diag(E’DE)at1i1,2 = 0,
(30)
dH o
E"‘“z,uz diag(C' D) ey, 0, =0,
a )
E+a3,1,2 diag(C' Do) uy,4,,+Sp(DB) =0,
dj .
E+Q FQ =0, t-—-—EaQ—O
#nd
{31) D(T)_S(l), E(T)=Ss G(T)"'sOs
AN =I(N=J(T)=K(T)=0
Then

b@=D@, EM=EQ
fud the functions G(t), H(), (), J(» and K(f) are the corresponding
lmegrals. ' ’
From (28) and (29) it follows that

32) R(A, ;) = G(0) A2 +(2E(0) o+ A (0) + 2R (0) Ao} A+
+&o D(0) o +1(0)+ 7 (0) 43
L G(O) A2+ Y, (Ao) A+ Y2 (o).

S. Small Horizon Minimax Law. Let the parameter icA, <A be
“aknown. Let 4, be the set of all control policies admissible.for all ZeA,.
control policy u®e 4y is minimax (for Ap) if
sup R(4, u®) = inf sup R(4, u).
AeAg uedpy Aedg
di .The parameter A sometimes is a random variable with the a priori
a\stlf_lbution n. Let 8, be the set of Borel sets in A. Assume that for given
“?4 the function R(4, u) is measurable with respect to #,. The functional

rin, u) = [ R(4, u)yn(d4)

B called the Bayes risk.
4 We sometimes have the information that me T, where I' is known. Let
‘ be the set of these control policies ue 4 for which the risk R(4, u) is
asurable with respect to 4 ,. The control policy u*’ for which
supr(z, u'") = inf supr(n, u)

nel ueA* mel

0 for which this supremum is finite is called a I'-minimax control policy.
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In this paper I' is the set of all a priori distributions = for which
E.(1%) < m,, where m, > 0 is given.
Let (i, i3, ..., i) be a permutation of (1, 2, ..., k). The process

33) L) = {La(®), wy (1), ..., wy ()}
= {0, O—ri A, GO = A, Wi (), -, wa(D)
={G, O =i A, o, GO —r A L0, ~de, L (0 — )
=6 @O—ry 2, G (0 A

in (24) belongs to &, if the processes {,(1), ..., {y(t) are independent, {;(t) (i
=1, ..., k) are the Wiener processes with drift or the GEHS processes (somé
of them are Wiener, some .GEHS).
The process {(f) belongs to &, if the processes {, (t),. .y §i(t) - 81C
independent, {;(t) (i=1,..., k) is one of the five processes mentioned in
Section 1. (For different i the processes {;(t) may be different, for example,
{1(z) may be the Poisson process and {,(r) the Wiener process with drift.)
Consider a zero-sum two-person game (A, B, W) in the normal form
where A and B are the sets of strategies of Players I and II, respectlvely, aﬂd
W (a, b) is the payoff function defined on the product A x B (Player I pays
to Player II). The strategy a, is relatively optimal with respect to b if
W (ao, bo) = min W(a, by).

acA

Similarly, the strategy by is relatively optimal with respect to aq if
W (ag, by) = max W(ay, b).
beB

Considering the gamnie (4%, I', r), where r is the Bayes risk, we obtain th
following theorem:

SmaLL HorizoN Minmmax. Law. (i) If the process ((t) in (24) defined by
(33) belongs to &, and Y,(}) >0 for all le[— /my, /my], then the T*
minimax control policy is u 1,2

i) If Leds Ae(0, oo) and Y, () >0 for all 1€(0, m;], then the r-
minimax control policy is u my/2

(iii) If {(he &, and Yl(/l) 0 for all ie[—./my, \/m;], then the I

minimax control policy is u__,,
2,
Proof. From (32) we obtain
R(L, tay2) = GO+, ((my) A+ Y (/my),

where G, ¥, and Y, do not depend on A. But G(0) > 0, since othcﬂmsz
R(4, u 1,2)—’ —o when A— o, which is impossible because the 0%
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{:!nction is nonnegative. Assume that case (i) or (ii) occurs. Then for eI’ we
ave '

r(m, ) = GOE()+Y; (V/m3) E, (D) + Y3 (/my)
< R(\/r?zs. umill)"

Which proves that the distribution z_,,, of the. parameter A concentrated at

the nai sy o 2 - Qs

point A = ./m, is relatively optimal with respect to u_, ,. Since the
2

“ontrol policy u_,,, is optimal if 2 = \/m,, it is minimax.

2
Assume that “case (iii) occurs. We have

r(m, u_ ) = GOE(W)+ Y (=\/my) Ec()+ Y3 (—/m;)

€ R(—+/m,, u_mé/z)
nd y_ ., is minimax by the same arguments.

Frox%x (10), (30) and (31) it follows that if T is very small and 4 is not
8reat, then Y, (1) ~ 2E(0) &, and if E(0)&, # 0 and m, is not great, then the
function Y, (4) is positive or negative for all ie[—,/m, ,‘\/m_z J. The name of
the Theorem follows from this.

CoroLLARY. (i) If the process {(t)e &,, Ae[—k, k] and Y, (1) = O for all
As[ﬁk, k), then the minimax control policy is u,.

@) If {(Deb, Ac(0,k] and Y () =0 for all Ac(0, k], then the
Minimax control policy is u.

(i) If (e &y, Ae[—k, k] and Y,(4) <O for all Ae[—k, k], then the

himax control policy is u_,.

Proof. Consider the game (4,, Ao, R), where A, = [—k, k] in cases (i)
A (iii), and A, = (0, k] in case (ii). The strategies considered in the proof of
the Theorem remain relatively optimal here (for k= \/m—z ). Thus the

Orollary is proved.

For problems of minimax control of discrete-time stochastic systems
th disturbances belonging to the exponential class see [7] and [8].
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