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I. CZOCHRALSKA (Warszawa)

BILINEAR PROGRAMMING

1. Introduction. The bilinear programming problem (problem BLP)
belongs to a class of mathematical programming problems having many
local maxima. It may be stated as follows:

ProBLEM BLP. Maximize

(1.1) F(x,y) = a"x+b"y+y"Qx
subject to

(1.2) xeX ={xeR"|Adx =¢c, x>0},
(1.3) yeY ={yeR"|By =d,y >0},

where @, A, B are matrices of dimensions m X n, k X n, l X m, respectively,
and ¢ e R", be R™, ce R*, d e R

Let us notice that problem (1.1)-(1.3) may be written in the following
form:

Maximize
Q(z) = eTz+2"0z
subject to
2eZ ={zeR"*"" | Dz = h,z >0},
where

R IR TR

Thus problem BLP is a special case of the nonconvex quadratic
Programming problem, the objective function of which is neither convex
nor concave. However, the matrix ¢ has a special structure.

The class of nonconvex quadratic programming problems with a non-
negative definite matrix C can be solved, as shown in [3], by some modifi-
cation of an algorithm solving the problem BLP.

The set X x Y of feasible solutions of problem BLP is, in general,
a polyhedral convex set (not necessarily bounded). Each vertex of X x ¥
is an ordered pair of vertices of X and Y, respectively.
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In most methods for solving the problem BLP known from literature
(see [5], [6], [8]-[10]) it is assumed that the set of feasible solutions is
bounded (this condition should be verified before applying them). Obvious-
ly, the boundedness of X x Y implies the existence of an optimal solution.
But such a solution may exist even though X x Y is unbounded. This
is clear from the following trivial example:

Example 1. Maximize F(x,y) = —ay subject to >0, y>0.

The authors of [1] and [2] do not mention the assumption that the
set X x Y is bounded. Thus the methods proposed fail to be proper.

Altman [1] states that the sufficient condition of optimality (given
by Theorem 4 of our paper) is also necessary but this statement is false
(see Example 3 and Remark 8). Besides, the claim of [1] that it is possible
to solve problem BLP only by standard linear programming methods
seems to be extremely optimistic.

Remarks concerning the Cabot and Francis paper [2] are given in the
introduction of paper [3] when a nonconvex quadratic problem is discussed.

The present paper deals with the general problem BLP defined
by (1.1)-(1.3) without any additional assumptions.

The most important properties of problem BLP are given in Section 2.

In Section 3 we deal with the theoretical foundations of the method
for solving the problem BLP. It should be stressed that the theory and
comments concerning the procedure of the algorithm are presented in
this section according to the structure of the algorithm:.

The algorithm for finding an optimal solution is described in Section 4
and is illustrated by simple numerical examples in Section 5.

2. Some general properties of problem BLP. The subject of our con-
siderations is the general problem BLP defined by (1.1)-(1.3). We assume
that the problem is consistent, i.e. the set of feasible solutions is nonempty.

Let us notice that the function F(x, y) is continuous on the closed
set X X Y. If the set X x Y is bounded, then it is compact. Thus, due to
the Weierstrass theorem, we have the following

Remark 1. If the set of feasible solutions of problem BLP is bounded,
then an optimal solution exists.

Let us notice that the polyhedral convex sets X and Y can be written
in the form

X={x=a+1x° |2’ X, x°e X,, 1> 0},
Y={y=9y"+8y°|y°ecX,, yeX, éd=>0},

where X, and Y, denote convex hulls of all vertices of X and Y, respec-
tively, and X, and Y, are convex polyhedral cones of the form

X, ={xecR"|Ax =0,x>0}, Y ={yeR™|By=0,y=>0}.
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Thus the function F(x,y) can be presented as follows:

(21) F(w,y) = F(x®+ix°, y* + 6y°) = a* "+ bTy®+ (y°)"Qa® +
+A[a™ 2+ (y°) " QT+ S [bTyY° + (¥°) T Qa1+ 26 (y°) T Qx°.

THEOREM 1. The function F(x,y) is bounded from above on the set
of feasible solutions of problem BLP if and only if the following conditions
hold:

(i) ¥y*Qx <0 for (z,y) e X, x ¥,

(i) a"x+yTQx < 0 for (x,y) e X, X Y,

(iii) BTy +yTQx < 0 for (2, y)e X, x ¥,.

Proof. Let us start with the necessity.

Suppose there exists a point (x°, y°) € X, x ¥, such that (¥°)TQz° > 0.
Then we have

lim lim F(xP+1x°, y*+ 6Y°) = F(x®, y°)+

A>+00 8>+00

+lm lim 48 [% (@%@ -+ 4PV Q&) + (675 + @) 0a?) + ) Qa—cc]

A>+400 6>+ 00
= +oo’

which is in contradiction with the assumption that the function F(x, y)
is bounded from above.

To prove the necessity of (ii) suppose, to the contrary, that the point
(x°, y*) € X, x Y, satisfies the inequality a’x° + (y*)*Qx° > 0. This implies

lim P(a?+ 42°, P°) = F(2®, P°) + lim A[a™2°+(F°)7Qa°] = + oo

Ao+ A>+00

and we obtain a contradiction again.

