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0. Summary. The paper considers the dependence of the error of
addition of » floating-point binary numbers upon the used summation
sequence. Let ALN denote the summation sequence of » numbers from
M,, described as follows:

1. Add the two least numbers a and b from M, ; normalize and round-
-off the result §,,.

2. Let M,_, consist of all numbers (with exception of ¢ and b) from
M, and the number S, . Reduce the index » by 1. If » # 1, then return
to 1.

There are given (Section 2) two examples, which show that the error
of addition according to the ALN-summation sequence can be greater
than the minimal one. In Section 3 is proved the main theorem of this
paper, which states that if all exponents of the numbers from M, are
different, then the addition of these numbers according to the summation
sequence ALN causes a minimal truncation error.

1. Introduction. Let M, be a set of » positive normalized floating-
point numbers. The approximate sum of these » numbers is calculated
in the following way:

I. Find the two least numbers @ and b of the set ,,.
II. Calculate and normalize the sum a -+ b, and then round-off the
normalized sum.

IIT. Let M,_, denote the set M, —{a, b}u{(a+b)+ 8}, where ¢ is
the absolute rounding error.

IV. Reduce the index n by 1.

V. If n # 1, then return to I. Otherwise stop; the number from M,
is the approximate sum of the numbers from M.

We call this way of addition the ALN-algorithm (Addition according
to the two Least Numbers). It is well known that the accuracy of a sum
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of » numbers depends on the used summation sequence. The problem
to be discussed here is:

Let ¢ denote the error of the sum of numbers from 3, caused by
the use of the summation sequence defined by the algorithm ALN. Is
there a summation sequence of numbers from M, which causes an error
of the sum less than ¢?

The examples given in Section 2 show that the accuracy of the sum
obtained by the ALN-algorithm can be not maximal. The main theorem
(Section 3) states that the accuracy of a sum of » numbers from 3, is
maximal if the algorithm ALN is used and all numbers from M, have
different exponents. It is assumed that the numbers from M, are expressed
by the binary normalized floating-point representation.

2. Examples of non-minimal summation errors obtained by the ALN-
-algorithm. In this paper it is assumed that any number 2z is represented
by an ordered pair of numbers x and ¢ such that z = z-2° where # is a bin-
ary fractional number called mantissa and ¢ is an integral called exponent.
To abbreviate, instead of x-2° we shall write 2’c. In what follows, we
shall say that x’c¢c # 0 is a normalized t-figure number if the mantissa
has the form 0.1x,2; ... x,, where x; is equal to 0 orto 1 (¢ = 2, 3, ..., ).
Thus 1/2<r<1-27"

Let b denote a floating-point number. By z(b) we denote the number
obtained from b by the following operations:

1° normalize b, i. e. write b in the form b = 0.1b,b; ... b,’c;
2° if k > t, then round-off the normalized b to the ¢-figure number

in such a way that to 0.1b,... b,’¢c add the number 0.1’(¢—1t) and then
throw away the figures from the positions t4+1 to k.

Now we give examples which show that the ALN-algorithm can
cause non-minimal rounding errors.

Example 1. Let t =3, a; = 0.10000°¢, a, = 0.10001’¢ and a; =
= 0.10101’c. According to the ALN-algorithm, the approximate sum
of a,, a, and a; equals

7(t (@ + ) + @) = 7(0.10001° (c+1) + ag) = 0.11100°(c 4-1).
The accurate sum equals
&+ a,+a; = 0.11011° (¢ +1).

Thus the absolute value of the rounding error is equal to 0.0001’c.
Now we add the numbers in the following sequence: a, to a; and
then to a,. We have

7(tv(ay+ ag) + ay) = 7(0.10011°(¢+1)+a;) = 0.11011°(c+1).
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Thus, in this case, the rounding error is equal to 0.

In what follows, we understand by y(b) the number obtained from
‘b by the following operations:

1° normalize b, i. e. write b in the form b = 0.1b,b; ... b, c;

2° if k>, then throw away the figures from the positions ¢t+1
to k.

Thus y (b) = 0.1b, ... b’c. Example 2 shows that the algorithm ALN
can cause non-minimal errors also in the case of truncation by y.

Example 2. Let a,, a, and a, have the same values as in Example 1.
Adding according the algorithm ALN, we obtain

(7(ay+ as) + as) = (0.10000 (¢c+1)+ay) = 0.11010°(c+1).

