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ON THE WILKS A STATISTIC AS A TOOL FOR MODEL SELECTION
IN MIXED VARIABLE DISCRIMINANT ANALYSIS

Abstract. In the paper a new method for selection of the most discriminative variables in the
location model for mixed variable discriminant analysis is presented. It is based on the Wilks
4 statistic modified to the location model case. It enables the simultaneous choice of disctete as
Well as continuous variables to the model. A medical example of application is given and the
Comparison with the selection procedure based on the classical 4 is added.

1. Introduction. The discriminant problem is of the frequent occurrence in
Many fields, e.g., in medicine, biology, agriculture, technical and economical
Tesearches. It consists in assigning a given individual to one of the populations
Considered on the basis of the observed values of predictor variables. The
Predictor variables may be of both continuous and discrete character. Such
l?11,1'\Xtures are very often present in practical problems, while there are only few
Mmethods of discriminant analysis especially elaborated to handle them. We
Should list here logistic approach, nonparametric density estimation methods
and the so-called location model. This last one was introduced to the problem of
discrimination with mixtures of continuous and binary variables by Krzanowski
[9] in the two groups of data problem. The model assumes that the continuous
Variables follow the different multivariate normal distribution for each possible
Combination of binary variables. Under the additional assumption about
hf>mogeneity of covariance matrices this gives the classification by the linear
d}SCriminant function different for each cell of the contingency table defined by
bll1511‘y variables values. So the method is simple enough and computationally
feasible. -

The location model received in the last years a considerable attention.

anowski [10], [13] described generalizations of the method to the mixtures

of continuous and discrete variables with more than two possible states and to

the several groups of data problem. Some other extensions (e.g., introducing the

Quadratic classification rule and generalized multiple discrimination algorithm)
Were given by Krusinska [4], [8]. o

. Moreover, in practice the problem of model choice arises. The methods of

leIensionality reduction in the Jocation model may be divided according to
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their possibilities into three groups. The first method (Krzanowski [12])
enables to select only discrete variables to the model. The second one
(Krusinska [4], [7]) is based on the T? statistic — one of the possible test
statistics in the multivariate analysis of variance — ‘and enables the simul-
taneous choice of discrete and continuous variables to the model. The third
group of methods gives a possibility to select not only single variables to the
location model but also the terms in the linear additive model imposed to the
mean vectors for their estimation. The method of Daudin [2] based on
Akaike’s criterion and procedures of Krusinska [5] based on various estimates
of the total probability of misclassification are of the last type. A comparative
study of some of the methods mentioned is given by Krusifiska [6].

In the paper another procedure of the second group is presented in detail.
It is based on the Wilks A criterion. The distributional approach is possible
and the distribution free one as well.

2. Location model approach in detail. Suppose that each individual is
described by a vector :

y = (Y1a Yasees yp)
of p continuous variables and a vector

X = (X1, X35.005 X,)

of q binary ones. If we consider discrete variables with more than two states
possible, the decoding into binary ones is made for them before discrimination.
The problem is in classifying an individual w = (x, y) to one of two popula-
tions IT, or I, (generally we can consider more populations) on the.basis of
the observed values of x and y. It is assumed that :

y~N@™, L) (=125 m=12,...,29.

The covariance matrix I is assumed to be equal for all 27 “locations” (cells of
the contingency table).
It is easy to prove that the optimal classification rule in that model is:
- allocate w falling into the m-th cell to I, if

M (0~ Y E {y — 3+ 1)} > 108 (D n/P10)

and otherwise to IT,.

Pim are the a priori probabilities of obtaining an individual from the i-th
population in the m-th cell of the contingency table. .