An analogous reasoning shows the necessity of (iii).

Now, let us notice, according to (2.1), that conditions (i), (ii), (iii)
imply the inequality

F(x®+2x°, y*+ 0y°) < F(x®,y"), where (2, y") e X, x ¥,,.
Hence

max{F(x,y) | (z,y) e X x Y} = max{F(x, y)|(x,y) e X, X Y}
Then the sufficiency of (i), (ii), (iii) is an immediate consequence

of Remark 1.

From the proof of Theorem 1 we obtain immediately the following
corollaries:

COROLLARY 1. If the function F(x,y) is bounded from above on the
8¢t of feasible solutions of problem BLP, then there exists an optimal solution
of the problem.
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COROLLARY 2. If condition (i) of Theorem 1 is satisfied, then

max{a"x+y Qx| (r,y) e X, x Y} < + o0
and
max {bTy+y"Qx | (x,y) e X X ¥} < +oo.

Without loss of generality we may assume that rankd = k< n
and rank B =l < m.

Let a = {J1, 2y ---5Jx; = {1,2,...,n} denote the set of indices of
the basic variables corresponding to the basis A, = [4y;,, 4,y ...y Ayl
constructed by means of linearly independent columns of the matrix 4 span-
ning R* and let 8 = {iy, %y, ..., 4} = {1, 2, ..., m} be the set of indices of
the basic variables corresponding to the basis By = [By,, By, ---; By
of the space R’ Then & = {1,2,...,n}—a¢ and 5 ={1,2,...,m}—p
are the sets of indices of nonbasic variables corresponding to 4, and By,
respectively. By x,, ®;, y; and y, we denote subvectors of vectors x and y
consisting of coordinates with indices belonging to the sets a, & g and 7,
respectively. Thus 4, and B, denote submatrices of A and B consisting
of columns of A and B pointed out by the sets & and 7, respectively.

A point (2, y’) e X x Y is called a basic feasible solution of problem
BLP relative to bases 4, and B, if f = 0 and y° = 0.

THEOREM 2. If problem BLP has an optimal solution, them it has
a basic optimal solution.

Proof. Let (x°, y°) € X x Y denote an optimal solution of problem
BLP, i.e. let

max{F(x,y) | (r,y) e X x ¥} = F(x° y°).

Let us notice that max{F(x,y’) | x e X} is a linear programming
problem (problem LP). It is known that if a° is not a vertex of X, then
there exists a basic optimal solution x® € X of this problem LP. Then,
clearly, F(x°, y°) = F(x°, y°). Thus the feasible solution (x", y°) is an
alternative optimal solution of problem BLP.

Repeating this reasoning we can show that if y° is not a vertex of ¥,
then there exists a basic optimal solution y® € ¥ of the following prob-
lem LP: max {F(x°,y) |y e Y}. Obviously, F(x*,y’) = F(x°, y°). This com-
pletes the proof.

A feasible solution (x°, y°) is called an equilibrium point of problem
BLP if

P(a, y°) = max{F (2, y") | & € X} = max{F(z°, y) |y € T}.

An immediate consequence of the proof of Theorem 2 is the following

COROLLARY 3. If a feasible solution (x°,y°) of problem BLP is an
optimal solution, then it is an equilibrium point.
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3. Theoretical foundations of the algorithm. Duc to Theorem 2 and
Corollary 3 it is possible to find an optimal solution of problem BLP among
basic feasible solutions being equilibrium points of the problem. We should
also examine whether the function F(x, y) is bounded from above on
X x Y (see Corollary 1). However, the conditions of Theorem 1 are of
the form of bilinear programming problems, so we try to avoid solving
these problems as long as possible. In the latter situation we introduce
some other sufficient conditions not so difficult from the numerical point
of view.

Let us define the function

(3.1) A(x,y) = F(x,y)—F(x°, y°,

where a feasible solution (x°, y°) of problemn BLP is fixed.

The following facts are evident and important for further considera-
tions:

Remark 2. A(x,y) >0 (or A(x,y)>0) if and only if F(x,w)
> F(x° y°) (or F(x,y)=> F(x° y).

Remark 3. A feasible solution (x°, y°) of problem BLP is its optimal
solution if and only if

max{4(x,y) | (e, y) e X XY} =0.

Let (x%, y’) e X x Y denote the basic feasible solution relative to
bases 4, and B,;. Rewriting the systems of linear equations from (1.2) and
(1.3) in the equivalent basic form

_ 28
x, =x— Bz, y,=y;—H,y,,

where x2 = A7'c, yi = B;'d, E. = A;'A,, H, = B;'B,, we get

(3.2) A(@,Y) = P +a7 Y, + Yy Ve,
where

(3.3) p: = a;+Q; Yy’ —E} (a,+Q7¢),

(3.4) q, = b,+[(Q7),1"x* — H7 (b, + [(@"),]"«"),
(3.5) Ve = Hy (QpaBe—Qpe) — Qua B+ Qe

It should be noticed that [(QT),]" and [(QT),]T are submatrices of
@ formed from rows of @ corresponding to the sets # and B, respectively.
Moreover, let us stress that the function (3.2) depends only on nonbasic
variables.

