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SOME REMARKS ON THE ENUMERATION OF ROOTED TREES

0. Summary. A solution is given to a general problem of finding the
number of different rooted trees when a specification (n,, n,,...,n,)
is given stating that the tree has n; knots of kind ¢ (¢ =1, 2, ..., s), where

3
NMa, = .
i=1

1. Introduction. The enumeration of different rooted trees having
a given number of knots was first discussed in 1857 by Cayley [3] for
the case where all the knots were treated as being of the same kind and,
later, for the case where they were regarded as being different (labelled).
The introduction of “figurate series” and “enumecrating series” by Pélya
(see [5] and [6]) led to a simplification of Cayley’s arguments. Riordan,
in his textbook [7], discussed with the aid of Pdlya’s Fundamental Theo-
rem of Enumeration Theory the case of rooted trees having m labelled
knots, the remainder p —m being identical. However, this is not a partie-
ularly interesting case and in applications it is often necessary to iind
the answer to a more general problem of finding the number of different
rooted trces which have knots of s different kinds when a specification
(Mg, Mgy ..., M) is given stating that the trec has n; knots of kind ¢ (¢ = 1,

n
2,...,8) so that the total number of trees is equal to > n; = n. For

t=1

instance, for some family trees, it can be necessary to enumerate the
trees according to the number of males and females or according to the
number of persons in various survival age-groups; similarly, when rooted
trees are used in other branches of science (e.g. chemistry), the general
problem can be again necded. By a (perhaps somewhat tedious) routine
application of Pélya’s ideas it is possible to solve this problem giving
as well a numerical answer to it. A similar problem for the two-terminal
series-parallel networks was discussed by the author in [4].

Following Pélya (see [5] and [6]) let us define as a free a connected
linear graph built of p points and p —1 lines. It contains no closed paths
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and no slings. If a certain unique point of the tree in which just one line
ends is distinguished, we have a rooted tree: this point is called the root
of the tree, the line starting from the root — its trunk, and any point
different from the root is called a knot. The trunk is bounded by the root
on one side and on another side by a knot which we call principal. In our
drawings we indicate a root by an arrow and cach knot by a small circle.

| Y\’W'

To T T,
Fig. 1 Fig. 2

The simplest rooted tree T, consists of a root, a trunk and just one
(principal) knot (Fig. 1). To build any rooted tree different from the
simplest one we take a number of rooted trees and treat the roots of
these trees as one prineipal knot of the new tree. Thus it can be said that
the trunks of those chosen trees are inserted into the upper point (the
knot) of the trunk of the new tree, and the trees treated so form the so-
-called main branches of the new tree. For example, the two trees 7, and T,
form the two main branches of the tree 7' (Fig. 2).

xrT7,T,,...,T,ares trees (s > 1) having p,, p,, ..., P, respectively,
knots, then we can combine them into one tree 7' having as the principal
knot the combined roots of these trees and as the trunk an added simple
trece T,. We write this as

(1) T:To(Tlasz-“aTs)

and, clearly, T has 1+p,+p,+...+p, knots. In our example 7, has 3
knots, T, has 4 knots and T has 1+ 3 +4 = 8 knots. It should be stressed
that the order in which the given set of rooted trees is combined to build
a new rooted tree is regarded as of no importance so that two trees having
the same main branches are treated as identieal: if (r,, 75, ..., 7,) is a per-
mutation of numbers (1,2, ..., s), then

(2) To(T\T, ... Ts) = To(T,,T,, ... T}).

For instance (see Fig. 3), if the knots are marked by small letters
a,b, ..., then according to (2) the trees T, and T'p shown there should
be regarded as identical. Indeed, their root p and their principal knot a
are the same and it is easy to verify that their main branches are identical
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although the order in which they are combined to build 7, and Ty is
different. The fact that the appecarance of some main branches (like e.g.
those containig b, ¢, d) is slightly different in T 4, and T’y is of no importance
since according to (2) they again have as their main branches the identical
trees (simple trees (b,c¢) and (b, d)) combined only in different order.