It is obvious that the classification rule (1) is equivalent to the classical
linear Fisherian discrimination but performed separately for each cell of the
contingency table. :

In practice the parameters of the model, ie, ™, p,=(@G=1,2;
m=1,2,...,29% and I, should be estimated from the data. The probabilities
P.» are estimated by the iterative scaling procedure of Haberman [3] which
allows for empty cells in the contingency table. The parameters g™ and
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Z related to continuous variables are estimated by imposing the linear additive
model on the mean vectors:

q
)] =Vt ), 0%+ 22 B XXk
i=1

i<k

+ ZZZ)’jkt,ixjxkxz+---+512...q,i'x1'x2‘-°-'xq- ,
i<k<i
The components of the model (2) may be interpreted as the main effects of each
binary variable and interactions between binary variables of all orders up to gq.
In practice the first order model and the second order model are used.
Classification of an individual w = (x, y) is performed by the lea-
ving-one-out method, ie., that the parameters p,,, a™ (i=1, 2; m=1,
2,...,2%9 and I are calculated after throwing away the actually classified
individual and then the classification is performed on their basis.

3. Selection of variables via hypotheses testing in linear models. Let us
Consider a multivariate linear model of the form

Y =X B+E, n>k,

nxp nxkkxp nXxXp

where Y is the observation matrix, and X is the deéign matrix.
In this model we test the hypothesis on the parameters B:

Q) Hy:K B =0, 1<I<k, tk(K)=1
Ixkkxp Ixp : ‘
Let M=KB, X=[X,X,], tk(X;)=r>0, and X, is nonsingular;
M=x 1(X'1X,)71X Y is the least squares estimate of M. Now let us define the
Mmatrix of residual sums of squares and products as

G = (Y-M)(Y-M)
and the matrix of sums of sduares and products due to H, as
H= AKX X)K4,
Where

4 =K,(X,X,)"' X Y.

Ixp
The partition K = [K, K,] corresponds to the partition of the design matrix X.
The, hypothesis H, (formula (3)) may. be tested e.g., by the Lawley-
Hotelling T2 and the Wilks A statistic. The use of the Lawley—Hotelling T2 to
the location model choice was described by Krusifiska [7]. Now we describe

the application of the Wilks A to the same problem.
The Wilks A statistic (e.g., [14]) is defined as a ratio of two determinants:

161

4 =
K IG+H|
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Ahrens and Lauter [1] summarize the results connected with the distribution
of the A statistic. For some special cases the transformed Wilks A has the
Snedecor F distribution:

n—r 1—4

P=1 any I:T.TNFl,n—n

.n—r—l.l—\/z

. p = 2 any I l \/Z ~ Fa2m-r-1)
n—r—p+11—-4
I=1 any p: . p ' A NFp,n—r—p+la
n—r—p+1 1—./4
[=2 any p: ) \/_~F2p,2(n—r—p+ 1)s
P JA

where p is the number of the variables considered, n is the number of
individuals in the sample, [ and r are defined as in (3).
In the other cases the approximation by F may be used:

1—AY mu—2y
(6) . /11/“ ) pl NFpl,mu—Z‘y,
where
p—i+1 pilr—4 _pl-2

2 YT iy YTy

The Wilks A statistic may be used in the location model case to the model
selection. In the terminology of the analysis of variance we have in that
problem a nested model of the two-way classification MANOVA with the first
factor (4) corresponding to cells and the second one (B) corresponding to
groups. The factor A4 has at most s = 2 levels (some cells may be empty for all

groups). The factor B has g, levels for i = 1, 2,..., s. The model considered can
be written as ‘

(7) yijt=au+ai+ﬁj(l')+eiﬁ (l =71>2’-'-as;j=‘11 23'“’ g.;
t = 1, 2,..., n,-j),

where n;; is the number of individuals in the i-th cell and the j-th group, y;;, u,
o;, Bjw» e;;, are vectors of p components (the number of continuous variables).

In the model (7) we test the hypothesis on the influence of the factor
B corresponding to groups, i.e.,

Biy = B2ty =-.-= Byi1)s
(8) HB: ﬂuz) = ﬁz(z) == Bgz(Z)’

---------------

Bio = ,ﬁz(s) == ﬁga(S)’
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Where B, corresponds to the influence of the j-th level of the factor B (observed
for the i-th level of 4) on the values of variables y.

We can reformulate our problem in such a way because we want to find
Variables differentiating in the best way between the g groups considered (for
ach cell separately).