Since the difference F(x,y)— A(x,y) is constant, Theorem 1 is
equivalent to the following
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Remark 4. The function F(x,y) is bounded from above on the
set X x Y if and only if the following conditions hold:
(i) max{y; V,.x: | (®,y) € X, x Y} =0,
(ii) max{pl@,+yl V,exe | (x,y) € X, x T} = 0,
(ifl) max{qy ¥y, + Yy Voe: | (x,y) e X, x ¥} = 0.
Now, let us define the sets £° and »° as follows:

0 ={jel|By<0}, n°={ien|Hy<0}.

ProrosiTioN 1. If p; > 0 for some j € &° (or q; > 0 for some i € 7°),
then the function F(x, y) is unbounded from above on the set X X Y.

Proof. Let us consider the set of points x (1) of the form
(%) x(1) = iz,

Clearly, ®(1) € X, and the set {x|x = x°+x(4)} is an infinite edge
of X (i.e. a half line emanating from x® in the direction &).

For (x(1),y") € X, x Y, we obtain

[pF +(Y))" V1o (A) = p;A>0 whenever 1> 0.

This relation and condition (ii) of Remark 4 imply that the function
F(x,y) is unbounded from above on X X Y.

In a similar manner we can prove the second part of the proposition
introducing the set of points y(¢) of the form
(%) y(9) = dy,
where §, = —Hyy, 9; = 1, Y, = 0, 6 > 0, and using (iii) of Remark 4.

Using the proof of Proposition 1 and computing the values (according
to (3.2))

Alx*+x(2),y’) =p;A and A=,y +y(d) = ¢;6
we get
COROLLARY 4. If p; = 0 for some j € £°% then

F(wa‘l‘w(l)’ yﬁ) = F(x°, yﬂ)-
Analogously, if ¢, = 0 for some i € n° then
F(wa7 yﬁ—l—y(a)) = F(z*, ).

Let j € £— &° and ¢ € n —7°. Denoting by o’ and f’ new sets of indices
of basic variables such that ¢’ —a = {j} and f'— g = {¢} we can compute
(as in the simplex method for problem LP) the following values:

(3-6) 'Vj = min{w;/E{mj}l E{t}{]} > 0, te a},
(3.7) p; = min{yf [Hyo | Hy > 0, t € ).
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Then the adjacent basic feasible solutions #* and y* of x® and ¥/,
respectively, are determined by

(3.8) @l =, Xy =0, x5 =a;—vH,,
(3.9) vwWo=up, Y_4=0, Y5 = yg—:“'iH{i}'

According to the bases A4, and B; we can obtain adjacent basic
feasible solutions of (x*, y®). These are (%, ¥°) and (x°, y*), respectively.

PROPOSITION 2. If p; >0 for some je&—&% then F(x,y’)>
= F(x®, y°). Moreover, F(x*, y°) > F(x°, y°) whenever x* is nondegenerate.

Proof. Due to (3.6) we have » > 0. If ®* is nondegenerate, then
v; > 0. Taking into account 4(x*,y’) = p;»; (which follows from (3.8)
and (3.2)) and Remark 2 we prove the proposition.

COROLLARY 5. If p; =0 for some je&—&° then F(x”,y’) =
= F(x°, y*). Moreover, F(x* + A (x* —x*),y’) = F(x°,y") whenever 0 < A< 1.

ProposITiON 3. If ¢, >0 for some ten—n° then F(x®,y")>
= F(x°, y°). Moreover, F(x°,y”) > F(x*, y’) if y° is nondegenerate.

Proof. The proposition is implied by formulae (3.7) and (3.9) in an
analogous way to Proposition 2.

COROLLARY 6. If ¢, =0 for some ien—n° then F(x*,y’) =
= F(x*,y’). Moreover, F (x°,y*+ 6 (y" —y°)) = F(a*, y°) whenever 0 < 6< 1.

THEOREM 3. For a basic feasible solution (x°, y°) to be an equilibrium
point it is sufficient (and necessary if (x*, y’®) is nondegenerate) that

(3-10) p; < 07
(3.11) q,<0.

Proof. Since (x°, y®) is the basic feasible solution, then according
to formula (3.2) we obtain 4(x, y°) = p;x, and 4(x",y) = q,y,. Using
the first part of Proposition 1 and Proposition 2 for (3.10), and the second
bart of Proposition 1 and Proposition 3 for (3.11) we complete the proof.

Remark 5. Konno [6] has shown that the basic feasible solution
(¢, y°) satisfying (3.10) and (3.11) is a Kuhn-Tucker stationary point.

The sufficient but not necessary condition for a point (x°, y°) to be
optimal is given in the following

THEOREM 4. If a basic feasible solution (x°,y") is an equilibrium
Point of problem BLP and V,.< [0] (i.e. all elements of the matriz V.
defined by (3.5) are nonpositive), then it is an optimal solution of the problem.