The error is equal to 0.0001’c. But if we add the numbers in the
sequence (a,+ a3)+a;, then the result is accurate

y(y(a+ ag) +ay) = »(0.10011° (¢ + 1) + a5) = 0.11011° (¢ +1).

3. Minimal error of summation of numbers with different exponents.
We shall assume that the result of addition of normalized ¢-figure numbers
a and b is the number y(a -+ b). This kind of addition we call y-addition.
We shall now prove the main theorem of this paper.

THEOREM. Let A, denote a set of n positive normalized t-figure numbers
represented by a; = m;’c; for © =1,2,...,n. It is assumed that c¢; < ¢;,,
for ¢ =1,2,...,n—1. If the ALN-algorithm is used, then the' error of
y-addition of n numbers from A, is minimal.

In order to prove the theorem, we shall show that lemmas 1 and 2
are true. The following notation will be useful:
We say that a summation sequence of » numbers from A4, is natural
(in abbreviation, NS-sequence) if the sum of these numbers arises in such
a way that every performed addition operation has as its argument at
least one number from A,, i.e. the first performed addition operation
has two arguments from A4,, all other addition operations have only one
argument. All other summation sequences we shall denote by PS.
‘Thus, » numbers from 4, are summed according to an NS-sequence
if they are added according to the formula
(...((avl+a,,2)+av3)+ )—}—a

Up )

where 1 <o, <n. (i =1,...,n) and v; #v; for ¢ #j. If ¢;<¢;.,, the
ALN-algorithm applied to numbers from A, defines an NS-sequence.
We call it an A LN -sequence. An example of a PS-sequence of the numbers
from the set {b,, b,, by, b,} is given by the formula (b,+b,) -+ (bs+b,).
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LEMMA 1. Let the notation and assumptlions of the theorem be valid.
In the set of all y-additions of n numbers from A, according to N S-sequences,
the y-addition according to the ALN-sequence causes the minimal truncation
error.

Proof. The lemma will be proved by induction. It is easy to see
that the lemma is true for n = 2. By the induction hypothesis, the lemma
is true for » = k. We shall prove that it is also true for n = k+ 1.

Let us divide the set of all NS-sequences of numbers from set A4;.,
= {a,, @z, ..., a;,} into two sets @ and E. A set @ consists of all NS-
sequences such that a,, is added as the last argument. Thus to @ belong
all NS-sequences defined by the formula

(...((avl-}—avz)—l—ava)—}— +a,,k)+ak+l,

where 1 <v; <k (¢ =1,2,..., k) and v; # v; for ¢ # j. To a set K belong
all NS-sequences which do not belong to @, i. e. NS-sequences defined
by the formula

(« (G, + ) + 0 ) + .. ) F 6,

where v,,, #k+1, 1<v,<k+1 (¢ =1,2,...,k+1) and »; # v; for
1 #j and 4, j < k+1. In this way, y-addition of numbers from set 4,
according to an NS-sequence L is equivalent to y-addition by the sequence:
first the numbers from the set 4, = {a,, a,, ..., a;} according to an
NS-sequence and then the number a,, , (if an NS-sequence L belongs
to Q); or by the sequence: first the numbers from the set 4, = {a,, a,, ...
vevy @iy @iy ...y Gyt according to an NS-sequence and then ay (if
an NS-sequence L belongs to R).

By the induction hypothesis, the error of y-addition of ¥ numbers
from A4, is minimal if these numbers are added according to the ALN-
algorithm. From the above-mentioned, it follows that from among y-
additions of k¥ 4- 1 numbers from 4, ,, according to NS-sequences belonging
to @, the y-addition according to the ALN-sequence causes the minimal
error. This error is equal to

k+1

+

(1)

[y]
I

&

-,
I
»

where ¢; denotes the error caused by y-addition of a;. More exactly, ¢;
(¢t =2,3,...,k+1) are defined by partial sums 8; as follows:

8, = a,,
(2) Si+l = Y(Si+ai+1) for ¢ =1,2,...,k,
Ei:(Si_l—l—ai)_Si fOI‘ i=2,3,...,k+1.
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Si41 18 the result of y-addition of k4 1 numbers from 4, , according
to the ALN-algorithm.