The matrices H and G can be found in an easy way by analogy to the test
Statistic in the univariate case. It is the F statistic given by

r

5 4 5 gi Ny
Z > ni; -ij._)_’i..)z Z Z Z (J’ijr“)-’ij.)z
©) Fg= i=1j=1 Li=1j=1t=1 ,

g.—s ' n—g.
where ' '

s gi s
n=Y Y n;, 4=2 9
i=1j=1 i=1

Vi;z is the value of the variable y for the t-th observation, the j-th level of B, the
i~th level of A4; ¥;;- is the mean value for the j-th level of B and the i-th level of
4; 7, is the mean value for the i-th level of A.

The matrices H and G are now obtainable by analogy to the sums of
Squares in the numerator and the denominator of the statistic (9). Thus

ny; (7. — 9. )35, -5
1

ll
=

H

gi

...
I

i=1j

G=Y
i=1j

[

i

niy
Z (J’ijx_ fij.) (yijt - fij.)’,
1e=1

Where y,;, 7., .. are now vectors of p components (p is the number of
Continuous variables).

~ To find the distribution of A we should also define the quantities r and
l appearing in formulae (5) and (6). r is the rank of the design matrix X and [ is
the rank of the hypothesis matrix K. After writing both matrices explicitly it is
easily seen that r equals g and ! equals g —s in the considered location model
Case (s is here the number of nonempty cells, because some of them may be
empty for all groups). For the simpler motivation of the values of # and | we
may see the numerator and the denominator of Fy statistic (formula (9)) in the.
Univariate case. '

Now let us return to the selection procedure. To the subset of the most
discriminative variables we should choose those for which the hypothesis Hy
(1_'0rm'ula (8)) is rejected at the lowest significance level a. Using the dist-
Nbutional-free approach we select those variables for which the value of the
4 statistic is the smallest one. It should be stressed that from the theoretical
Point of view the distributional approach is more adequate to the problem
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because having selected different subsets of binary variables we consider
different models, so the values of g_and s differ for each subset. It is known (see,
€.g., { 14]) that, in the case where we have only continuous variables the Wilks
A statistic is monotonous and has clear interpretation. It is equal to 0 when
there is a ful] discrimination between groups considered and 1 when there is no
dlscrlmmatory power at all. It decreases with the increase of the number of
variables in the subset. The same cannot be told in the case of the mixture of
binary. and continuous variables when we consider different models for subsets
of different binary variables. Thus the monotonicity of the Wilks A is not
fulfilled in such a problem.

There is no theoretical obstacle to find the optimal subset of the most
discriminative variables in the location model, using the criteria described
(formulae (4)-(6)). But in such a choice it is necessary to investigate all subsets of
the size considered, so in practice the stepwise procedures are commonly applied.
Totally p-+q (continuous and binary) variables are used in the problem under
consideration. At the first step of the backward selection algorithm the subsets of
size p+q—1 (after eliminating the variables no. 1, 2, ..., p+¢) are investigated.
The probabilities Pr(F > F.,,) (using formulae (5) and (6)) or the Wilks A (for
the distributional-free approach — formula (4)) are computed for all these
subsets. The best subset (where Pr(F > F_,) or A is the smallest one) is chosen
and the procedure goes down for subsets of size p+q—2, p+g—3, and so on
until 1. At each step of the algorithm one variable is ¢liminated. When only one
continuous variable remains in the subset, it is saved in it and after that only
binary variables are deleted because the selection procedure is based on the test
statistic for the multivariate (or univariate if p = 1) analysis of variance, so at
least one continuous variable should remain in the subset. The stepwise
procedure described is computationally feasible. When instead of binary
variables we omit discrete ones with more than two states possible, the
procedure should be only slightly adapted. :

4. Example of application. Now we prese}lt one medical application of the-
method described. The data used are the part of the more extended studies in
the so-called chronic obturative lug disease. The sample consisted of 164
patients suffering from uncomplicated bronchial asthma (n, = 112) and bron-
chial asthma complicated by lung emphysema (n, = 52). 14 variables — 6 con-
tinuous ones called C,, C,, C;, C,, Cs, C4 (5 spirometric examinations and
a smoking index), and 8 binary ones called B,, B,, B,, B,, Bs, B, B, Bg
(disease symptoms such as cough, dyspnoea, X-ray examination of the chest)
— were taken into consideration. The hypotheses on normallty of continuous
variables and on homogeneity of covariance matrices in both groups were
rejected at the level o« = 0.05. The selection was performed in three variants: by
the classical Wilks A neglecting that for binary variables the assumption on
normality is not fulfilled, by the Wilks A criterion established for the location

model case, by the distributional approach using formulae (5) and (6) for the
location model case.
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‘TABLE 1. Variable selection with the classical Wilks A criterion