Proof. Since («*, y®) is a basic equilibrium point, then due to Theo-
rem 3 any point (x, y) € X X Y satisfies the inequality p?wg—l—q;fy,, < 0.
This fact and the assumption V,.< [0] imply 4(x, y) < 0. Hence

max{4(x,y) | (®,y) e X x ¥} = 0.



502 I. Czochralska

Since, in particular, A4 (x°, y°) = 0, we infer that (x°, y?) is an optimal
solution of problem BLP.

Let us notice that the assumptions of Theorem 4 make any verification
of conditions (i)-(iii) of Remark 4 useless. In the remainder of the paper
we consider a problem, the matrix V,. of which contains some positive
elements (i.e. V,. < [0]). However, this may lead to an unboundedness
of the objective function as is shown, for example, in the following propo-
sition:

PROPOSITION 4. Assume that at least one of the following conditions
holds:

(1) Vi, > 0 for some i €n® and j € &°,

(i) pj+p; Vi > 0 for some i en—n° and j € &

(iii) g, +»; Vi >0 for some i € n® and j € £— &°.

Then the function F(x,y) is unbounded from above on the set X x Y.

Proof. Let us consider the points x(1) € X, and y(6) € Y, defined
by (*) and (*x) in the proof of Proposition 1, respectively.

To prove (i) let us notice that V., > 0 implies

[y, (8)]T V,ex:(2) = 20V ;3 >0 whenever A>0 and 6 > 0.

Hence by (i) of Remark 4 the function F(x, y) is unbounded from
above on X x Y.

For the proof of (ii) let us notice that the points (x(1), ¥") e X, x ¥,
satisfy the inequality

(p;r 4 (y;?’)’lv Vne)a’e(}*) = (pj+p:; Viy;)A >0  whenever 4 > 0.

Then due to (ii) of Remark 4 the function F(x, y) is unbounded from
above on the set X x Y.

In an analogous way, using condition (iii) of Remark 4 for points
(x*, y(8)), we prove condition (iii) of the proposition.

THEOREM 5. If a basic feasible solution (x°,y") is an optimal solution
of problem BLP, then

(3.12) max{V5iyy, | ye XY} < —p; for each j e &,
(3.13) max{V.x, |xe X} < —¢q; for each ien°,
(3.14) max{(q,+ V) Y, |l ye Y}< —p;»;  for each je &— &,
(3.15) max{(p; +u; Vi) | @ € X} < —qu;  for each i en—a°.

Proof. To prove (3.12) let us suppose, to the contrary, that there
exists y e Y satistying Vy,y,> —p; for some jc £°. Then taking the
points ®&(1) € X, defined by (*) in the proof of Proposition 1 we get, ac-
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cording to (3.2),
lim A(x°+x(3), y) = lim [A(p;+ Vi;y,)]+ 9y, = + .

A>too A—>+00

This formula and (3.1) imply that the function F(x, y) is unbounded
from above on X x Y, which contradicts the assumption of the theorem.

An analogous reasoning related to y(6) defined by (#x) in the proof
of Proposition 1 shows the necessity of (3.13).
_ To prove (3.14) let us suppose, to the contrary, that there exists
YyeY satisfying (q,+vV,;)"y,> —p;» for some jeé&—&. TUsing
this assumption and computing, according to (3.2), the value A(w Y
= p;v;+(q,+7; V)" Y, we infer by Remark 2 that F(x*, y) > F(x*, y’).
Thus we have a contradiction again.

Using the value A(x, y*) = q;u,+ (P} +p; V) T; We prove (3.15)
In a similar manner.

From the proof of Theorem 5 we get the following

COROLLARY 7. Inequalities (3.12), (3.13) and
max{(q,+v Vi)"Y, 1y Y} < +oo  for each j e &— &°,
max {(p; +p; Vige)®: | € X} < +00  for each ien—n°

are nmecessary conditions for the function F(x,y) to be bounded from above
on the set X X Y.

Let us notice that the basic equilibrium point (x°, y®) of problem
BLP satisfying (3.12)-(3.15) is only a local maximum. The knowledge
of such a point does not imply the existence of the optimal solution of
Problem BLP till we do not check if the function F (2, y) is bounded from
above on the set X x Y.

Let us introduce, in the latter situation, the vectors 2, and u, whose
coordinates are defined by

(3.16) g =max{Vy,y, |ye ¥} forjek,
(3.17) u; = max{Vy.x, |x e X} for ien.

THEOREM 6. Given a basic equilibrium point (x°, y*) of problem BLP,
% < +oo for each j € & and u; < + oo for each i € v, the function F(x,y)
ts bounded from above on the set X x Y.

Proof. Clearly, if max{c'® | x € X} < + oo, then max{c"@ | x € X}
= 0. Taking then

Z =max{V,,y,lyeY,} forjeé
and
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we get

yrVx:<zix;, =0 for (x,y)eX,xY,,
prx.+yrV, x: <pfe;+uly,<0 for (x,y)e X, xY,

due to (3.10) and
T T — T =T
QYo+ Yy Ve < @y, +252: < 0 for (®,y) e X, x ¥,

due to (3.11).

