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1. INTRODUCTION

A function f which is continuous in the interval ( —1, 1) and satisfies
the required conditions (see, e.g., [3], Vol. II, §10.19, or [7], Vol. I,
§ 8.3) may be expanded into a uniformly convergent series of Jacobi
polynomials in the form

(11) f@) = Y a[f1IPfP @) (-1<z<1),
k=0

where PP (a, p > —1) is the usual notation for the %-th Jacobi poly-
nomial (¢f. [3], Vol. I, §10.8), and the coefficients a,[f] are given by

(Ck+)E! T(k+2)
2 I'(k+a+1)I'(k+B+1)

(12)  @lf1:= | @—ay+aPPeoe) ) ds
i (k=0,1,...,
where

(1.3) A= a+p+1.

Various techniques are available for the determination of the coeffi-
cients a,[f] (see, e.g., [7], Vol. II, Chapter IX). It is relatively easy to
find the values of these coefficients if they satisfy a recurrence relation
of the form

(1.4) D (k) a5 [f1 = o(F),

=0
where w; and o« are given functions of the variable k.

A simple and universal method of construeting the relation of the
form (1.4) may be applied in the case where the function f satisfies the
linear differential equation

(1.6) D00 =g,

=0
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where pg, P1y ---5 Py (P, # 0) are polynomials, and the coefficients a,[q]
(k =0,1,...) are known. Such a method was first proposed by Clenshaw
[1] for the Chebyshev series of f, which is closely related to series (1.1)
for a = f = —1/2, and generalized by Elliott [2] to the case of the Ge-
genbauer series of f, which is in fact the Jacobi series (1.1) witha = 8 > —1.

Paszkowski ([9], Section 13) gave some significant improvements
of Clenshaw’s method and raised the problem of constructing the recurrence
relation for the Chebyshev coefficients which has the lowest order among
all such relations following from (1.5) and from the basic difference and
differential properties of the Chebyshev polynomials. (Relation (1.4) is
said to be of order r if functions w, and o, do not vanish identically.)

The complete solution to this problem, even in the more general
case of the Gegenbauer series expansion of f, was given by the author [4].
The techniques developed in [4] were also sucecessfully used in the con-
struction of recurrence relations for the so-called modified moments [5]
and for the coefficients of the Neumann-Gegenbauer expansion in Bessel
functions of the first kind [6].

Robertson [10] wrote an ALTRAN program for constructing a recur-
rence relation for the Gegenbauer series coefficients, which implements
the method given in [4]. "

Some examples (see, e.g., [8]) show that the case a # f can also be
of practical interest. The possibility of construction of a recurrence rela-
tion, starting from equation (1.5) and using some basic properties of the
Jacobi polynomials (see Section 2), is obvious. The purpose of this paper
is to present an algorithmic description of the method leading to a recur-
rence relation for a,[f], which has the lowest possible order.

The method, called the optimum method, is expressed in terms of
a certain type linear operator discussed in Section 3. Section 4 is devoted
to the description of the optimum method. In Section 5 we give another
method, called the Paszkowski-type method, which is not the optimum
one but is much simpler than the first method.

2. BASIC PROPERTIES OF THE JACOBI COEFFICIENTS

We assume in the sequel that the parameters a and f are fixed, a # §,
a> —1, > —1.
Let us recall the recurrence formulas

(21)  (2k+2—1)2P% (@) = 2(k+ a) (k+ B) (2k+24+1) PP () +
+ (8 = a?)(2k+ 2) PP (@) + 2 (k +1) (k4 2) (2% 4+ 2 —1) P) (0)
(k=1,2,...),
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gy ZEEA)s 0 e @ pn
@) pai A PP @
= (k4 a)(k+p) (2k + A+1) PR (%) + (a — B) k(2% + A) PP () —

— (k)22 +2-1)PA(x) (kK =1,2,..)
([3], Vol. I1, §10.8), where we use the Pochhammer symbol
(@), =a(@+1)...(a4+m—-1) (m =1,2,...)), (a),=1.

Using the above equations one can obtain the following relations
for coefficients (1.2):

(2.3) (2k+2—2),( 2k + A +1),a, [2f (2)]
= 2k(k+A)2k+A+1)a,_ [f1+ (B —az)((zk + 2 —4)a, [f]1+
+2(k+a+1)(k4-84+1)(2k+21—2)2a,,,[f],

(24)  3(E+A)(2k+2—-2),(2k+A+1),a,[f]
= (k+A—1)s2k +A+41)pa,_, [f' 1+ (e —B) (k+A)((2k+ 1)} —4) a, [f1' —
—=(k+a+1)(k+B+1)(2k+ A —2) 0,4, [f'].