By the induction hypothesis, the error of y-addition of % numbers
from A, is minimal if these numbers are added according to the ALN-
algorithm. Hence, it follows that the error of y-addition of k+ 1 numbers
from 4,.,, according to an NS-sequence belonging to R, is minimal if
these numbers are added by the NS-sequence (from RE) defined by the
formula

(3) (...((...((a1+a2)—|—a3)+ +a,-_1)—|—a,-+1)+ +ak+l)+a,..

This minimal error is equal to

i=1 ket
(4) & = ZEH‘ Z &i+¢jy
=2 =042

where v = max(1,j5—1) and ¢ (for ¢ =v+1,...,k4+1) denotes the
error caused by y-addition of a;. More exactly, &; is defined by partial
sums 7'; as follows:

T, =8, if j > 1, otherwise T, = a,,
Ty = y(Tioy1+0444) for s =v+1L,04+2,...,k,
Trpr = ?(Tx+ay),
& = (Tiy+a)—T;_, for ¢ =v+2,v+3,...,k+1,
& = (Tp+a;) — Tpypa.
Thus, T, is the result of y-addition of numbers from 4, , according

to the NS-sequence defined by formula (3). From the above-mentioned
it follows that in order to prove the lemma for n = k-1 we have to show

that ¢ <'e. By (1) and (4), this inequality is equivalent to the following
inequality :

k+1 k+1
1 -— —
(5) Nea< D ats.
=5 i=v+42

Now we define an operation 8. If © = ®,@,, ... %,.2, ... z'p (Where
e < 0), then by B(z, i) we denote the number with the exponent p and
the mantissa consisting of the ¢ last bits of the mantissa of #. Formally,
B(z,1) (i1 <t+e+1) is defined as follows:

0.0...0w,+1_,-...a7,’p if ’b<t,
.B(wy 1) = -t

5 — Zastos. Matem. 13.3
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Using the operation g we can express the error o of y-addition of
two normalized t¢-figure numbers ¢ = 2,’c and b = z,’0 (where o> ¢)
by the formula

(6) o = B[B(a,d—c)+ (b, d—o0),d—c] (Y),

where d denotes the exponent of the normalized number y(a -+ b).

In this paper, the symbol * denotes a right shift operation defined
as follows:

fy=vy,...9.91... ¥, ¢ and m is a positive integer, then

ye e ye+m°ye+m+1 e ?Io?h eee yv—n:(c'i"m’) lf m < le|’
0.0...0Y,... YoU; --- Yp_m(C+m) . if m> el

e— —
e+m—1

y*m =

Thus the number y*m is obtained by the following operations:

1° shift right the mantissa of y m times and truncate the m less
significant bits,

2° increase the exponent by m.

It is easy to show that

(7) Bly(a+b),1) = Bl(B(a; d—c+1)+p(b, d—o+1)]*(d—c), ],

where a and b have the same meaning as in (6). In order to prove inequal-
ity (5), we show that

(8) B8, = ﬂ{[jﬂ(%, gi—cu"rl)—i'ﬂ(sj—ugt—gj-1+l)]*(gi—gj—1):l}’

u=J

where I < ¢t and g, denotes the exponent of the normalized ¢-figure number
S,fore =1,2,..., k. Equality (8) will be proved by induction on <. Since
8; = y(8;_1+a;), we infer from (7) that equality (8) is true for ¢ = j.

Now, let us assume that (8) is true for ¢ =e. We shall prove
that (8) is also true for ¢ = ¢+ 1. From (2) and (7) we have

ﬁ(Se+lal) = ﬁ{[ﬂ(ac’,-l-l’ gc+1 - ce+1 +l) +‘3(Se7 gc-}-l —gc+ l)] *(ge-}-l —ge)’ l}'

Hence, using the induction hypothesis,

ﬂ(Se+l’ l) = ﬂ{{ﬂ(ae+l7 yc+1_ce+1+l) +l3[[2ﬂ(auy g¢+1—0u+l)+

Ue=]

+ .B(Sj—n Get1— gi—1 + l)] * (ge"" gj—1)7 Get1—Ye + l]} * (ge+l - gc)’ l}'

(1) We assume that the addition -+ does not normalize the result. The exponent
of w is ¢. See the definition of addition in the appendix.
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We use the following equality which can be verified:

(9) BB, d—04+1)+p(a,d—c+1)]*(d—0), ]
= BlL(b, d—o0+1)+al*(d—e), I].
Substituting a,,, for b, S, for a and g,,,—g. for d—e¢, we obtain,
by formula (9), equality (8) for ¢ = e¢+41, which completes the proof
of (8).
Now we shall prove, by induction on %, the following formula:

k+1 E+1
(10) Z &g =p [Z B (@5 Grer— )+ B(Sj_1s Jrr1— 9i-1), gk+1‘!]j_1]—
iz i5

For k = j—1 formula (10) follows from (6).

