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DISCRETE AND NONDISCRETE DUELS

1. Introduction. The nondiscrete duels are a generalization of the
©lassical discrete duels. A model of the discrete duel can be described in
tpe following way. Each of two players taking part in the game has some
f.lxed number of “bullets” to be fired in the time interval <0, 1>. For
! =1, 2, we associate with player ¢ a nondecreasing continuous function
? i(?) from <0, 1> onto <0, 1), called an accuracy function. We interpret
1’? as the probability of hitting the opponent by the ¢-th player at the
time ¢ when he fires a bullet at this moment. If one of the players hits
the other, the game is over. The payoff for tie first player amounts to
+1 or —1 when he hits the opponent or the opponent hits him, respec-
?ively. Otherwise, his payoff is equal to 0. The above-described model
18 considered as a zero-sum game.

A duel is noisy if each player knows when the other fires his bullets
and a duel is silent if neither of players knows when the other fires. One
€an also consider a mixed silent-noisy duel. The first two kinds of duecls
Were solved by Restrepo [6] and by Kimeldorf and Fox [1]. The silent-
Noisy duels in their generality are still unsolved. The strongest result
In this field was given by Radzik and Orlowski in [4] and [5].

A model of nondiscrete duel differs from the above-described one
in the fact that player ¢ (i = 1, 2) instead of some number of indivis-
ible bullets has some amount of “ammunition” which may be arbitrarily
distributed in the time interval <0, 1.

In this game, the accuracy function P;(t) (¢ =1, 2) expresses the
Probability of hitting the opponent by the ¢-th player when he fires at
moment ¢ the amount of ammunition equal to 1. All the remaining assump-
tions are common for the two models mentioned above. The nondiscrete
duels in the most complete form were solved by Lang and Kimeldcrf
in [2] and [3].

It follows from the description of the models of discrete and non-
discrete duels that they are very closely related. The aim of this paper
is a careful examination of the connection between these two kinds of
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games of timing. Among other things, the formula for the payoff function
in a nondiscrete duel is derived in a different way from that used before.

2. Notation. In the paper we use extended real numbers, i.e., real
numbers with the symbols 4 oco. In this set we define

000 =000 =0, oot =2+00= o0 for > —o0,
1/oo =0, log0 = —oo, exp(—o0) =0, 0°=1.

We denote by Z,, ¥,, Z,,?, vectors the components of which form
a nondecreasing sequence of numbers from (0, 1).

The letters 4 and 7 with various indices are reserved to denote meas-
ures. The symbols Bz, My, depending on measures g, n and on vectors
Z,, Yo, respectively, denote the measures which place at each point x; of

the vector Z, = (2, ...,%,) the mass u{0,1>/n or at each point y; of
In = (¥1,-..,y,) the mass 2<0,1>/n.

3. Construction of the payoff function. Let the accuracy function
P,(t) (¢# =1,2) in a nondiscrete silent duel be a continuous and non-
decreasing function from <0,1)> onto {0,1). Now we ask with what
probability P{”(¢) player ¢ hits the opponent when firing the ammunition
of amount a at the time #. In order to answer this question we make two
natural assumptions:

(I) PO@) < PP(t) for 0<a<P, 0<E<];

(IT) 1 —P"*+P(t) = (1 —PP(1))(L—PP(t)) for a >0, 0, 0<t<1.

The first condition means that the probability of hitting the opponent:
in the time ¢ is the greater the more ammunition the player 4 fires.

The second condition states that the event “player < firing at moment.
t ammunition of amount a+ f does not hit the other” has the same prob-
ability as the event “player ¢ firing at moment ¢ two cartridges mutually
independently, of masses a and g, does not hit the opponent”.

From (I) and (II) we obtain

(1) PO#) =1—[1—-P,t)]* for a>0, 0<t<1.

Let y; be a strategy for player 7, i.e., a measure on {0, 1) such that
#:;<0,1> = M;, where M; is the amount of ammunition of player 7.
Let Q4i(t) be the probability of the event that player ¢ hits the other in
the interval <0, t) applying the strategy u;. In order to find Qfi(f) we
make the following three assumptions:

(IIT) If py= p(ty, @y ...y 8y, @), Where 0 < ¢, < ... < 1, <1, is a meas-

ure which places at the points ¢,, ..., ¢, the masses a4, ..., a,, respectively,
then
() 1-Qs(t) = [] —PePml.

k(tg<t)
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(IV) If u; and p; are two strategies for player ¢ such that 1: <0, 10>
= pi<0, 1) for some t,, 0<t, <1, and p,<0, s> < ui<0,s> for any
$€<0, 1), then Q¥i(ty) < @4 (to).