A useful simplification is obtained by introducing the notation

I'k+a+1)
(k+2)(2k+2—-1),

(2.5) belf1:= 5 a[f]-

We call b,[f] the Jacobi coefficients of the function f. Relations
(2.3) and (2.4) imply

(2.6) (2k+2-1)3b,[2f(2)] = 2k(k+a) (2k+24—3)b,_,[f1+
+(f*—a?) (2k+ )b [f1+2(k+2) (E+B4+1)(2k+ A +3) by, [f],

2.7)  3@2k+A-1)b [f] = (R +a)(2k+1—3)b,_, [f']+
+(a—B)(2E+A) b [f'1—(k+B+1)(2k 424 3) by, [f']-

If we define P =0 for k = —1, —2,...; then (2.1) and (2.2)
are valid for all integer values of k. Consequently, we have

blfl:=a,[fl1:=0 for k = -1, —2,...,

and (2.6) and (2.7) can be used for all integer values of k.
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3. DIFFERENCE OPERATORS

3.1. Preliminaries. Algorithms given in Sections 4 and 5 are expressed
in terms of a certain type linear operator. Let & denote the linear space
of “doubly infinite” sequences of complex numbers with addition of
sequences and scalar multiplication defined as usual. Obviously, & is
the space of all complex-valued functions defined on the set of all integers.
Let & denote the set of all rational functions s € &.

Consider the set J of all linear operators mapping & into itself.
¥ TeJ and {2} €&, we denote the k-th coordinate of the sequence
T{z} e by Tz, so that T{z} = {T%}. The zero operator, the identity
operator, and the m-th shift operator in I are denoted by ®, I and E™,
respectively. Then we have

(3-1) Izk = Zk, sz - O, Emzk == zk+m

for every {z,} €. Clearly, E° = I.
Let % be the set of all operators L € J such that

(3.2) L = ) i) B,

j=0
where r > 0 and u are integers, and 4, 4;, ..., 4, € $1a;. Every non-zero
operator L €% can be expressed in the form (3.2) with 4, 20 and
2, # 0. The number r = r(L) is referred to as the order of the operator L,
while 4,, 4,, ..., 4, are called the coefficients of L. The elements of the

set & are known as difference operaiors.
Let L €% be defined by (3.2) and let M €% be such that

t
M= uk)E"H.

j=0

We define the product of L and M to be the operator

r t
LM := ) 2(k) D) il 1-3) Be+v++,

=0 j=0

It can be seen that under this definition of multiplication and the
addition defined in a natural manner £ forms a ring with identity I.

Let Le% and we&. The equation Iz, = w(k) is the recurrence
relation for the sequence {z,} € &. The order of the recurrence relation
is the order of the difference operator L.

3.2. The operator X. Using the symbol of the operator X, defined by
(8.3) X:=(2k+Ai-1);'[2k(k+a)(2k+A—3)E '+
+ (8 — o®) (2k+ ) I +2(k+2) (kB +1) (2k+ A+ 3) E],
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we can rewrite (2.6) in the following form:
(5.4) Xb,[f1 = by[af (2)]-
Let p be the polynomial defined by

a
p(@) 1= chw".
j=0

The symbol p(X) denotes the following difference operator:

d
p(X):= D o X
j=0

Now, it is easy to generalize (3.4). Namely, we have

(3.5) p(X)b,[f] = by [p(#)f(@)].

3.3. The operator D and related operators. The operator D €% de-
fined by
(3.6) D := 6y(k)E~"+ 6, (k) I + 8,(k) B,
where
Oo(k) :=(k+a)(2k+41—38), 64(k):=(a—pB)(2k+4),

0y(k) := —(k+B+1)(2k+2+3),

plays a very important role in the sequel. Observe that (2.7) can be re-
written as (%)
(3.8) Db, [f'] = 3(2k+2—1)3b,[f]-

Before generalizing this identity, let us introduce the difference.
operators B;, 8;, and P; by means of the formulas

(3.7)

{Bo:=D,
 (k+a)@kHA+2) L (2kHA)P—4
Bii= —gpaa D =P gyl
(3.9) _ (B+B+1)(2k+1—2) z
2k+2+1 ’

B, := (2k-+A—1);1 (8, (k) (2k+ A+ 2i —3), B! +
+ 84 (1) (2 -+ A —20)3 2k + 2+ 20 —1)o T + 84 (k) (2k + 4 — 2), F)
l (=2,3,..),

(*) Notice that in the case a= § operator (3.6) takes the form 2D*[(k +a),I], where.
D*:= E-1—E. Introducing the notation ¢;[f]:= 2(k+a),b;[f], we have the identity
D*e[f']1= 2(k4+a+1/2)cx[f] which is much simpler than (3.8) (cf. [4]).
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3.10) O (<3,
e S BB, .. B (i2j20),
(3.11) P’i = Si—l,o (?; = 0, 1, .--).

Let ygy 1, .. € & be polynomials given by
(3-12) vo(k) :=1, yi(k):=(2k+A—1),
vik):= (2k+4A—2¢42)y;_s (¢ =2,3,...).
It may be checked that
Biy;(0)I) = (2k+A-1)5'y;u (WD (i =0,1,...),
which together with (3.8) implies

(3.13) Bi{y:i(B)b[f']) = 37 (B)B[f1 (i =0,1,...).
LeMMA 3.1. For any © = 0,1, ... we have the identity
(3.14) P;b, [f9] = 2%y, (k) b, [f]-

Proof. We apply the method of induction on ¢. For ¢ = 0 equa-
tion (3.14) holds trivially, and for ¢ = 1 it has the form (3.8). Assuming
that (3.14) holds for a certain ¢ (¢ > 1) and using the equality P;,, = B;P;
(cf. (3.11)) and (3.13), we get

Py b [F40] = 27y, (R) b [ .
Identity (3.14) is therefore true for any ¢ = 0,1, ...