Suppose (10) is true for k¥ = e—1, where ¢>j. It will be proved
that (10) is true also for ¥ = ¢. Remembering that S, = ¥(S,+a,.,),
using (6), we have

er1 = BIB(8es Ger1— o)+ B(@er1s Fer1— Cet1)s Jer1 — Gel-
Applying formula (8) to B(S., g..:—9.) and the obvious equality
(11)  p[B(a,d—c)+p(b, d—o), d—c] = Bla+B(b, d—o), d—c],

and substituting b = @, ,,d—¢ = g1 — 9. and

“= [fgﬂ(aw Ger1— Gu) + B (81 9e+1—9j_1)] *(9e—95-1),

we get
Eer1 = P {[Zﬁ(“n Jer1— Cu) + B (8i-1) ge+1*9j—1)] *(ge—gj—1) +
i=J

+B(Fer1s Jey1— Cerr), 9et1 _gc} .
Applying the formula

(12)  [Bla, 1—(@— )+ (b, 1—(d—0), ]

= BlB(a, 1—(d—c)+w)+B(b, 1 —(d—0)+w), ]| (w>0)
to the right-hand side of the equality given by the induction hypothesis
(substituting w = ¢,,,—g.), we obtain
€ e
Zsi = ﬁ[Zﬂ(ai’ Jer1—C) +B(85_1, Ger1—95—1)s ge_gj—ll'
=i i=j

i=
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One can verify the following property:

If y=04;...9-..Yyumec and b =0.b,... b0 and ¢ < o< c+m+l,
then A(y*m+b,1)+p(y, m) = p(y+b, m+1).

Substituting in this equality

b=y, M=¢g,—Gi 1, !=0ger1—Ye
[4

¥y = D B(@is Gor1— ) +B(Sj_1) Gerr—Gio1),
t=j

[
and using the last formulas for ¢,., and D'e;, we get equality (10) for
i=j

k = e, which completes the proof of (10).
Similarly as (10) we can show that

k+1 k+1
Z g = ﬂ[ Z Blay, @ —c) +B(S;_1y @%—95-1), Qk_gj—1]7
i=7+1 t=j+1

where ¢q; (¢t =j,j+1,..., k+1) denotes the exponent of T;. Applying
(12) to the right-hand side of the above-mentioned equality (substituting
W = @1 — i), We have

k41 k+1
(18)  X'& =8 D Bloss Guar— ) +B(8i-1y Gerr— i)y e — 5]
i=j+1 i=j+1

Using formula (6) to ¢, we obtain

Ej = BIB(ajy qry1— ) +B(Thy Qi1 — i)y Qs — G-
It is easy to verify the inequality

B(a, m)+p[B(a*m, 1)+ B (b, 1 —w), | —w]
> BlB(a, L +m)+B(b, 1 —w),m+1],
where w = q¢ — ¢ —m. Substituting in this inequality for f(a, m) the right-
hand side of equality (13), m = ¢.—¢;_1,! = @41 — ¢, and b = a;, We
obtain

k+1 k+1

Z Ei‘l‘gj = p {ﬂ[ Z By @y —¢)+B(Si1s Qer1—91-1)s Qs —gj—-I] +

i=j+1 i=J+1
+ B Qi1 —€)y Qra —g,-_l}

k+1

= /3[2 By Qi1 — ) +B(8j—1s Qeyr—9i-1)s Qk+r—g,-_l].
iz
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The last equality follows from (11). Hence, using (10), we infer that
if g1 < iy, then (5) is true for n = k+1. If gp ) > g4y, i e if g;
= ¢4, +1 and ¢y, = ¢, then 8;,, > T},,. Hence, using the equality
e+ 8,1 = e+Ty4,, we infer that ¢ < e Thus, the lemma is proved in
the case where j > 1. The proof of (5) is analogous in the case where j=1
and v = 1. This completes the proof of Lemma 1.