Fig. 3

Let us assume now that therc cxists a one-to-one transformation ¢
of a rooted tree T into a rooted tree 7' which maps the elements of T
into the elements of T’ so that the basic relations between the mapped
elements in 7" are the same as between the corresponding elements of 7,
i.e. the root of T is mapped into the root of 7", the trunk of T into the
trunk of 7", the line connecting knots p and ¢ of T into the line connecting
the transformed p’ and ¢’ of T’ etc. Then we say that the rooted trees T
and T’ are equivalent; the two non-equivalent rooted trees will be called
essentially different. For example, let us assume that the root and the
knots of the tree T, (Fig. 3) were transformed by a function ¢ in such
a way that

e lplalolelalelsly i |k
a plelslalnlolalelils

It is easy to verify that the root p of 7' was transformed into the
root d of T', the principal knot @ into the principal knot p, the trunk
(p, a) into the trunk (d, p), the line connecting (¢, j) into the line connecting
(¢, j) ete. Thus the trees T4 and Ty are equivalent (1); however, being not
identical they are different, although not essentially different.

(*) In [6], in a footnote on p. 695, Pélya expressed the opinion that ,it may be
sufficient and in some respect even advantageous if at a first reading the reader takes
the definition intuitively and supplements it by examples”. A more elaborate defini-
tion of rooted trees and of their equivalence can be found in [2], p. 181-191.

5 — Zastosow. Matem. 13.4



484 7. A. Lomnieki

Among the s trees Ty, T,,..., T, in (1) some can be equivalent and
we denote them by the same letter W;; if there are r; of them, we say
that the multiplicity of the main branch W; is r; and we write W} for
the repetition W;W;... W, of these 7; equivalent trees. Then we can
rewrite (1) as
(3) T =T (WprWa... W),

where w is the number of essentially different rooted trees among the
trees shown in the brackets of (1). ©bviously, the trees T and 71" are equi-
valent if and only if their main branches are equivalent and occur with

the same multiplicity.

2. Pélya’s proof of Cayley’s recurrence generating series. Let us
denote by U, Uy ...5 Uy all the essentially different rooted trees
having exactly k knots, and let ¢, be their number. The simplest tree T,
as shown in Fig. 1, will be denoted by U,, and, obviously, ¢, = 1. There
is only one rooted treec having two knots so that {, = 1 as well. In order
to get some information about the numbers ¢, let us follow Poélya and
construct the appropriate “figurate series”. To do this let us define by Uy,
an empty main branch, i.e. let us agree that if U,,appears anywhere be-
tween the brackets in a formula like (3), then it will be ignored as a non-
existing main branch or, in other words, it will be treated in this “product”
like a unity. Then the “figurate series” can be written as:

00 tk
(4) Z{Z Uik}?/k =Uypuy(Ugp+ Uny+ Ufly“r Uf1y3—!—...) X
=

X (Ugo+ Urpy*+ U22?/4+ U?z?/ﬁ‘*‘---) X
XA(Ugo+ Uy®+ Uls?/ + U?3y9+~--) e X

tm

X [] Uso+ U™ + U™ + Ul g™ +..) ..

Indeed, if a rooted tree 7 is represented by formula (3), where W;
(j =1,2,...,w) has p; knots, then T has k = 1+7r,p;+ Do+ ... + 7 Pu
knots and it appears as one of the ¢, terms on the left-hand side of (4)
multiplied by y*. The powers of the appropriate W;’s multiplied by "%
can be found in one of the appropriate lines of the right-hand side of (4),
1.e. in one of the #,, lines for m = p; at the r;-th place; taking the “product”
of U,; and of these expressions and multiplying them by U,, from all
other lines, we obta,in the same tree T on the right-hand side of (4) as

the coefficient of 1 +Z¢ ;p; = k power of y, and this completes the proof
of the formula. i=1
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Putting L'Yik == 1 (I(' == O, 1, ...;’l. = 0 lf k == 0;?: = 1, seey tk if k> O)’
we obtain the “enumerating scries” leading to

(5) Dt =y (=) (L) Ly
k=1

which is Cayley’s remarkable result (cf., for instance, [6], formula (8)).