3.4. The set &/*(L). Given an operator L € & we define the following
sets of difference operators:

(3.15) A(L):={Aes\{O}| I AL =QD},
Qe \ {6}

(3.16) L) :={4de(L)| YV r(d)<r(B), )
BEM(L)

where r(P) denotes the order of the operator P €%, and D is defined
by (3.6).

The following lemma can be derived from the results obtained in [4]:

LemmA 3.2. (i) If A e (L) and C € £\{O}, then CA € «(L).

(ii) If A € /(L) and B € «*(L), then there exists an operator C € £\ {O}
such that the equation A = CB holds.

(ii) If A, B € &*(L), then there exist ¢ € $ppy and an integer m such
that A = o(k)E™B.

The last part of the lemma means that all the operators belonging
to the set «/*(L) are inessential modifications of any fixed operator from

this set. In Lemma 3.4 (below) we construct an operator belonging te
*(L).
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First we show the following
LeMMA 3.3. Let L € & be a non-zero operator of order r given by

(3.17) L= Zij(k)E“” .
j=0

Define voy vyy oovy ¥, € Fray Tecursively by

0 () =r—-1,1),
['15+2 (k) — 0.(K +j+u+2)”j+1 (k) —
— Oo(k+j+u+3)v;12(k)])/0s(k+j+u+1)
Gg=r—-2,r-3,...,0),

(3.18)

J

(k) :=

where 8y, 6,, and O, are the coefficients of the operator D, given by (3.7).
Put

(3.19) N:= erj(k)E“”“.

j=0
Define o, 0, € F ot by
0o (k) 1= Ag(k) — (k4 u+1)ve(E),
(3.20) 0 (r =0),
a,(k) := {21(k) — 61(k+u+1) v (k) — 0o (k4 u +2) v, (k)
(r=1,2,...).
Let
(3.21) W := oo(k) E*+ o, (k) B**L.
Then
(3.22) L =ND+W
and, moreover, the equation
(3.23) A (L) = X (W)

holds.

Proof. Equation (3.22) can be easily checked by calculating the
coefficients of the operator ND+W and comparing them with the cor-
responding coefficients of the operator L.

We show that

(3.24) (L) = (W),
which clearly implies (3.23).
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1° If A € &/(L), then according to (3.15) there exists an operator
Q € £\ {0} such that AL = @D, which together with (3.22) implies the
relation AW = (Q —AN)D meaning that A € &/(W).

2° Let A € &/(W). Applying the operator A to both sides of (3.22)
and taking into account that there exists an operator R e £\ {0@} such
that AW = RD, we obtain the equation AL = (AN +R)D. Hence we
get A e &/(L), which completes the proof.

For A, u € o let us define

where A, z# and 4, i are the numerators and denominators of 4, u, respec-
tively.

LEMMA 3.4. Let L € & be defined by (3.17) and let 0y, 0, € Fpy be func-
tions given by (3.20). Let A, Re% be defined by

(3.25) A= ay(B) B+ ay (k) I + 0y (k) B,
(3.26) B := go(k) I+ 0, (F)E,

where the coefficients ag, a;, a3y 0, 01 € Fray are determined in the following
manner.

Case I. 0, = 0, = 0. Define
(3.27) ay(k) := ay(k): =0, a,(k):=1,
(3.28) o(k) : = g1(k) := 0.

Case II. 0y £ 0, 0; £ 0, 0y(k) = v(k-+u)o,(k), where T € P\ {0}
satisfies the difference equation

(3.29) O(k)z(k)r(k—1) — 6,(k)r(k)+ 85(k) = O.
Define

(3.30) ag(k):=0, «ak):=owkEa (k) i=1,2),

(3.31) 0o(k) :=0, 01(k) := w(k)oo(k)oy(k+1),

where

(3.32) a¥(k):= Sy(k+u+1)oy(k+1), a¥(k):= Ss(k+u+1)o,(k),

(3.33) o (k) : = 1/{a](k), o3 (k)}.
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Case IIL. o, %0, o0,(k) = t(k+u)o,(k), where ve€ P does not
satisfy (3.29). Define

{3.34) a;(k):= o(k)a; (k) (i1 =0,1,2),
(3.35) g;(k) := w(k)p(k+u—j+1)oo(k—1)oo(k)o;(k+1) (j =0,1),
where
(ag(k) := 5o(k+u)<p(k+u+1)oo(k)co(k+1),
ay(k) := So(k+u+1)p(k+u)og(k—1)oy(k+1) —
(3.36) | —@(k+u+1)og(k+1)[6(k+u)oy(k—1)—
— Oy(k+u)oo(k—1)],
\ a3 (k) 1= 8(k+u+1)p(k+u)o,(k) oo (k—1),
(3.37) (k) : = 1/{{a1(k), a3 (k)}, a5 (k)},
{3.38) (k) := dy(k)v (k)T (k —1) — 8, (k)x (k) + O5(k).
Case IV. o0y =0, o, % 0. Define
3.39) (k) := w(k)d;(k+u+1)oy(k—1)0y(k)oy(k+1)/oy(k+17—1)
(¢t=0,1,2),
(3.40) 0o(k) := 0, 0.1(k) : = w(k)or(k —1) oy (k) 0y (K +1),
where
(3.41) (k) := 1/{{So(k+u+1)oy(k), é(k+u+1)oy(k—1)}o,(k+1),
8o(k+u+1)0,(k—1) 0y (k)] .