LrMMA 2. Let the motation and assumptions of the theorem be wvalid.
The error caused by y-addition of n numbers from A, according to the ALN-
sequence is not greater than the error of y-addition of these numbers according
to a PS-sequence.

Proof. Let us observe that a y-addition according to a PS-sequence
can be defined recursively as follows:

Addition described by the formula

(14)  y[(y-sum of numbers a, , ..., a,, according to an NS-sequence) -+
+ (y-sum of numbers a,, ..., @, according to an NS-sequence)],
where £ > 1 and s > 1,

is a y-addition of numbers @, , ..., @y, Gy .-y By, according to a PS-
sequence.

Addition described by the formula

(15)  y[(y-sum of numbers a,, ..., a, according to a PS-sequence) -+
+(y-sum of numbers ag, ..., a,, according to a PS-sequence)]

is a y-addition of numbers a,,..., @, , @, ... G, according to a PS-
-sequence.

We use the following notation:

Let T, and T, denote the results of y-additions of numbers a,, ..., a,,
and Gy eeny By respectively, according to NS-sequences. Then &,
and ¢, defined by

k s
- - Al
&y = 2 @y, — Ty and &, = Z @y, — T,
i=1 =1
denote the errors of y-additions of numbers a,, ..., Oy, ANA Gy 5 oo ey By

respectively, according to NS-sequences. Let 7' denote the result of the
sum given by (14), i.e. T = y(T,+T,), and let ¢, be the error of y-addition
of T, to T,. Thus ¢, = (1,—T,) —T. The entire error ¢ of the sum given
by (14) is equal to ¢ = g, +¢&,+¢;.

By 8, and 8, we denote the result of y-additions of numbers a,, , ...
sevy Gy, a0d @y, ..., a,, respectively, according to the ALN-algorithm.
The errors arisen from these y-additions we denote by ¢, and ¢,, respec-
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tively. Thus
k 8
tn = Gy,— 8, and g =) a,—8,
i=1 =1

Further, let § denote the sum y(S,+ S,) and ¢, the associated round-
ing error, i. e. & = (8,+8,)—S8.
) By Lemma 1 we infer that ¢, < e, and ¢, < ¢,. Hence, since ¢,+ S,
=¢,+T, and &,+ 8, = &,+ Ty, we infer that 8, > T, and S, > T,. Using
these inequalities, we get y(S,+8,) > y(T,+T,). Hence we have

(16) S=>T.

Now we shall show that ¢ <<e¢,+}¢,+ ¢, where ¢ denotes the error
of y-addition of numbers a,, ..., @, @, , ..., &, according to the ALN-
algorithm. Suppose that wu;<wu;, (1 =1,2,...,k—1) and v; <9v;,
4 =1,2,...,s—1). Applying formula (10), we obtain

k
&u = B[Zﬁ(“uia gu_cui)7 gu—cull

i=1
and

&, =B [Zs‘ B(@y;s 9p—Cy;); g,,—c,,I].

t=1

Hence, using formula (12) (substituting § —g, and §—g, for w, g,—¢,,
and g,—e¢,, for 1), we get

k
(17) &y = ﬂ[z B(a'up g—cu‘)7 gu_cul]
and
(18) 2 =ﬂ[2 B(a'vpg_cvi)? gv—001]7

i=1

where § denotes the exponent of S.
Let us suppose that v, > u;. Then, by the definition of ¢, using
formula (6) and then formula (8), we obtain

& = ﬂ[ﬂ(Su’ g—gu)"‘p(sw g—go)7 g‘—gu]
k
= ﬂ{ﬂ{[Zﬂ(%zﬂ g_cui)] * (gu—cu1)7 g_gu} +

t=1

+ .B{[Zs:ﬂ(avp g—cvi)] * (gv_cvl)r g—gv}ig_gu}'

i=1
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One can verify the inequality