Applying Remark 4 to the above inequalities we complete the proof.

CoroLLARY 8. If 2; < 400 for each je& (or u;< +oo for each
1 €7), then conditions (i) and (iii) (or (i) and (ii)) of Remark 4 hold.

It should be stressed that even if the function F(x,y) is bounded
from above on the unbounded set X x Y, then some z; for j € £— &° or
u; for ¢ € n — n° defined by (3.16) and (3.17), respectively, may not exist(*)
(the existence of z; for any j € £° and u; for any ¢ € #° is guaranteed by
Corollary 7). In this case we have to examine problems (i)-(iii) defined in
Remark 4. According to Corollary 2 it is advised to start with problem (i).
However, due to Corollary 8, in some special cases it is sufficient to
require either (ii) or (iii) only.

ProposITION 5. If (27, y®) € X X Y is an equilibrium point of problem
BLP, then (0,0)eX.xY,, (0,y’)e X, xY, and (x°,0)e X, x ¥, are
equilibrium points of problems (i)-(iii), respectively.

Proof. The idea of the proof is based on the following observation:
if (2, y”) is an equilibrium point, then, due to Theorem 3, p,< 0 and ¢, < 0.

ProposiTioN 6. If conditions (3.12)-(3.15) of Theorem 5 hold for
a basic feasible solution (x°,y’) of problem BLP, then those conditions
are also fulfilled for the points (0,0)e X, x Y, (0,y’)e X, x Y, and
(°,0)e X, x Y, in problems (i)-(iii) of Remark 4, respectively.

Proof. Let us notice that the points 0 € X, and 0 € Y are the only
vertices of X, and Y, respectively, and they are degenerate. The thesis
of the proposition follows directly from conditions (3.12)-(3.15) after
taking into account that

max{c’®|x e X} < +oo implies max{c"x|xe X} =0.

According to Proposition 6 a solution method for problems (i)-(iii)
of Remark 4 reduces to checking if (0,0)e X,x ¥,, (0,y’)e X, x X,
and (x%,0)e X, x Y, are the global maxima, respectively.

() Compare with Remark 8.
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Without loss of generality we can restrict ourselves to subsets X, < X,
and Y, c Y, defined by

(3.18) XC={weR"|ma+E5w5=0,2mj =1, w>0},
jeé

(3.19) Ycz{yeR"‘lyﬁ—l-H,,y,, =0, Zy,- =1, y>0}.
1€en

Thus we avoid difficulties of the degeneration. Problems (i)-(iii)
are now transformed to those for which the sets of feasible solutions are
bounded. Then it is sufficient to check if

(i') max{yF V@, | (x,y) € X, x T} <0,

(ii’) max{p;rwe—i—y',l; VnEwE | (Jf, y) € Xc X Xp} < 07

(iii") max{qty,+yr Vx| (®x,y) e X, x ¥ }<O.

However, the sets X, and Y, are not defined explicitly by systems
of linear conditions (equations and inequalities). In order to construct
Such systems one has to find all vertices of X and Y, respectively, which
Wwould be an obvious disadvantage. That disadvantage can be overcome
by finding the values

(3.20) P =max{V5,y,lyeX,} forje{jeé|z = +oo},

(3.21) wP = max{Vyx,|xeX,} foricfien|u = +oo}

by the method proposed in [4]. Evidently, from (3.16) and (3.17) we get
20 = 2; whenever z; < + oo,
u? = w; whenever u; < - oo.

Now, let us introduce

(3.22) f(®) = p’erwh
(3.23) 9(y) = a7Y,
(3.24) oy = max{(q,+u})"y, |y € Ty},
(3.25) 0, = max{(p;+28)Tx; | ® e X,}.

Let X* and Y* denote the sets of all vertices of X and ¥, respec-
tively, ordered in such a manner that f(x) > f(x’) and g(y*) > ¢(y’) when-
ever ; < j for &', ®' € X* and y’, y’ € Y* (obtained by the algorithm
from [7)).

THEOREM 7. Let the function F(x,y) be bounded from above on the
et X x Y. Then an equilibriwum point (x°,y’) of problem BLP is optimal
'f at least one of the following conditions holds:

(8.26)  p,+28 <0;
(8.27) g, +ul <0;

¥ - Zastos. Mat. 17.3
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(3.28)  the sequence x', X2, ..., x" € X* (with®! = x°) satisfies the inequal-
ities f(x®") < —o; and

max[A(w, Y | (@, y) e{at, a2, ..., 2"} XY} < 0;

(3.29)  the sequence Y, y?, ..., y* € Y* (with y* = y°) satisfies the inequal-
ities g(x°) < —o, and

max{A(:I:, Yyl (e, y) e Xx{y,y%,..., ys_l}}< 0.

Proof. If the function F(x, y) is bounded from above on the set
X X Y, then (2)

max{F(x,y)| (r,y) e X x ¥} = max{F(x,y) | (x,y) e X, x ¥,}.
From (3.20) and (3.2) we get
A(@,y) < (pe+2E) ®:+q7y, for any (x,y)e X x Y.