Variable to | Value of '
Subset be deleted [the Wilks 4| [T > Foud)
€y, C,, C;, Cy, Cy, Cq, By, B,, B,, By, Bs, B,
B, B, B, 6.512,,—1 | 8.669,,—9
Cy, C,, G5, C,, Cs, Cq, B,, B, B,, B, By, B,, By B, 6.515,0—1 | 5.568,,—9
Cy, Cy, Cy, Cy, Cs, Cq, By, By, By, Bs, B, By Cs 6.519,,—1 | 1.343,,—9
Cy, C,, C;, C,, Cq, B,, B, B, By, B, By B, 6.524,,—1 | 9.762,,—10
€1, C,, Cy, Gy, Cg, By, By, B, B, By Bg 6.534,,—1 | 1.870,,—10
Cy, C,, Cy, Cy, Cs, By, By, Bs, B B 6.551,0—1 | 1.825,,—10
C1.C,, Cy, Cy, Cg, By, By, Bg C, 6.582,,—1 | 3.020,,—11
€y, C;, C, Cs, B,, By, By Cs 6.616,,—1 | 4.560,,—11
€. Cs, C,, B, B,, B, B, 6.650,,—1 | 4.685,,—12
C,.C,, C,, B,, B C, 6.738,0—1 | 1.927,,—11
C,;, C,, B,, B, B, 6879,,—1 | 3.115,,—12
C,, C,, B, B, 7.003,,—1 | 3.282,,—11
Ci.C, C. 7172—1 | 2.385,,—12
C,. 7.403,,—1 | 2.539,,—10

TABLE 2. Variable selection with the Wilks 4 for the location model

Variable to | Value of

Subset be deleted [the Wilks 4] T > Feutd
Cy, C,, Cs, Cy, Cs, Cg, By, B,, B,, By, Bs, B,
B,, B, B 2487,,—1 | 1485,,—1
€. C,, C,, C,, Cs, Cq, By, B, B;, By, Bg, B, By B, 2.598,,—1 | 8210,,—2
C.. C,, Cs, Cy, Cs, C, By, B,, Bs, By, Be, By By 2.720,,—1 | 8294,,—2
C.cC,C,,C,, Cs,Co, By, B,, Bs, By, B C, 3.009,,—1 | 8215,,—3
C.. Cs, C,, Cs, C, By, B,, B,, B, B Cs 3.255,,—1 | 9.038,,—4
C:, Cs, Cy, Cq, By, B,, By, B,, B B, 3.627,,—1 | 1.028,,—4
C1, Cs, Cy, G, B,, B;, By, Bg Cs 4.235,0—1 8.187,,—6
Cy, Cs, Cy, By, B,, B, B, C, 4889,,—1 | 5491,,—6
C,, C,, B,, B,, B,, B B, 5.770,6—1 | 5.537,,—6
Cs, C,, By, By, B B, 6.426,0—1 4.021,,—8
Cs, C,, B,, B B, 6.892,,—1 [ 1.028,,—9
Ciy,C,, By B 7.137,,—1 | 5.805,,—11
G c, - C, 7172,0—1 | 2385,,—12
G 7.403,,—1 | - 2.539,,—10

The results are summarized in Tables 1-3. In all tables the values of A are
given as well as the probabilities Pr(F > Feac). In Table 1 the process of
Selection with the classical A is presented. The values of A increase in the
Process of selection, so the discriminatory power of subsets considered
decreases. From the distributional point of view the best is the subset of
2 variables, but we ought to remember that the assumption on normality is not
fulfilled for the binary variables. Applying the distributional approach we use
that assumption in the considerable way, thus we should carefully analyze the
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TABLE 3. Variable selection with the approximative distribution of A in the location model