B(a, dy—c)+ B (b, dy— o)+ B[B(a*(dy—c), d—dy) 4B (b*(d2—0),d —dy), f]
~ > pl{B(a,d—c)+B(b, d—0), f]1 = B(a+b,f),

where d denotes the exponent of y(a+d), d>d,>¢, d>d,>0 and
f = max(d —¢, d —o). Substituting in the above-mentioned formula the
richt-hand side of equality (17) for p(a, d; —c¢), the right-hand side of
equality (18) for B(b, d,—o0), § for d and using the last formula for ¢,
we get

k

eut st > B[ D Blany §—0u)+ > Blay, T—e.), 1]

i=1
k+s

= .B[Zﬂ(awi7 g_cw,;)a g—0w1]7

where f = max(§j—e¢,,§—c,)and w:{L,2,..., k-8 — {uyy .ouy Upy0y,...
...y Ug} is a one-to-one mapping (sequence) such that w; < w;, for ¢ =1,
2,..., $+k—1. Let S denote the result of p-addition of numbers
@y g oony Gy y By y - oy Oy BccOTding to the ALN-sequence and let q denote
the exponent of the normalized number S. Then, applying (10), we get

k+e

=05 b e -]

Hence and from the above-mentioned, if ¢ = ¢, , then we get ¢, +¢,+
+& > g,+ 0> ¢ what was to be shown. Now, let us consider the case
where ¢> ¢, ,i.e. where ¢ =¢, +1. If §>5, then, by the equality
eu+¢e,+8,+8 =&+ 8, we infer that e, +e&,+ > ¢ Finally, if § <8,
then § > ¢, i.e. ¢ = Cy,+1 and g = ¢, . But the last equality contradicts
the assumption that ¢ > ¢, . Thus we pro_ved that ¢,+¢,+ ¢, > . Hence,
using the equality S+¢,+¢,+6 = T+¢ and inequality (16), we infer
that ¢ > ¢ which completes the proof of Lemma 2 in the case of y-additions
described by formula (14).

Formulas (14) and (15) define inductively y-addition according to
a PS-sequence. In order to complete the proof of Lemma 2, we have to
show that if the lemma is true in the case of y-additions of numbers
Qgpy+oes G and @y, ..., Gy according to a PS-sequence, then it is also
true for y-additions described by formula (15).

Let &, and £, denote the errors of y-additions of numbers g s e O,
and a,, ..., a,,, respectively, according to a PS-sequence, and let ¢,
and ¢, denote the errors of y-additions of these numbers, respectively, by
the ALN-algorithm. The induction hypothesis of the proof implies ¢, < g,
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and ¢, < ¢,. Further, the proof is similarly to the above-described proof
of the lemma in the case of y-additions given by formula (14). Thus the
lemma is true.

The proof of the theorem follows immediately from Lemmas 1
and 2.

APPENDIX

In the sequel we shall verify the formulas used in this paper without
proof. First, we define the addition of two floating-point numbers.

Definition. Let
—_ 9
.’D —w¢$e+l ) wo-wl e s e mt C,

y = ?Iei‘le+1---2/o-?/1-.-y¢’q and n=q—c=0.
Then
BHY = 2,2y_1 ... 2921 ... ZC,

where v = e—n—1 and 2; are defined recursively as follows:

i =2; fori=tt—1,...,1—n+1,

(1.1)
Pi—n = 0;

Z; = (Bt Yiyn+p;) (mod 2) for ¢ =t—m,t—n—1,...,¢,

(1.2) __]o if o+ Y nt0: 22,
Pina 1 otherwise;

2; = (Yiyn+p;) (mod2) for ¢ =e—1,¢e—2,...,e—n,

(1.3) [0 i yatpi=2,
Pitr =11 otherwise.

(1.4) zv = pv.

Now we shall show that the error w of y-addition of two normalized
numbers ¢ = 0.12,...2’¢c and ¥y = 0.1y, ... ¥’q (where ¢ > ¢) is given
by the formula

(2) o = B[B(x, n+3)+B(y, §), n+3l,

where n = ¢—¢, j = d—¢, and d denotes the exponent of the normalized
number y(x-+vy). Since e¢ =1, by the above-mentioned definition of
addition, we have

)
.‘E"}‘y = z_nz_n+l LI zo-ZI LIRS Ztc’
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where z; (¢ = —n, —n+1,...,t) are defined in (1.1)-(1.4). Hence, after
normalization,
x+y =0.12_,_j,, ... 2/d.
Thus
0 =00...02_, _;.,...2d
t

0.0 cee Omt_n_*_l... w"d if j == 0,

t
0.0...0(x_,+vy,)(mod 2)xy_pyq... x4 I j=1.