The comparison of coefficients of ¥* does not give us the values of
tr-numbers but only a recurrence formula for calculating them, and that
is why in the title of this section the term “recurrence generating series”
was used. Taking logarithms on both sides of (5), we get

log| }; tiy*| = logy — ,; tlog (1 —9")

= logy+ MtV +y* 2+ %3 +...).

k=1

Differentiating with respect to y and multiplying by ¥, we obtain
kty" =[2tkyk] [1+ sztk?/kj]-
k=1 k=1 k=1j=1
The double sum can be written as > y™( D di;), and if we write
m=1 djm
(6) €m —_—Zdttb

djim

we get
(7) Nyt =[Dud|[1+ Y eny™]-
k=1 k=1 m=1
Comparing the coefficients of y;, we arrive at the following recurrence
formula:

t, =1,
(8)

(k—=1)t, =t 161+l 16+ lses+...+te , (kK> 1).

The evaluation of t;-numbers can be easily achieved by the use of
Table 1 where the line for £ = 1 has unities in cols. (2) and (3). The num-
bers in col. (4) are obtained as sums of cross-products of numbers in cols.
(2) and (3) of previous lines. By dividing the results in col. (4) of line %
by k—1 we obtain ?,. To obtain ¢, we find the divisors of k, multiply the
numbers in cols. (1) and (2) for those divisors and add the results. The
numbers in col. (2) agree with the published data (cf., for instance, [7],
Table 4 on p. 138).
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TABLE 1
k—1
k i ek Dleitr_q
i=1

1 | (2) (3) (4)

1 1 1 —

2 1 3 1

3 2 7 4

4 4 19 12

5 9 46 36

6 20 129 100

7 48 337 288

8 115 939 805

9 286 2 581 2 288
10 719 7 238 6471
11 1 842 20 263 18 420
12 4 766 57 337 52 426
13 12 486 162 319 149 832
14 32 973 461 961 428 649
15 87 811 1317 217 1 229 354
16 235 381 3 767 035 3 530 715
17 634 847 10 792 400 10 157 552
18 1721159 30 983 565 29 259 703
19 4 688 676 89 084 845 84 396 168
20 12 826 228 256 531 814 243 698 332

3. Permutation group associated with a structure, its cycle index
and Pélya’s Fundamental Theorem of Enumeration Theory. To each
rooted tree we can find a group ® of permutations

3 4 9 which leave this tree unchanged; we call this group
6 a permutation group associated with this tree. Thus,
2 7 for instance, if we have a tree T' as that drawn in
1 Fig. 4 with 7 knots marked by the numbers I-7,
then the following 12 permutations, written in cyclic
Fig. 4 form, leave the tree unchanged:
o1 = (1) (2) (3) (4) (5) (6) (7), o, =(1)(2)(34)(5) (6) (7),
e: = (1) (2) (3) (4) (5) (67), o, = (1) (2) (34) (5) (67),
e = (1) (2) (3) (4) (57) (6), e = (1) (2) (34) (67) (6),
e, = (1) (2) (3) (4) (56) (7), 10 = (1) (2) (34) (56) (7),
os = (1) (2) (3) (4) (567), eun = (1) (2) (34) (567),
o = (1) (2) (3) (4) (576), ez = (1) (2) (34) (576).