But (x“, y’) is an equilibrium point which, by Theorem 3, implies
q;fyﬂg 0 for y € Y. This inequality and (3.26) mean that 4(x,y) <0
for any (x,y) € X x Y. Since, in addition, 4(x%, y’) = 0, we infer, ac-
cording to Remark 3, that (x°, y®) is an optimal solution.

In a similar manner we can prove the sufficiency of (3.27).

To prove the sufficiency of (3.28) let us observe that 4(x, y) < f(x) + o
for any (x, y) € X X Y. Thus f(x") < — o;implies 4 (@, y) < 0 for any points
such that (x, y) € (X" —{x, ..., " '}) x Y. Since also 4(x, y) < 0 for any
(®,y)e{xl,...,x" '} x ¥, we prove that 4(x,y)< 0forany (x,y)e X x ¥,
and the point (2, y®) is an optimal solution of problem BLP.

A similar reasoning proves the sufficiency of (3.29).

4. An algorithm for solving the problem BLP. The results obtained
in Section 3 enable us to propose an algorithm for finding an optimal
solution of the general problem BLP. It uses standard linear programming
procedures, the method of maximizing a linear form on a convex hull of
vertices of a convex polyhedral set (see [4]) and the method for ranking
vertices of & convex polyhedral set in a sequence for which the values
of a linear form do not increase, proposed in [7].

For clearity of the description we start with presenting algorithms
solving problems (i)-(iii") which ure tools for verifying conditions (i)-(iii)
of Remark 4, respectively. We denote those algorithms by A(i), A(ii)
and A(iii).

Let us assume that (x*, y°) is a basic feasible solution of problem BLP,
being an equilibrium point and satisfying conditions (3.12)-(3.15), and

(%) Compare with the proof of Theorem 1.
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that vectors 2, and u, are given with coordinates defined by the formulae
(4.1) z = max{V5,y,lye ¥} for je§,

(4.2) @, = max{Vy,x, |cec X} forien,

where X, and Y, are determined by (3.18) and (3.19), respectively.

The algorithm A4 (i)
Step 1. Find a basic optimal solution y* of the problem

max{u,y, |y e ¥}

Step 2. Check whether ﬁ:‘,'y,‘, < 0. If so, condition (i) is satisfied. Other-
wise go to Step 3.

Step 3. Check whether max{(y,)"V,.x; |« € X} <0. If so, replace y*
by the vertex y2 € Y, which follows directly y* (3) with respect
to nonincreasing values of the function u;y, and return to
Step 2. Otherwise condition (i) is not satisfied.

The algorithm A4 (ii)

Step 1. Find the value 3, = max{u,y, |y € Y, }(*) and a basic optimal
solution a! of the problem max{f(x)|® e X,}, where f(x)
is defined by (3.22).

Step 2. Check whether f(x!) < —g;. If so, condition (ii) is satisfied.
Otherwise go to Step 3.

Step 3. Check whether max{yl V,.x; | ye Y} < —f(a*) (°). If so, replace
a! by the vertex x? € X, which follows directly ! with respect
to nonincreasing values of the function f(x) and return to Step 2.
Otherwise condition (ii) is not satisfied.

The algorithm A(iii) works as A(ii) if &, f(x) and X are replaced by
0, = max{zfx, | x € X}, g(y) (defined by (3.23)) and Y;, respectively.

The general algorithm for problem BLP

Step 1. TFind a basic feasible solution (x°, y®) of problem BLP.

Step 2. Compute the vector p, according to (3.3) and check whether
(3.10) is satisfied.
(a) If so, go to Step 3.
(b) If not, then pick j e £ such that p;, = max{p,> 0|1 e §}
and check whether j € &°.

(®) We can find the vertex y*>e Y by the method from [7].

(*) Analogously to formula (3.24).

() Since we use the algorithms A(ii) and A(iii) knowing that condition (i) is
Batisfied, we can take, due to Corollary 2, the set ¥ instead of ¥ p-
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Step 3.

Step 4.

Step 5.

Step 6.
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(b,) If so, the function F(x, y) is unbounded from above
on the set X x Y.
(b;) If not, then compute »; according to (3.6), replace
x" by x* obtained from (3.8) and repeat Step 2.
Compute the vector q, according to (3.4) and check whether
(3.11) is satisfied.
(a) If so, go to Step 4.
(b) If not, then pick ¢ en such that ¢, = max{g,>0|ten}
and check whether ¢ € 5°.
(b,) If so, the function F(x,y) is unbounded from above
on the set X x Y.
(b,) If not, then compute u; according to (3.7), replace
y’ by y” obtained from (3.9) and return to Step 2.

Compute the matrix V,. according to (3.5) and check whether

Ve < [0].

(a) If so, (x°, y°) is an optimal solution of problem BLP.

(b) If not, then select the sets &' = {je &| Vi, >0} and
nt ={i€n| Vi, >0 and check whether & nE0 =0.
(b,) If so, go to Step 5.

(b,) If not, then check whether (3.12) are satisfied for
je&néo.
(b}) If so, go to Step 5.
(b2) If not, then the function F(x,y) is unbounded
from above on the set X x Y.