——

¢

Using the definition of 8, we obtain

p(z, n+3)+ By, )
O'O"'Owt—n-*'l ...xt,c - 0-0 LI Owt_n+l ce e xt,d if j == O,
———p— e p—

t—n t
0.0...0p, , (x_,+y)(mod 2)T;_pyy ... TC
t—n—2
=0.0...0p;_p_1(%;_p+y)(mod 2) Ty_p ... 2d if j = 1.

-1

Hence, using the last formula for o, we get (2).
Let the notation of formula (2) be valid. We shall show that
(3) Bly(@+y), 1) = BlIB(x, m)+Bly, j+1)]1*(d—ec), ],
where m = n-4j+1 =d—c-+1. From the proof of (2) it follows that

y(@+y) =012_, ;5. zt—n—j’d'
Hence

(3.1) ﬂ(‘)}(x—l—y), l) =0.0... Ozt_n_j+1_l e zt_n_]"d.

t-1

Let 2 = g(z, m)+ B(y,j+1). Then
2=00...00 . -.-2¢c+0.0...0y,_; 1.1...9'¢q

m——

i—m t—j—1
== 0.0 cee Opt_mzt+l_1n oo z‘,c.
{—m—1
Hence
(3.2) zxr(n+j) =0.0... 00 %1 m - 2y_p ;0.

t—1—-1

Thus, using (3.1), we get (3).
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Using the above-mentioned notation, we shall show that
(4) BB, m)+B(y, j+1]1*(d—0), Y| = Blz+B(y,j+D]*(d~ec), 1]
We have
[@+B(, j+H1*(d—0) = [0.10; ... 8/0+0.0 ... 09, ; 11 9P0]* (n+))

t—j—1
— ? )
= Ggly o Gy _mi1 -2 C*(MF])

— ~ b
—-OJ)...an...abqﬁ%_m+l--.q_n_jd,
——f——
n+j—1

where a; = (2;+p;) (mod 2) for ¢ =t—m,t—m—1,...,1; p; are defined
similarly as in (1.2) and (1.3); and a, = p,. From the last equality and
(3.2) we obtain formula (4).

Similarly as (4), we can prove the formula

(5) BlB(z, d—c)+B(y,]), d—c] = Blz+B(y, §), d—c].
Now we shall verify that

(6) ﬂ[ﬁ(m’ l—(d _,c))‘l‘ﬂ(?/’ l—3j), l]
= ﬂlﬁ(wa Z"(d_c)+w)+ﬁ(y7 l—j+w), l]v

where w > 0. This formula follows immediately from the following two
equalities:
Bl 1—(d—e) +B (¥, 1—5) = 0.0 ... 0Dyt 1 niBeintijer -+ %€y
t—l+n+j—1
ﬂ(wa l—(d—e)+ ’w) +B(Y I —j+w) =0.0...0D; 14 nijwRttinti—wt1re-- 2 C
t—lnti—w-1
Now we shall prove the following property:
if e =02, ...00... 505,76,y = 0.9,...9/'¢ and ¢< ¢ < ¢c+k+1, then

(7) B@*k+y,1)+p(2 k) = B(z+y, k+1).
Let g=c¢c+Fkand m = q—c—k = n—k. Then

Ble*k+y,1)+p(x, k) =p(0.0...0z, ... 2/ (c+k)+0.9, ... /¢, 1) + B(, k)
k
= P2 p - 2081 on 2o 2 (€K, ) +0.0... 02, ... 2 jC
¢
== 0-0 ) Ozt+k_l+1...zt+ka7t+l .-..T't_*_;cc = ﬂ(a‘—'-y, k+l),

t——
t-+k—1

where 2; =, ;, for ¢ =t+k, t+k—1, ..., t—m+1; pi_, =0; 2
= (T +Yirm +P;) (mod 2) for ¢ =t—m,t—m—1,...,k+1 and z

I
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(Yiym+2P;)(mod 2) for ¢ =k, k—1,...,1—m; 2_, =p_, and p; are
defined similarly as in (1.2) and (1.3).

Analogously we prove (7) if ¢c+%k> q.