Variable to | Value of

Subset be deleted [the Wilks 4| T*¢ > Feud
Cl’ CZ’ C3’ Cd’ CS’ C6s B1, Bz, BB’ B4’ Bs, B(,,
B, By : c, 2487,,—1 1.485,,—1
C,, Cs, Cy, Cs, Cq, By, B,, By, B,, Bs, B, B;, By Cs 2739,,—1 | 3.110,,—2
C,,C;, Cy, C, By, B,, By, B, B, By, B,, By By 3.064,,—1 | 3622,,-3
C:, Cs, Cy, Cq. By, By, By, B, B, Bg, B, B, 3.336,0—1 | 7.263,,—4
C,.C;,C,, C4, By, By, By, Bs, B, B, B 4.325,,—1 3472,,—5
C,, Cy, C4, Cs, By, B,, By, By, B, C, 4422,,—1 | 3.190,,—6
C;, G4, Gy, By, By, By, Bg, B, B, 487701 5.056,,—7
C,, C,, Cg, By, B,, B,, B By 5.061,;,—1 1.477,,-1
C,;,C,,Cy, By, B, B, B, 5961,,—1 | 2117,,—8
Cs, C4s Cs, By, B, B, 6.422,0—1 | 4702,,—10
C,,C,,Cq, B, Ce 6.751,,—1 1.414,,—11
C;, Cy, B, B, 6.968,,—1 | 9.232,,—12
C;, G, C, T172;5—1 | 2385,,—<12
C, 7.403,,—1 | 2.539,,—10

results obtained. The process of selection with the A modified to the location
model case is presented in Table 2. The values of A also decrease, though
theoretically this need not be always fulfilled. From the distributional point of
view the best result is obtained also for 2 variables. In Table 3 the selection
with the approximative distribution of A in the location model is presented.
The last two variables are the same as in the previous tables, but the whole
process of selection has given different results. This is confirmed by the
presentation of Table 4 where the results of reclassification for the subsets of 9,

TABLE 4. Comparison of reclassification results

‘Method Subset Number of
of selection misclassifications
Classical A C,.C,, C,, C,, Cq, By, By, B, By 54
C,, Cs, Cy, By, By, By 46
C,, Cy, B , 42
A in the location| C,, C,, C,, C¢, By, B,, B3, C,, B, 51.5
model C,, C,, B,, B,, By, B, 46
Cs, C,, Bg 42
’ Distributional . Cl\’ C3, C4, CG’ Bl’ Bz, B4, BG’ B-'r . 43
- approach in | C,,C,, Cq, B,, B,, B, 39
the location |C,,C,,B, . 39
model

6 and 3 -variables chosen by three compared methods are given. The
re.classiﬁcation of the sample has been performed by the leaving-one-out
method with the smoothed estimates of means and covariances obtained with
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the linear additive model of the first order. When the reclassification is not
possible (see [9]), 0.5 is added to the total number of misclassifications. The
Dumbers of misclassifications for the subsets chosen by the classical A and A in
the location model are similar. The distributional approach has given
considerably better results (e.g., for 6 variables — 46 and 39 incorrectly
classified individuals). It should be stressed that not only the numbers of
misclassifications are lower but also the probabilities Pr(F > F_,,.) (compare
Tables 2 and 3) are smaller for the subsets chosen by the distributional
approach (the probabilities to be compared are underlined). Thus the latter
should be recommended, even when (as in our example) the assumption on
normality of continuous variables is not fulfilled.

5. Conclusions. Krzanowski {12] proposing the method of selection based
on the comparisons of distance measures (especially defined for mixtures of
continuous and discrete variables in [11]) has written that the lack of
Possibility to judge the change of the distance when deleting continuous
Vvariables is its main disadvantage. The reason is that the distribution of the
distance measure defined in [11] is not known. This disadvantage is overcome
when using the Wilks A statistic to the problem of choosing the most
discriminative subset. Thus both continuous and discrete variables may be
included to the selection process. It should be stressed that the subset chosen
Can give better results of reclassification than the whole set considered,
differently than in the case of discriminating with continuous variables, only.
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