If a permutation splits into b, cycles of length 1, b, cycles of length
2 etc., we say that it is of the type (b,, by, ..., b,), where some b’s can be
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zero and where b, +2b,-+3by+... 4+ nb, = n, n being the degree of the
group, i.e. the number of permuted elements. For each permutation of
the type (b, bsy ..., b,) We form a monomial f21f22 ... f» and we define
as the cycle index of the group & the polynomial

(9) P(G; fuy fay-ees fu) = 97" D f0f2 . fim,
()

where ¢ is the order of the group ®, the mimber of permutations in this
group. Thus, for instance, the cycle index of the permutation group asso-
ciated with the tree of Fig. 4 is equal to

P(®; f1) for - ) = (FI+4f1fo+ 21 fs+ 3fif2 4 2f1 1) [12.

Instead of speaking of the “cycle index of the permutation group
associated with a given tree” to save space we shall call it the “cycle index
of the tree” and write it shortly as P(T; f).

Let us now put in (9) the substitution

(10) fi=aitai+... ot

According to Pélya’s Fundamental Theorem of Enumeration Theory
[5] (discussed e.g. in [1]), the number of different structures with speci-
fication (n,, s, ..., n,) generated by structure T is the coefficient of the
term afla32... 277 in the expansion of the function I(®;z,, 2,,...,x,)
obtained from (9) by substitution (10).

Let us now assume that in our example we can have various kinds
of knots denoted by letters a, b, ... If all the knots are of the same kind
marked all by letter a, i.e. with specification (7, 0, ..., 0), then the substi-
tution (10) yields as the coefficient of ] unity since (1+4+42+3+2)/12
= 1 which means that there is only one tree of this kind. If all the knots
are different, we have the specification (1,1, ...,1) and the coefficient
of z;2,... 2, is 7!/12 = 420. Indeced, there arc 7 ways in which one of
the seven letters can be used to mark the principal knot, 6 ways in which
the knot denoted by 2 on Fig. 4 can be then given a letter and there are 10
ways in which from the remaining five letters two can be chosen to mark
the knots indicated by 3 and 4 on Fig. 4 and three to mark the remaining

knots, total number of ways being 7-6-10 = 420.

4. Number of rooted trees with a given knot specification. Our problem
will be solved if we find the cycle indices of all rooted trees U, appearing
on the left-hand side of formula (4). If P(Uu;f) = P(Uy; fisfas ooy fi)
is the corresponding cycle index, we write a polynomial

'
(11) Welfurfor s J) = D P(Uii fus foy oo o)
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Substituting (10) into this polynomial and calculating the coefficient
of the term a71x32... x;r, we obtain the number of different rooted trees

N
having a knot specification (n,, n,, ..., n,), where D'n; = k.
i=1

Let us assume that the rooted tree T' was defined by formula (3), i.c.
was obtained by juxtaposition of smaller non-equivalent trees W,; each
with p; knots which formed the main branches of the tree 7. The multi-
plicities of these branches were r;. The problem is to find the cycle index

w

P(T; f1y fay -y fi) of the tree T, where k = 1+ D r;p; if the cycle indices
P(W;; fis fey -y fp;,) of branches are known. =

Notice first that the trees W, (¢ =1,2,..., w) are non-equivalent
so that the group of permutations leaving 7' unchanged must be the
direct product of permutation groups which leave the “powers” Wit, Wiz,
..., Ww unchanged; consequently, the cycle index of the direct product
being the product of cycle indices of factors (cf. [1], [5] or [7]), we have

(12) P(T;f) = LP(WI H)P(W325 f) ... P(Wes ).

To express the eycle indices P(Wii; f) by the cycle indices of branches
W, let us notice that the permutations leaving the product W, W, ... W,
of »;, branches unchanged are those of group ®, which leaves W; unchanged
and also those of the symmetric group y,, of degree r; which change the
order of W, in the product; the number of such permutations is r;!g5,
where g; is the order of the permutation group ®;. Following Pdlya’s
definition in [5] (also discussed e.g. in [1]), this means that all these
permutations form a “Kranz” group y, [®;], i.e. the “Kranz” of group G,
over the symmetric group y, of degree r;(%). The cycle index of such
a group can be expressed very elegantly in terms of the cycle indices
of y,, and ®;. Indeed, it is equal to the cycle index of the symmetric group
7r; of degree r; denoted by Z, (hy, h,, ..., k, ) in which each h; is replaced
by

hjZP(Wi;fﬂfﬂ’-“’fpij) (3=21,2,...,m).