Here 8,, 8,, 8; € Fray are the funciions given by (3.7)..
Then in any of the cases 1-IV the operator A belongs to the set o*(L)
and we have

(3.42) AL =QD,
where Q € &,
(3.43) Q := AN 4+RE",

N € & being the difference operator defined by (3.19).

Proof. It suffices to show that in any of the cases I-IV the operator
4, occurring in (3.25), belongs to the set «*(W), where W € & is given
by (3.21), and that the equality

(3.44) AW = RE"D

holds. The thesis of the lemma follows then from (3.23) and (3.22).
For ¢, = g, = 0 (case I) we have W = @ and (3.44) holds for 4 := I
and R:= 6. Hence (3.27) and (3.28) follow.
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Let o, % 0 or o, % 0. Performing multiplications of operators in
both sides of (3.44) and equating coefficients of the obtained operators,
we get four equations:

ao(k)oo(k—1) = Jo(k+u)0o(k),
ag(k)oy(k—1)+ ay(k) oo (k) = 01(k+u) 0o(k) + do(k+u-+1) 01 (K),
ay (k) o1(k) + as(k) 0o (B +1) = 81(k+u-+1) 01 (k) + 82(k +u) go (),
as(k)oy(k+1) = 8;(k+u-+1)04(K).

Eliminating g, and p, we obtain the system

(3.45)

84+ u+1) [8(k+w) 03 (b —1) — 8 (k+w) o0 (k —1) 1aq (k) +
+ 8o (k+u) 62(7‘7""“’1_‘1)0'0(75)“1(70)—
(3.46) — S0 (K +) 60(7§+u+1)01(k+1)az(70) =0,
Sa(b+u)dy(k+u+1)oo(k—1)ag(k) —
— o (k+ u)05 (K + v +1)0y (k)ay (k) +84(k + ) [61 (k4% +1)oy (k+1) —
— O(k+u+1)og(k+1)]ay(k) = 0.
-Clearly, if any two of the functions a,, a;, a; vanish identically,
then the third of them vanishes also identically. This means that the
set /(W) does mot contain operators of the zero order.

Assume that o, % 0. Define v € Fppy by (k) := 01(k —u)/og(k —u).
Then equatipns (3.46) take the form .

a(k+u+1)oo(k —1)[v(k+u—1) 8o (k+u) — 8, (k+ u)]ao (k) +
+ 0o (k+ u) 62(k+u+1)°’o(k)a1(_k)—
— 8o(k+u) (k4 u+1)t(k-+ut1) oo (k+1)ay(k) =0,
82(k+u) 82 (k+u+1) 0o (k —1)ay(k) —
— 8o (k+u) bz (k+u+1) (k4 u) oo (k) @1 (k) +
+ 0o(k+u)og(k+1) [0 (k+u+1)r(E+u+1)—,(k+u+1)]ax(k) = 0.
Put

(3.47)

@ (k) := do(k) (k)T (k —1) — 6, (k)7 (k) + 02(K) .

If ¢ =0, i.e., 7 is a solution of (3.29) (case II), then (3.47) is reduced
to the single equation

Og(k +u) Oz (k+u +1) oo (k —1) ao (k) —

— 0o (k+u) 8 (b +u+1) T (k+u) 0o (k) @y (k) +
+ 8o+ u) 8o (k+u+1)7(k+u)T(F+u+1)0,(k+1)as(k) = 0.
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The operator (3.25), belonging to the set «7/(W), is therefore of the
first order, e.g., for
ap(k) :=0, ay(k):= do(k+u-+1)o,(k+1),
In this case, the first and the last equations of (3.45) imply
eo(k):=0, (k) := oo(k)or(k+1).

Hence (3.30) and (3.31) hold, where the factor w(k), defined by
(3.33), was introduced in order to simplify the form of the operators A
and R, which by Lemma 3.1 does not change the fact that 4 e o*(W).

If ¢ £ 0 (case IIT), then from (3.47) we get

0a(k+u—+1) 0o (k—1)(k+u) ag(k) —

— dg(k+u)ao(k+1)p(k+u-+1)ay(k)=0.

Therefore, r(A) > 2 for every A € &/(W). The second-order operator
(3.25) from the set /(W) is obtained, e.g., for a;:= o} (4 =0,1,2), o}
being given by (3.36). From the first and the fourth equations of (3.45)
we obtain

0o(k) : = @(k+u+1)o(k —1) ao(k) 0 (K +1),
e1(k) : = @(k+u) oo (k—1)0(k) o1 (K +1).