(V) For any strategy u; such that u,(t;,t> = 0, where #; is the point
defined as min{t: P,(t) = 1}, we have Q“i(f) = Q4 (tf —), tr <t < 1.

Condition (ITI) means that the event “player i applying the strategy
bty ay, ...t a,) does not hit his opponent in the time interval <0, ¢)”
has the same probability as the event “player ¢ firing, at the moments

b, <« t,, n cartridges mutually independently, of masses ay,...,a,,
Tespectively, does not hit the opponent”.

_ Condition (IV) says that the more we displace ammunition forward
In time, the greater is the efficiency of strategy (according with the fact
that accuracy functions are nondecreasing).

THEOREM 1. Conditions (I)-(V) imply

Qi) = 1—exp| [ W-P()lds}, 0<i<1.
[0,¢]

Proof. Fix a strategy u;. It follows from the definition of @%i(?)
and from conditions (IT) and (III) that @%(0) = P*i{(0) = 0. Hence
the equality is valid at ¢ = 0.

Let #f <t<1.If p;{&,t> # 0, then by condition (ITI) and formula
(*) we get @4i(t) = 1, and we easily verify that the theorem holds in this
case. If u;{ff,t> = 0, then by condition (V) we have Qfi(t) = Q%i(t; —),
and the theorem is also true. Therefore, to complete the proof it suffices
to consider the case 0 <t <f;.

Let 0 = @< <...<®<By, =1t<1, where =z,...,3, are
arbitrarily fixed numbers. Denote by u; a measure which at the points
Ly, Byy ...y Tpyq Places the masses ay, @y, ...y a,,,, Where a; = u;<0, 2,
@, = p{®_1, B, k= 2,3, ..., n+1. Then, putting z, = —In[1—P;(x;)],
we infer from the assumptions (IV), (IIT) and from (*) that

n-1

() < Qi) =1— [ 1 —P(a,)1
k=1

n+1

—1—exp{— D (aumft: s < —I[L—P()] < %})}
k=1
- 1—exp{ fln (1 _'Pz'(t)]dlui} as om’?x (Tp41 — @) 0.
[0,¢] <k<sn

Q(t) =1 for t > t;, which gives the thesis of the theorem. Therefore,
the theorem has been proved.
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In the next part of the paper we will omit u; in the expression @}i(?)
when it does not lead to misunderstanding. Put A4;(f) = —In[1—P,;(t)].
This formula establishes a one-to-one correspondence between the set
of continuous nondecreasing functions from {0, 1) onto <0,1) and the
set of continuous nondecreasing functions from <0,1) onto {0, oco).

The payoff function takes the form (see [3])

2) E(py ) = [ @dQi— [ @140,
<0,1) <0,1>
where
Qi) =l—exp{— [ 4,(0dp}, @GO =1-Qn), i=1,2.
€0,¢>

Thus we can relate the nondiscrete silent duel to the functions A, (t)
and A,(t) which are continuous, nondecreasing, from <0, 1> onto {0, oo).

In what follows we mean by K,,,,(%#, %) or K, ., (T, 7,) the payoff
functions in discrete silent duels in which the players have m and n bullets.
and behave according to the strategies u, 9 or z,,, 7, (to fire their bullets
at moments denoted by %,, %,), respectively.

Example 1 (reduction to discrete case). Let us consider the non-
discrete silent duel with parameters P,(¢) and M; (¢ =1, 2). Let y and
n be fixed strategies for the players. Then, using formula (2) we can
easily show that

K(:u.;:m’ nr_m) = Kmxn(§m7 gn)?

where the right-hand side is the payoff in a discrete silent duel with the
following accuracy functions:

Q:(t) =1—[1—-P,()1"""™,  Q,(f) = 1—[1—Py(t) ",

4. An example of approximation of a nondiscrete duel by a discrete
one. In this section we give a theorem which has been proved by Lang
and Kimeldorf in [2]. We prove it once more but in another way, by
approximation.

THEOREM 2. The nondiscrete silent duel with P,(t) = Py(t) =1t and
M, = M, =1 has the value v = 0 and the optimal strategies for players
are measures with the common distribution

1

(3) F(t) =1+ —2'1‘11—(1—:_7)‘7

a<t<l,

where a = 1 —exp(—3%).
We need some lemmas to prove this theorem.
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Let us consider the discrete silent duel of type n xn (each player
has » bullets) with accuracy functions P,(t) = B,(t) = Q, (), where @, (t)

I8 an absolutely continuous and strictly increasing function from <0, 1)
onto <0, 1.