Check whether 7t n%n® = @.
(a) If so, go to Step 6.
(b) If not, then check whether (3.13) are satisfied for ¢ € n* n%°.
(b,) If so, go to Step 6.
(b,) If not, then the function F(x,y) is unbounded from
above on the set X X Y.

Check whether &' —&° = @.

(a) If so, the point (x°, y") is an optimal solution of problem
BLP (°).

(b) If not, then compute the values »; for j € &' — £° according
to (3.6) and check whether (3.14) are satisfied.
(b,) If so, go to Step 7.
(b,) If not, then pick j € &1 — &° and y € Y such that

N; = (@, +% V)" Y, = max{(q,+ V,;) Yy, |y Y} > —p;»;.

(%) Condition (3.26) of Theorem 7 is satisfied.
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It N, < + oo, replace x* by x* obtained from (3.8)
and y® by ¥ and return to Step 2. Otherwise the func-
tion F(x,y) is unbounded from above on the set
XxY.
Step 7. Check whether ! —7° = @.
(a) If so, the point (x°, y®) is an optimal solution of problem
BLP (%).
(b) If not, then compute the values p; for ¢ € n1 —7° according
to (3.7) and check whether (3.15) are satisfied.
(b,) If so, go to Step 8.
(b,) If not, then pick ¢ e 1 —7° and ® € X such that

M; = (P?‘l‘ﬂi V{i}E)jf = ma'x{(l’?‘l‘/‘i V{i}s)ws |xeX} > —qu,;.

If M, < + oo, replace * by x and y° by y” obtained

from (3.9) and return to Step 2. Otherwise the function

F(x,y) is unbounded from above on the set X x Y.

Step 8. Find the values #; for j € £ — &° according to (3.16) and check
whether z; < 4 oo.
(a) If so, check whether (3.26) are satisfied for j e & — &°.

(a,) If so, the point (x°, y¥®) is an optimal solution of problem
BLP.

(ay) If not, then find the values u, for ¢ € ! —n° according
to (3.17) and check whether u;, < -+ oc.

(a3) If so, go to Step 9.

(az) If not, then find the vector u, according to (4.2)
and apply the algorithm A(ii). If condition (ii) is
satisfied, replace u; for 1 e {¢ en' | u; = + o} by
the values u} defined by (3.21) and go to Step 9.
Otherwise the function F(x,y) is unbounded
from above on the set X x Y.

(b) If not, then find the wvalues %, for % e xn'—%° according

to (3.17) and check whether u, < + oo.

(b,) If so, go to Step 10.

(b;) If not, then find the vector u, according to (4.2) and
apply the algorithm A(i) to check whether condition (i)
is satisfied.

(b;) If so, apply the algorithm A(ii). If condition (ii)
is satisfied, replace u; for i e {i en'|u;, = + oo}
by the values ! defined by (3.21) and go to Step 10.
Otherwise the function F(x,y) is unbounded
from above on the set X x Y.

—_—

(") Condition (3.27) of Theorem 7 is satisfied.
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Step 9.

Step 10.

Step 11.

Step 12.

Step 13.
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(b?) If not, then the function F(x,y) is unbounded
from above on the set X x Y.

Check whether (3.27) are satisfied for i e yt —°.

(a) If so, the point (x°, y’) is an optimal solution of problem
BLP.

(b) If not, go to Step 11.

Check if (3.27) are satisfied for ¢ € n*—7z°.

(a) If so, the point (x”,y’) is an optimal solution of problem
BLP.

(b) If not, then find the vector z, according to (4.1) and apply
the algorithm A(iii) to check if condition (iii) is satisfied.
(b,) If so, replace 2; for j € {j € £* | 5; = +- oo} by the values

2} defined by (3.20) and check whether (3.26) are satis-
fied for j e &1 — &o,
(b1) If so, the point (x°,y’) is an optimal solution
of problem BLP.
(b?) If not, go to Step 11.
(by) If not, then the function F(x, y) is unbounded from
above on the set X x Y.

Find the value o, defined by (3.24) and take a! = x* as the

point maximizing the function f(x) (defined by (3.22)) on the

set X* and go to Step 12.

Find (%) the vertex @ € X* which follows directly ! and check

whether f(x?) < —o;.

(a) If so, the point (x°, y®) is an optimal solution of problem
BLP.

(b) If not, then replace ' by x2 and go to Step 13.

Find an optimal solution y of the problem max {4(x!,y) |y € Y}

and check whether 4(x',y) < 0.

(a) If so, return to Step 12.

(b) If not, then replace (x°,y’) by (x',y) and return to
Step 2 (°).

Remark 6. Since the number of vertices of the set X x Y is finite
and the algorithm does not generate new vertices, the algorithm terminates
in a finite number of iterations.

5. Numerical examples. Examples given in this section are relatively
simple. They are only aimed to illustrate some paths of the algorithm
in the case of an unbounded set of feasible solutions.

(8) By the method from [7].