This proves (3.34) and (3.35), where the factor w(k) defined by (3.37)
has only a simplifying character. '

Assume now that case IV occurs, i.e., 0, = 0, 0y # 0. Then system
(3.46) takes the form

8(k-+u+1) g (k —1) ay(k) — 8o (b +u+1) oy (k+1) ay(k) =0,
8okt u+1) 0y (k) ay (k) — 8 (k+u+1) oy (k+1) as(k) = 0.

Thus it is clear that if a,, a;, a; € ¥y is @ non-trivial solution of that
system, then a; # 0 for j = 0, 1, 2, which means that r(4) > 2 for every
A e o (W). One of the possible solutions is given by

o (k) 1= &(k+u+1)oy(k—1) 0y (B) oy (B +1)[or(k+i—1) (i = 0,1, 2).
From (3.45) we obtain
00(®):=0, 0y(k) := 0y (k—1) 0y (k) o3 (k+1).

Introducing the factor w(k) defined by (3.41) we get (3.39) and
(3.40).

COROLLARY 3.1. For every L € % and for every A e «*(L) we have
0<r(4)<2.
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Remark 3.1. It can be checked that the functions 7, v, € ¥y de-
fined by

yoo JEAHS | Etatl S
(3.48) nulk)i= g7 = k+B+1 8o(k+1)’
b,k
(3.49) (B = 5 D)

satisfy (3.29).

LemMMA 3.5. Let p be a polynomial and let q and r, r(z) = cxd,
be the quotient and the remainder, respectively, from the division of p by
x2—1. The difference operator A € £ defined by

I for c =d =0,
I+ 7,(k)E fore=d #0,

(350 A= I+7,(k)E  forc — —d #0,
D Jor |e| # |d|
belongs in any case to the set /* (p (X)). Moreover, the equation
(3.51) Ap(X) = QD
holds, where Q € £,
(3.52) Q := [4¢(X)C+8](2k+1-1);1,

0, 8 €& being given by
(3.63) C:=4(2k+2A-1)71[(k—1),0,(k)E~' —k(k+2)6,(k) I+

+ (k+2)26,(k) E],
[ for e =d =0,
26 [kI — (k+ A+1) 7, (k) E] for 6 =d #0,
20[kI — (k4 A+1) 7, (k) E] for e = —d #0,

(3.54) 8:=]
2¢(% —1) 0y (k) B~ +

+ [d(2k+ A —1)5—0(A+1) 8, (k)1 I+
+2¢(k+4-+1)8,(k)E Jor lo| # |d|,
where 8y, 0,, 8, € Py are the fumctions defined in (3.7).
Proof. The equation p(x) = ¢(x)(#2—1)+cv+d implies
P(X) = q(X)(X*—I)+eX +dI.
It can be verified that the identity X* —I = CD holds for C defined
by (3.53). Hence we have

(3.55) p(X) = ¢(X)OD+ X +dlI.
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Now, it is clear that «*(p(X)) = «*(¢X +dI). Applying an operator
A e A*(cX+dI) to both sides of (3.55), we obtain (3.51), where Q € &
is given by (3.52) and S €% is such that A(¢X4dI) = SD.

If ¢ = d = 0, then, obviously, I e «* (p(X)), which means that (3.51)
holds for @ := ¢(X)C.

Assume that |¢|+ |d| # 0. Applying Lemma 3.3 to the operator

(3.56) L:=c¢X+dl
we obtain (3.22) for
_ __2k+20 o -1
= (2k+l—1)31’ W:i=oy(k)E™" +o.(k)I,
__ 20(k+a)(2k+1—3)  o(a—p)
oo(k) := @+ AF —1 , Gl(k)'——_—2k+}.—l+d'

We consider three cases.

1°Tf ¢ =d # 0, then o,(k) = 7,(k—1)0,(%k), 7, being the function
defined by (3.48). The application of Lemma 3.4, where case II occurs
for 7:= 7,, gives the difference operators A+ e &/*(L), R* ¢ 2,
(k+B+1)@E+A43) o o, 20(k+adtl)

) P I TV Rk,

2k+21—1 (2k+2)F —1
satisfying the equality A*L = S*D, where 8* := AT N+R*E~'. Clearly,
A:=(k+a+1)"'A* is in &*(L) and AL = 8D for 8:= (k4 a+1)"'8+
taking the form as in the second part of (3.54).

2° If ¢ = —d # 0, then o,(k) = 7,(k—1)0,(k), 7, being the function
defined by (3.49). By Lemma 3.4 (case IT, 7 := 7,, w:= 1/a}) the differ-
ence operators A and R, defined as

At 1= (k+a+1)I—

2¢
A:=1 k\E, R:=———+——&
+7.(k)E, (2k+l)2—1 ’
are such that 4 € &*(L) and AL = 8D, where S := AN -+RE™'. It may
be seen that S takes the form as in the third part of (3.54).