It is known (see [6]) that this game has the value 0 and the optimal
strategies have the common form

tin (B) = ”/‘;t(ti)y

=1

* . . . .
Where u>. i3 5 measure in (@psy Oy g41) With density

* Q.. (%)
dpgi(t;) = km'm dt;,

where

1 1
— = Q7 — kpy = ——7—+
Cpps1 =1, Gy n (2(n—i)+3)’ " 4(m—i+1)

(t=1,...,n).

We interpret u,;(f;) as the distribution of the moment at which
the player fires his i-th bullet.

Since the value of this game is 0, we have

(4) K pxn(pny 1) =0
for every strategy 5 of the second player.
Lemma 1. If Q,(t) =1—(1—1)'", then
lim max(a, ;41— ) = 0.
n-oo 1<i<n

Proof. We use the following inequality:
a"—b" < n(a—b)a™! for 0K b<Ka.

Since Q;'(!) =1—(1—1)" for 0 <t<<1, we have
1 1
. —a,;) = max|Q-! —Q!
11212: (an,1+1 am) lsisn[ n (2’5——1) Qn (2i+1 )]
2 \" 2i—2)"] < max [n( 2 2i—2)( 2 )"-1];
- lri?sxn [( 2i+1) T \2-1 = 1cicn 2¢+1 2t—1J\2¢+1 {

o2n ( 2 )n—l]
=52{i§[(2i+1>(2z’—1) sizl] |
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With the help of differential calculus it is easy to show that
) { 2n 20 \"!
lim max =0,
n—ooo 1<z<n (28 +1)(20—1) \ 2241 }
and this completes the proof.

Let 5 be a certain strategy for the second player in the nondiscret e
duel with P,(t) =P,(t) =t and M, = M, =1. Thus #{0,1) = 1.
Associate with the measure n a measure 7; , where the vector 3,(7)
= (84, ..., 8,) satisfies the condition

s =min{z: 0<2<1,9¢0,z)>j/n} for any j =1,...,n.
Further, we define a vector 3,(n) = (s, ..., 8;) by

a,m if 81- == 1’
;=18 if 8; < a,,,

a,; it a,; <8< a, y, for some j<n (2 =1,...,n).

Let «,(7n) denote the class of all vectors z, = (x,, ..., #,) satisfying
the following two conditions:

(ii) if @,; < 8 < @y, j4, for some j, then a,; < @, < @, ;,, (k =1,...,n).

Thus, for any strategy # for the second player in the nondiscrete
duel, the vector 5,(n) and the class «,(n) are constructed.

We put @, = (@2 Cpzy ---y @popi1)-

LEMMA 2. For any sirategy n we have

K pn (tins 30 (0) ) < Kk (@ 5, (0) +).-

The lemma follows easily from the definition of K, ., (see [6]) and
from the fact that the accuracy function @, (¢) is increasing.
Similarly, by the definition of «,(7) we obtain

LEMMA 3. For any ¢ > 0 and for any sirategy n there exists a vector
Yn € &n(n) such that

Knxn(@n 5;(77) +) < K@y ) 6.
LeMMA 4. If §, € o,(n) (n =1,2,...), then the sequence {n;,n} con-
verges weakly to n.
The lemma follows easily from the definition of ., ().

LeMvA 5. If 0,1y =1, then the sequence {u; } converges weakly
1o the measure p* with distribution (3) on (a, 1).

This lemma is presented in [2] as Theorem 2.
LEMMA 6. We have

1
f—-ln(l—t)dy* = oo.
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This result follows immediately by direct computation.

Proof of Theorem 2. Fix in an arbitrary way a strategy n for

the second player in the nondiscrete duel. By (4) and Lemmas 2 and 3,
for any ¢ > 0 we obtain

0< Knxn (/‘:7 8n(n) +) <K,,., (ﬁn, 3;(17) -|-)
S K@y, §,)+&  for a certain 7, € o, (7).

Hence (see Example 1) K (u; , n5,) > —e for 7, € o, (7).

Now, using Theorem 2.1 from [3] (this theorem is valid for strat-
egies on <0,1) if the intervals of integration in (i), (ii), and (2.7) are
regarded there as open) and Lemmas 4-6, because of the free choice
of ¢ we get K(u*, ) > 0, which completes the proof of Theorem 2.
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