(®) If the algorithm goes from Step 13 back to Step 2, then all parts of the algo-
rithm dealing with the boundedness of the function F (x, y) should be omitted. Let u8
notice then that the examination of the boundedness has been completed in Step 10.
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Example 2. Maximize

Fle,y)=[3 —-1 —1llx+[2 1lly+y"

subject to
1 -2 3 4]
— 3 -
meX—{weRl[l 1 l]w_[l_’ m>0},

yeY ={yeR|[1 2]y = [4], y=>0}.
Step 1. Taking a = {2, 3}, f = {2} and, consequently,

a=[33 B-w oe-w a-w,

we get a basic feasible solution (x*,y?) = ([0 1 275, [0 2]T).
Step 2. According to (3.3) we obtain

P: = [p:]

~ [3]+[2 0][3]—[—2 —1]([:}]+[‘} ;][‘2’])=[101>[0].

Let us notice that condition (3.10) is not satisfied and By, = [—2 —-1]7<o.
Hence we conclude (by Proposition 1) that the function F(x, y) is un-
bounded from above on the set X x Y.

Remark 7. Let us notice that any point & € X can be expressed

as follows:
0 1
X = 1 +m1 2 ’ (171 > O-
2 1

Hence the function F(x,y’) = 3x,+x,+5x,+2 is of the form
F(x,y’) = 100, +13 for x,> 0 and

lim F(x,y’) = +oo.

T]—>+oo

Example 3. Maximize

Fa,y)=[3 —1 —1]a+[2 1]y+y‘”[§ 2 ;]w

on the unbounded set X X Y defined in Example 2.

Iteration 1.
Step 1. We get a basic feasible solution

(@*,y") = ([0 1 21", [0 2]%),
Where a = {2,3}, § = {2}, &£ = {1} and = {1} as in Example 2.
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Step 2. According to (3.3) we obtain

P: = [p1]

o off] - a3 Y-

Condition (3.10) is satisfied.
Step 3. According to (3.4) we obtain

q, = [QI]

2 ) 0
—[2]+[0 1 2]| -2 —[—] 4+ 1 21| 1{| =31>o0,
1 2 —9

which does not satisfy condition (3.11). Then (x°, y°) is not an equilibrium
point. Since H, = Hy,, = [$]< 0, we apply (3.7) to compute u, = 2:}
= 4 and an adjacent basic feasible solution y* = [4 0]T with respect to
the basis B, = [1]. Now we take the point ([0 1 217, {4 0]T)as (x°, y°),
where a = {2,3}, g = {1}, £ = {1}, n = {2}.

Iteration 2.

Step 2. p. = [p,] = [—4]1< 0. Thus condition (3.10) is satisfied.

<

Step 3. q, = [¢.] = [—6]< 0 and condition (3.11) is satisfied.
Then (2°,y") = ([0 1 275, [4 0]%) is an equilibrium point.

Step 4. According to (3.5) we compute V,:

Vae = Viay
—2 —2
~@ (-2 u|]-m)-n | o - e o

Now & = {1}, n* = {2} but

—2
E{l} =[_1] <0,

g0 £ = {1} and & né& = {1} # B. Since
max{Vy,y, |y e ¥} = max{2y,|0<y, <2} =4< —p, = 4,

condition (3.12) is satisfied.
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Step 5. Hy, = [2]1 < 0,50 #° = @ and n* ny® = G. (It is understood
that (3.13) is satisfied.)

Step 6. £2— & = @, thus (x°,y") is an optimal solution of the
problem.

Therefore

max{F(x,y) | (€, y) e Xx Y} =F({0 1 2], [4 0]T) = 5.

Remark 8. Let us notice that the matrix corresponding to the
optimal solution of the problem from Example 3 is of the form V,, = [2].
It should be emphasized that in this case one of the sufficient conditions
for optimality given in Theorem 4 is not satisfied.

Furthermore, according to (3.17), we have

u, = Max{Vyx, | € e X} = max{2z, | », >0} = + .

This shows that the finite values defined by (3.16) and (3.17) may
not exist even when the objective function of problem BLP is bounded
from above on the set of feasible solutions (i.e. an optimal solution exists).
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I. CZOCHRALSKA (Warssawa)

PROGRAMOWANIE BILINIOWE

STRESZCZENIE

W pracy rozpatruje si¢ ogélny problem programowania biliniowego okreélony
przez (1.1)-(1.3), w ktérym zbiér rozwigzan dopuszczalnych jest wielo§ciennym zbiorem
wypuklym (niekoniecznie ograniczonym). Problem ten nalezy do klasy wieloekstre-
malnych zagadnien programowania matematycznego i charakteryzuje sie tym, ze
jego maksima lokalne (a w zwigzku z tym réwniez rozwiazanie optymalne) znajduja
sie w wierzchotkach zbioru rozwigzan dopuszczalnych.

Po szczegélowym omoéwieniu wlasnofci ogdlnego problemu programowania
biliniowego, ktore zawierajg m. in. warunki konieczne i dostateczne istnienia rozwia-
zania optymalnego, opisano algorytm rozwigzujacy ten problem i zilustrowano go
prostymi przykladami numerycznymi.