Let m, 1 be positive integers, ¥ = q—c¢—m and > k. Then
(8) Bz, m)+B[B(y, L —k)+B(x*m,1), I —k]

= BBy, I—k)+B(2 T+ m), L+ m].

Let E, and E, denote the left-hand and right-hand sides, respec-

tively, of this inequality. We have

By =% myr oo BB Yitiiorr - Y4+ Gipre- & (¢ +m), T—K],
where @; = 2;_,, for i =¢t,t—1,...,t—1+1.
Hence, if ¢ <c¢+m, then £ <0 and
E,=a ey’ c+Bby_1ir-.- g, 1—K]
=By g1 oo BCH by gy oo D0 = B_pk oo BT (gmc)r -+ TLC,
where b, =y, for i =t,t—1, ..., t+k+1;7. =035 b; = (Y; +Zi_pp_r+7;)

(mod 2) for ¢ =t+k,...,¢t+k—1+1; b_gox =%1ix; P =0; 2, =
= (Yi+®i_g_qy +P;) (mod 2) for ¢ =¢,t—1,...,t—l+k+1; and 2z,

= Ptttk
We have

9 9
Ey = B{Ys_gipir - Y4+ Ti_1mere L6 l4+m]
b
= Blei_tpre -+ 2Bt—(g-cy+1 -+ T L+ m]
b]
— zt~l+k+l cee ztmt_(q_c)+l cee .’l’t C.

Thus, E, > E,. Analogously we can verify (8) if ¢ > ¢+ m.
Analogously as (8) we can prove that if & = ¢—c-+m, then

(8.1) By, m)+BB(y*m, 1)+ B(z, 1+ k), 1 +k]
= BB (Y, m+1)+ B(x, I+ k), 1+ E].

Using (8) and (8.1), we show that if d denotes the exponent of y(x + )
and d>d,>¢ d>d,>q, then

(9)  B@di—o)+p(y, d2— 9+
+B|B(w*(dy—c), d—dy) +By*(d:—q), d—d,), d—c]
> ppx,d—c)+B(y, d—q)y,d—c] = f(x+y,d—c).

Let FE, denote the left-hand side of this inequality. Substituting
m=d,—¢, y =y*(dy—q), l—k =d—dy, | =d—d,;, in (8), we obtain

E, =By, dz_Q)‘*"lg[ﬁ(m’ d—c)‘{‘ﬂ(?/*(dz_mr d_dz,)7 d-c]-
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Applying (8.1) to the right-hand side of this inequality and sub-
stituting m =d,—q and ! = d—d,, we get

E, > plB(x,d—c)+B(y, d—q), d—c].

Thus, inequality (9) is proved. The second part of formula (9) follows
from (3).

INSTITUTE OF MATHEMATICS
UNIVERSITY OF GDANSK

Received on 10. 3. 1971,
revised verston on 11. 9. 1971

A. SCHURMANN (Sopot)

MINIMALNY BLAD SUMOWANIA
DODATNICH LICZB ZMIENNOPOZYCYJNYCH

STRESZCZENIE

W pracy rozwaza sie¢ zalezno§é bledu sumowania n liczb zmiennopozycyjnych
binarnych od kolejnosci dodawania tych liczb. Niech ALN oznacza dodawanie n
liczb ze zbioru M, wedlug nastepujacej kolejnosei:

1. Dodaé dwie najmniejsze liczby a oraz b ze zbioru JM,, znormalizowaé i za-
okragli¢ wynik §,.

2. Niech M, _, sklada si¢ z wszystkich liczb z wyjatkiem liczb a i b ze zbioru
M, i liczby 8,,. Zmniejszyé indeks » o 1. Jezeli n # 1, to wrécié do 1.

Podano (§2) dwa przyklady, ktore pokazuja, ze blad sumowania wedlug ko-
lejno$ei ALN moze byé wiekszy od minimalnego.

W §3 dowodzi sie gléwnego twierdzenia tej pracy, ktére mowi, ze jezeli liczby
ze zbioru M, maja rézne cechy, to dodawanie tych liczb wedlug kolejnosci ALN daje
maksymalng dokladnosé sumy. Przez blad dodawania rozumie sie w podanym twier-
dzeniu obcigcie najmniej znaczacych bitéw sumy.