Thus we get

(13) P("V;i;fl,fz’-“yfripi)
=Zr,~£P(Wi;f1’f27---:fpi)’P(Wi;fzyfu---yfzpi)y-”a
---aP(Wi;frpfzr,-’ ---7fpir,«)]-

(2) A generalization of Pdlya’s concept of the “Kranz” group can be found in
de Bruijn’s paper [2], where the author defines a more gencral concept of the crown.
However, our results can be obtained without this generalization by using simply
Pélya’s ideas.




Enumeration of rooted trees 489

To save space let us write Z, [P(W;;f)] for the right-hand side
of (13), and then we get from (12)

(14)  P(T;f) = f1Z, [P(Wy; )12, [P(Wy5 )] ... Z, [P (Wy; f)],
which allows us to find the cycle index of a rooted tree from the

knowledge of cycle indices of the main branches and of multiplication

of these branches.
Reverting to Pdlya’s “figurate series” given by formula (4) we can

rewrite it as

-] 73 o
@) DUy = Uy [ [] O+ Untf + Uh™ + U™ +..).
k=1 i=1 k=11=1

Replacing in this formula each Uj, by its cycle index Z,[P(Uy; f)],
we verify that, in view of (14), the following formula for cycle indices
associated with these trees, similar to formula (4), is valid:

00 U o
15) DU PUHY =fuy [[ [0 +Z:0P(Uas 1Y+
k=1 =1 k=11=1

+Z,[P(Uy; /)19 + 25 [P (Uy; /)19 +...}.

It can be found in any textbook of combinatorial mathematics (cf.,
for instance, [1]) that the generating function of Z,(h,, h,, ..., h,) (of
cycle indices of symmetric groups) is given by the formula

(16) 14+Z,(h)y +Zs(hyy ko) y?+Zg(hyy by, ha) Yy + ...
= exp{h,y + h,y?/2 + R3y3/3+...}.
This allows us to replace the expression in brackets { } on the right-
hand side of (15) by
exp{P(Uu; )y +P(Uai; [y 2+ P (U f*) 93+ ..},

where P(Uy; f'") is written for P(Ugy; fry fory -5 frr)-
Using this remark and the definition of polynomials v, by formula (11)

we can rewrite (15) as
A7) Y u(H)y* = fiy [ exp{wel Ny +ulf™) 9 12+ vl f) 93 +...}.
k=1 k=1

Formula (17) is really a recurrence generating function for y,-poly-
nomials similar to Cayley’s formula (5). In order to obtain a suitable
recurrence formula, we apply a method similar to that used in the treat-
ment of formula (5). Taking logarithms on both sides of (17), we get
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(18) log{ M wi(H)yi} =log(fip)+ X [wu(HY +w(F*)y™ 12 +...1.
k=1

k=1

The derivatives of both sides taken with respect to ¥y multiplied by ¥
vield

(19) k},’kwk(f)y" =
=1

[

The double sum can be written as Y’ y™( > dy,(f*™*). Writing

m=1 d/m

en =, dya(f™"),

d/m

", 8

k

Il
—

v [1+ D *lve N + vl Fy™ + ]
k=1

Nk

vy {1+ ji’lcwk(f")y’k}.

k=1 k=1r=1

we get (19) in the form

oo

(20) M)yt = [ )] [1+ Yymen].
k=1 k=1 1

m=

The comparison of coefficients yields then

(21) (F—1)yi(f) = Yr_161+ Pp—2€at ... T P1€_4-

The evaluation of y,-polynomials can be easily achieved by the use
of Table 2 where various operations are similar to those used in calcula-
tions of entrants to Table 1.