3° If |e| # |d|, then applying Lemma 3.4 to (3.56) we get case ITT
(¢ # 0) or case IV (¢ = 0). In both cases we have 7(4)>2 for all 4
in o/ (L). It can be checked by straightforward calculations that D belongs
to the set «*(W) (= & (L)) and that

(3.57) DL = 8D,
where
2¢(k+ a)
. -1 - - .
S:= DN-+RE™, = A1 I+o,(k+1)E

9 — Zastos. Mat, 17.4
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It can be checked that S has coefficients given in the fourth part

of (3.54).
Remark 3.2. It can be verified that the identities
E+p+1 _

(I+E)(0o(k)EY)(I+ (k) E) = D

hold. Thus, one can deduce, in virtue of Lemmas 3.2 and 3.5, that
Dew (p (X )) for an arbitrary polynomial p. (Clearly, this result can also
be obtained by letting the operator D act on both sides of (3.55) and

using (3.57).)

4. OPTIMUM METHOD

4.1. Fundamental system of recurrence relations. The %-th Jacobi
coefficients of both sides of equation (1.5) are equal, which implies

D) b [pif ] = b, [q]

=0

or, by (3.5),
(41) D 2 X)b [F9] = b, [q].
i=0
The equation obtained and the relations
(42) Db [f9] =271 (2k+ A1), [ "] (1 =1,2,...,m),

following from (3.8), form a system of m-41 recurrence relations for se-
quences {b,[f"1} (4 =0,1,...,n).

We show (see Theorem 4.1 below) that {b,[f'1}, {b.[f"1}, ---, (b [F™1}
can be eliminated from this system, which implies a single recurrence
relation for Jacobi coefficients {b,[f]} of the function f.

4.2, The class #(Ay, A4y ..., 4,).

Definition 4.1. Given the difference operators A4,, 4,, ..., 4,€ %,
we define the class #(4,, 4;, ..., 4,) of pairs (P, L) such that P, L
are in #\{0@} and that the identity

(4.3) P ) 4;5,[f"] = Ib,[f]

holds.
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LeMMA 4.1. If (P, L) e P(Ay, Ay, ..., 4), then
(4.4) PV = L(y;* (k) P,),

where
V:i= Zz—j/li (ves (B)Ps_y),

and the motation used is that of (3.11) and (3.12).
Proof. Making use of Lemma 3.1, we transform (4.3) into

P Zzs—u Yoy (R)P,_ ) L[] = 2°L (y7 (W) B,) b, L1,

which implies (4.4).
LeMMA 4.2. If (P, L) € 2(po(X), p1(X), ..., D, (X)), where po, Py, ...
.oy P, are polynomials, then

(4.5) r(L) =r(P)+2 max (4;—j),

0<j<n, pj#0
d; being the degree of the polynomial p;.
Proof. Applying Lemma 3.2 we obtain

PV =1L (y k)Pn) ,
where

n
=2 —j.lpj (yn—j n-—j)‘
j=0

It can be seen (.cf. [4]) that the equation
r(P)+r(V) = r(L)+r(P,)
holds. Now, it is sufficient to observe that

r(P,) =2n and #(V)=2n+2 max (d;—j).

0<j<n, pjio

The last formula can be proved in the way an‘alogous to the one
used in the proof of Lemma 2.11 in [4].

4.3. Recurrence relation for Jacobi coefficients b [f].
Definition 4.2. Let the operators LY, I, ..., L™ e & be defined by

(4.6) Y :=p(X) (j=0,1,...,n),
and let =, € &,
(4.7) mo (k) == b [q],
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Pos P1s -+-9 P, aDA ¢ being the coefficients and the right-hand side of
the differential equation (1.5), respectively. For any m:=1,2,...,n
we define the difference operators LY, IL{!), ..., "™ ¢ & and the function
n, € by the recurrence forms

(4.8) L¥:= A4, ,0Y , (i=01,...,n—m—1),
(4.9) L%’_m) o= Am—ng::in) +2_1Qm—1 [(2k+24—1),1],
(4.10) (k) 1= Am-—lﬂm—l (k),

where

(4.11) Ay 1:=4A, @Qn.,:=@,

and A, Q@ € £ are the difference operators formed in Lemma 3.4, when
applied to the operator L := L{*~™+1),

LevMMA 4.3. Let II,:= A, A, ,...A,. Then

(i) 1, Lg,)> e 2 (L, Lgl)y ceey Lgn));

(ii) for every pair (P, L) e #(LY, LY, ..., L) there exwists an oper-
ator @ € #\{O} such that P = ®II, and L = OLY.

The proof is based on the argument analogous to the one used in [4]
in the proofs of Lemmas 2.13 and 2.14.

The main result of this paper is contained in the following

THEOREM 4.1. Let f be a funcltion satisfying (1.5) and such that iis
n-th derivative can be expanded into a uniformly convergent Jacobi series.
Then we have the recurrence relation

(4.12) LYb,[f] = 7, (),

where L € £\ {0} and n, € & are an operator and & function, respectively,
formed in the manner given in Definition 4.2. The order ry of this relation

18 expressed by
n—1

(4.13) rei= Y r(4,)+2 max (d;—1),

j=0 0<<i<n,p#0

d; being the degree of the polymomial P;.