TABLE 2

k—1
k v (f) ek Z,l'/%_iei
(1 | (2) | (3) (4)
1 f] f1 -
2 K 22+ f, 1t
3 (3f3 + f1f2)12 Of3 4+ 3f )12+ fy 313+ f1f2
4 (ifs+3fife+ 83 | (4fifs+ lzf%ffgz +f32f1‘)/3 + fufs + 3f3fa+ 81
+2f3+ 14
5 (125f3 + 54f3f, + 5(125f7 4 54f3f, + 16f1f + (125f} + 54f3f, +
+6f}1f3 + 15f,f5+ + 15f,f3+ 6f,f4) /24 + fs + 1611 f, + 15f,f3 +
+ 6f,f,) /24 + 6f,f,) /6
6 (1296f8 + 640f4f, + 6 (1296f¢ + 640f1f, + (12966 + 640f%f, +
+ 180f3f; + 180f3f3 + + 180f3f, + 180f% /3 + + 180f7 f; 4 18033 +
+ 60f2f, + 24f, f, + +60f3f, + 24f, fs + + 60f}f, + 24f, fs +
+ 20f, f>f3)/120 + 20f; f2f3) /120 + + 20f, fof3) /24
+ (93 + 3fufy) 2+ 2f5+ fs
7
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Knowing the y,-polynomials, we have our problem solved. If we ask
for the number ¢, of rooted trees with all » knots identical, we have to
find the coefficient of 27 when the substitution (10) is made into the
polynomial v, (f). It is then clear that ¢, = v,(1,1, ..., 1) and we obtain
the numbers discussed in Section 2. If we ask for the numbers s,, of rooted
trees with all the n knots different, we have to find the coefficient of
X,y ... X, which is equal to s, =mn!y,(1,0,...,0). Formula (17) for
f=(1,0,...,0) yields

jsky"/k! = yexp {Zsky’“/k!}.
k=1 k=1

If R(y) is substituted for the exponential generating function of
s;-numbers, then (22) becomes

(22)

(23) R(y) = yexpR(y),

the result due to Pdélya (cf. [5] or [7]). It is ecasy to verify from Table 2
that s, = n" .

Various other specifications lead to the results shown in Table 3;
they are obtained by finding the appropriate coefficents when substi-
tution (10) is made in the appropriate y,-polynomials.

TABLE 3

No. of | Specifica- | No. of different | No. of | Speecification | No. of different

knots tion rooted trces knots rooted trces

1 (1) 1 5 | 3,1,1) 119
2 (2) 1 2,2,1) 171
(1, 1) 2 (2,1,1,1) 326
3 (3) 2 (1,1,1,1, 1) 625
(2, 1) | ] 6 (6) | 20
(1,1, 1) i 9 (5, 1) ‘ 95
4 (4) - 4 (4,2 209
(3, 1) 13 (3, 3) 268
(2, 2) 18 (4,1, 1) 401
(2,1,1) 34 (3,2, 1) 744
(1,1,1, 1) 64 2,2, 2) 1077
5 (5) 9 3,1,1,1) 1433
(4, 1) 35 ! (2,2,1,1) 2078
(2, 3) 63 i 2,1,1,1, 1) 4016
I (1,1,1,1,1,1) 7776

The numbers in italics agree with the published data (cf, {7]. Table 3 on p. 134).
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KILKA UWAG O OBLICZANIU DENDRYTOW
Z WYROGZNIONYM WEZLEM

STRESZCZENIE

W pracy rozwiazuje sie ogoélne zagadnicnie znalezienia liczby rdéznych den-
drytéw z wyréznionym wezlem (rooted tree), gdy podana jest specyfikacja (m, n,,
..., Ng), MoOwigea, ze dendryt ma n; weztéw i-tego rodzaju (¢ =1, 2,...,s), gdzic

nl—i—n2+...+ns = n.