Among the recurrence relations for the Jacobi coefficients {b,[f1} of
the function f, which can be obtained by virtue of the differential equation
(1.5) and relations (2.1), (2.2), the recurrence relation (4.12) is that of the
lowest order.

Proof. From (1.5) and (2.1), (2.2) we have obtained the system of
recurrence relations (4.1), (4.2). The process of eliminating the terms
of sequences {b,[f?]} (4 =1,2,...,n) from that system, leading to
a single relation of the form

Lb[f] = w(k) (Le@\{O},we)
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is equivalent to the action, on both sides of (4.1), of the operator
P e #\{6} such that (P, L) e (LY, LY, ..., LM). By Lemmas 4.2 and 4.3
the operator L has the lowest order in case of P:= II,. We then have
L = IV and (k) = =, (k) = IT,b,[q], whence (4.12) follows. The expres-
sion given in (4.13) for the order of L{? is a consequence of (4.5) and
(4.11).

Using (4.13) one cannot predict the order of the recurrence relation
(4.12) before forming the operator LY, as the operators 4,, 4,, ey A,
are constructed recursively. By Corollary 3.1 we obtain immediately
the following

COROLLARY 4.1. We have

2 max (d;—i)<r<2n+2 max (d;,—1).
0<i<n, P;#0 0<i<<n,p;#0
If f satisfies the first-order differential equation of the form (1.5),
we can give more details than in the general case. Namely, we have the
following

THEOREM 4.2. Let f satisfy the first-order differential equation

(4.14) 2 +2f =4,

Po, D1 being polynomials. Assume that f' can be expanded into a uniformly
convergent Jacobi series. The Jacobi coefficients of f satisfy the recurrence
relation

(4.15) (Apo(X) +3QL(2k+ 2 —1)5I]) b, [f] = Ab,[q],

where A, Q € £ are the operators formed in Lemma 3.5 when applied to
the polynomial p := p,. The order of this recurrence relation is equal to
2max(dy, d,—1)+2 —2z for p, £ 0 or to 2d,—z for p, = 0, where 2z is
0, 1 or 2 according as none, one or two numbers from the set { —1, 1} satisfy
the equation p,(x) = 0.

Proof. Equation (4.14) is a special case of (1.5) for » = 1. By Theo-
rem 4.1 equation (4.12) holds and it is easy to see that it takes the form
(4.15) for the difference operators A e &/*(p,(X)) and Q e £ satisfying
the equality Ap,(X) = @D. The formulas for A and @ can be obtained
by the application of Lemma 3.5. The expression for the order of equation
(4.15) follows readily from (4.13).

Example 4.1. The function
(4.16) f(@) = (1 —2)°

satisfies the first-order differential equation

(4.17) @—-1)f"—of =0 (—-l<az<1).
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It is known ([3], Section 10.20) that under the assumption that
—o < min(a+1, a¢/2+3/4) the function (4.16) can be expanded into the
Jacobi series (1.1), and

2er 1)(—
B[] = [ (a+o+1)(—ok

(2k+ 2P —1]1T(k+ 4+ o+1)
Applying Theorem 4.2 to (4.17) we obtain
P1(X) = X —I, po(X)= —pI, blq] =0,

2

and, finally,

(4.18) (k— )b [f1—(k+ 2+ o+1) 74 (k) bp11 [f1 =0

or, in a slightly modified form,
(k—0)(2k+2-1)b, [f]1—(k+ 2+ o+1)(2k+ 2+ 3) by, [f]1 = 0.

5. PASZKO WSKI-TYPE METHOD

In this section we describe the second method of constructing a recur-
rence relation for Jacobi coefficients of a function satisfying the dif-
ferential equation (1.5). The method is based on the idea proposed by
Paszkowski ([9], Section 13) in connection with recurrence relations for
the Chebyshev coefficients, and applied by the author in constructing
the recurrence relations for the Gegenbauer coefficients [4], the modified
moments [5], and the coefficients of the Neumann-Gegenbauer expansion
in Bessel functions of the first kind [6].

The method, called the Paszkowski-type method, is much simpler and
easier to use than the optimum method given in Section 4, but in some
cases (i.e., for some differential equations) it leads to a recurrence relation
of order greater than the order of the relation obtained by the optimum
method. In other words, the present method is, in general, not the optimum
one in the sense of Theorem 4.1.

It can be shown that (1.5) is equivalent to

(5.1) D (@hH® =g,
where =
(5.2) gi= éf(—l)"-"(ﬁ)p;f-” (i =0,1,..,n)

(see, e.g., [9], p. 232).
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THEOREM 5.1. If the function f satisfies the assumptions of Theorem 4.1,
then the recurrence relation

(5.3) Lb,[f]1 = w(k)
holds, where Le ¥, we ¥,

(5.4) L:= D278, 1(r:(k)6:(X)),

(5.5) w(k) : = P,b[q],

the motation being that of (5.2) and (3.10)-(3.12).
The order of relation (5.3) s equal to

(5.6) r11 : = 2n+4+2 max (3]- _j),
0<j<n,g;#0
where e; is the degree of the polynomial g;.
Proof. Equation (5.1) implies the identity

PRACAIAETATIE

=0
Let the operator P, act on both sides of this identity and take into
account that P, = 8§,_, ;P; for j =0,1,...,n. We get

n—1,j" j

D a1 Pibel(0:)P] = Pby[a],
i=0

which, by Lemma 3.1, implies
D27 8 1(yi (k)b [q:f 1) = Paby[q]-
i=0

Using the notation of (3.5), we can transform this equation into the
form (5.3), where LeX% and wed are given by (5.4) and (5.5),
respectively.

It follows from (4.13) that

ra=r(L) = max [r(8,.,)+r(gX).
0<j<n, gj0

It is not difficult to sec that r(g;(X)) = 2¢;, ¢; being the degree of
the polynomial ¢;, and that r(8,_,;) = 2(n—j). Hence we obtain (5.6).

Remark 5.1. The operators 8, _,; (j = 0,1, ..., n) and P,, occurring
in Theorem 5.1, can be formed by using the formulas 8,_,,:=1I,
8, 1;:=8nBjforj =n-1,n-2,...,0,and P, := §,_,,, (cf. (3.10)
and (3.11)). ‘
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Remark 5.2. From (5.2) it can be easily deduced that the number
rr given by (5.6) can be also defined as

TII = 2’"/ + max (dj —j) )
0<j<n,pj#£0

d; being the degree of the polynomial p;. Therefore, by Corollary 4.1,
the order of relation (5.3) is not lower than the order of relation (4.12), i.e.,
71 < r11.- Examples 4.1 and 5.1 show that the sharp inequality may occur.

Example 5.1. Using Theorem 5.1 we construct the recurrence
relation (5.3) for the Jacobi coefficients b,[f] of the function f given
by (4.16), satisfying the differential equation (4.17) which is equivalent to

[(—1)f]) —(e+1)f =0,

i.e.,, to equation (5.1) for n =1, ¢,(2) = —o—1, q;() =2x—1, ¢ = 0.
Sillce SOI = I, Soo =-P1 = _D, yo(k) El, and yi(k) = %(2k+1—1)3, fOI'-
mulas (5.4) and (5.5) define Le %, w e & as

L:= —(o+1)D+1(2k+21-1)(X 1)
=(k—o—1)(k+a)(2k+21—3)E' —
—3(@2k+2)[(2k+2)*+(a—p)(A+20+1) 111 +
+(k+2i1+o+1)(k+p+1)(2k+A+3)E,
w(k) := Db,[q] =0.
By Theorem 5.1 the second-order recurrence relation

(5.7) Lb.[f]1=0

holds with the above-calculated L €. Remember that the optimum method

yielded the first-order relation (4.18). Relation (5.7) can be obtained by
letting the operator

( E+p+1
[——tFT
kE+at1

act on both sides of (4.18). (It is not difficult to guess the form of the
above operator if one knows identity (3.58).)

E)((k+ a)(2k+A—3)E™Y)
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S. LEWANOVWICZ (Wroclaw)

KONSTRUKCJA ZWIAZKU REKURENCYJNEGO NAJNIZSZEGO RZEDU
DLA WSPOLCZYNNIKOW JACOBIEGO

STRESZCZENIE

Funkcje f, okreslona w przedziale (—1, 1) i spelniajaca odpowiednie warunki,
mozna rozwingé w jednostajnie zbiezny w tym przedziale szereg Jacobiego (1.1). War-
toéei wspolezynnikéw (1.2) tego szeregu mozna znalezé stosunkowo tatwo, jesli spelniaja.
one zwiazek rekurencyjny postaci (1.4).

Wéréd metod konstrukeji zwigzkéw typu (1.4) dla wspélezynnikéw {ay [f]}
danej funkcji f prostota i uniwersalnoscia wyr6znia si¢ metoda stosowana woéwezas,
gdy f spelnia réwnanie rézniczkowe (1.5), w ktérym p,, py, ..., Py (P, % 0) 83 wielo-
mianami, a wspélezynniki {ay [¢]} 83 dane.

Przypadek rozwinieé (1.1) dla e = B zostal szczegélowo zbadany w [4], gdzie
opisano metode prowadzaca od réwnania rézniczkowego (1.5) do zwigzku rekurencyj-
nego typu (1.4), najnizszego mozliwego rzedu.

W tej pracy opisujemy analogiczng metode dla a # f. Metoda ta jest sformulo-
wana w jezyku pewnych operatoréw liniowych omoéwionych w § 3.

W § 4 opisano optymalng metode konstrukeji zwigzku (1.4) najnizszego mozli~
wego rzedu na podstawie réwnania (1.5).

Druga metoda, opisana w § 5, wykorzystuje pomysly zastosowane przez Pasz-
kowskiego ([9], § 18) w konstrukeji zwiazkéw rekurencyjnych dla wspélezynnikéw
szerequ Czebyszewa (Scifle zwigzanego z szeregiem (1.1) dla a = f = —1/2) funkeji f.
Metoda ta nie jest, ogélnie biorac, optymalna.



