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RANDOM PROCESSES ASSOCIATED
WITH RANDOM POINTS ON A LINE

1. Introduction. Let us consider a random distribution of points
on a line of finite extension {. We may regard #(!) as a general parameter
so that ¢ may stand for the time in any particular example. The random
points occurring on the line may represent the events that occur in the
interval (0, t). To be specific we shall consider a stochastic process of the
Poisson type with parameter A(t) so that the average number of events
that occur in the time interval (0, ) is given by

i
(1.1) AQ@) = [A(z)dr

while the probability that n events occur in the time interval (0, ¢) is
given by

(1.2) m(n, t) = e OLA@OT 0! ().

We assume that every random event in the Poisson process triggers
a signal whose amplitude is given by f(¢, ) where ¢ is measured from the
time the signal is produced and % may be a random parameter characte-
rizing the signal. The quantity that is of interest is the sum of the
amplitudes of the signals which, for a typical realization of events at
tiytay .oy By, 18 given by

(1.3) E(t) = Zf(t_tiy 7s)-

The 7;’s are assumed to be statistically independent random variables
having the same distribution function. The distribution of &(t) and its
moments have been studied by Takacs ([6]) and Ramakrishnan ([3]).

(*) ¢t may represent the point ¢ as well as the interval (0,t), the distinction
being apparent from the context.

() Throughout the paper we shall use the symbol = to denote any probability
frequency function, the difference between different probability frequency functions
being apparent from the context.
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In the present paper, we propose to consider the following generali-
zation of the process mentioned above. We agsume that each random point
(or event) not necessarily of the Poisson type triggers off a random process
9(?) which originates from that point and progresses with respect to the
same parameter. The random processes arising from different, points
do not interfere with each other. For a typical realization of events at
Xy, &gy ..., &, the variable that is of interest is given by

(1.4) WR(t) = YyR(t—o)H (t— a0,

=1

where y®(t—®;) is a typical realized value of the random variable
y(t—wx;) and H(x) is heaviside unit function. At the point we observe
that the probability measure of (1.4) involves detailed consideration of
the probability measures of y,(t—2,), ¥s(t—5), ... and y,(t—x,). Thus
% (t) cannot represent a Markovian process and any direct attempt to
obtain the Kolomogorov partial differential equation for the probability
frequency function of «(f) will prove futile. However, it is possible as
will be shown in section 2 to obtain the moments of «(f) by detailed
congideration of the correlations of the random points.

If we confine our attention to ‘renewal’ processes (see for example
Bartlett [1], p. 20), it is also possible to obtain integral equations for the
probability frequency function of «(t). This will be demonstrated in sec-
tion 3 and it is worth mentioning that the integral equation is intractable
and only some information regarding the moments may be extracted
from the same. In the last section we shall deal with some applications
to secondary Poisson events and theory of Carcinogenexsis.

2. Moments of the distribution. The moments of the distribution of
% (%) can be studied with the help of certain correlation functions intro-
duced in the theory of stochastic processes of continuous parametric
systems. These correlation functions in some form or other have been
studied some years ago in connection with the fluctuation problem
of cosmic ray cascades and are known under different names such as
.cumulant funetions, product densities, and Janossy densities (see for
example Srinivasan [5]). Since our derivation of the moment formula
depends on the product densities, we shall briefly recapitulate their defi-
nitions to suit our problem of random points on a line. -

Let N(x) represent the number of random points in the interval
(0, «). Then dN(z) is the random variable representing the number of
random points in the elemental range (#, #-dr). We shall assume that
the probability of finding one random point in (#, #--dx) is proportional
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to do so that the density relation
(2.1) fi(@)de = B{aN (2)} (°)

exists, the total probability of finding more than one random point in
(@, o+ 6x) being proportional to o(dz). The integral of f,(x) over & yields
only the mean number of random points in the range of integration,
since the addition law of probability does not hold in its simple form,
the events being in general not mutually exclugive. f,(x) is termed the
product density of degree one. The product density of degree two is
defined by

(2.2) fo(®y, @) dmydw, = B{dN (x,)dN (%5)}, @, #a,,

where f,dwx,dz, represents the joint probability of finding two random
points in the intervals (z,, #,+ dz;) and (@, #;-+ dz,) provided the two
intervals do not overlap. However, when there is an overlap (i.e. #, = =,)

(2.8) E{dN()dN(2;)} = E{[dN (2,)]'} = E{dN (2,)} = fy(a,)dw,;

such a simple result a8 (2.3) is due to the more general result that all
the moments of the random variable dN () are equal to the Probability
that the random variable takes the value 1. When similar degeneracies
in @;’s occur in higher order product densities, we are led to lower order
densities.
Let us assume that a point process is defined by the set of product
densities as defined above. The random variable (f) ean be expressed as
t
(2.4) u(t) = [dN (@, t)y(i—z)dw,
0

where ¢ represents the ‘duration’ of the stochastic process (in the present
case this being the size of the interval over which the coordinates =;
of the random points are distributed). The mean value of %(t) can be
readily obtained by taking the average of both sides of (2.4). Thus it follows
from the linear character of the expectation operator

¢
(2.5) B{u(t)} = [fi(e, ) Biy(t—a)}do.
0

The second moment of u(f) is given by

(2.6) ' E {{v()1%}

=/ ffa(wl, @3, t)E{y(t-—wl)y(t—w,)}dwldw.+ ffl(w, ) E{[y(t—2)]*}do.
00

() Throughout this paper, & stands for expectation value of the gquantity within
the bracket.
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Since the y(t— ;) are statistically independent, E{y({—a,)y(t—x,)} can
be written as E{y(t—x,)} E{y (t— x,)}, (2.6) being true even for the more
general case when the variables y(t— x;) are correlated. To obtain higher
moments, we have to classify the degeneracies arising from a product
density of a given order (which is less than or equal to the order of the
moment sought for). Suppose that in a product density of degree m,
some intervals overlap leading to the product density of degree k. It is
not sufficient to know the total number of ways in which such a dege-
‘neracy can arise. In fact, we should know the number of different com-
plexions C7 (#) leading to the product density of degree k, a complexion
being characterized by a set of numbers I,,1,, ..., such that I,417,+
+... lh = M.

We note
(2.7) D 0w (@) = CF,

T

where the summation over ¢ indicates the summation over different
complexions. An explicit expression for C}'(¢) can be written down if
we know many of the integers l,, 1y, ..., l; are different. If only p out
of the h integers l,,1,,..., 1, are different and k,, %,,...,k, are the
orders of the degeneracies in each of them, then

m!
ll!lg!..clh!klgkz!.--kp! )

In fact, from combinatorial arguments it is easy to verify that C3'(d)
is the number of ways in which m distinguishable objects can be thrown
into h groups of 1, 1,,..., 1, objects respectively.

Thus the mth moment of «(f) is given by

(2.9)  E{f»(t]"}
m 4 t ¢
=Y ) OR6) [dw fdws... [fu(@1 @2y .0y )X
0 0 0

N=l ll+12+ et lp=m
X B{[y(t— )1} B{[y (t— 23)12} ... B{{y (t— 4) "} dazy,.

If, however, the random variables y({—x;) are statistically dependent,
(2.9) still holds good provided we replace

E{[y(t— ) TV} B {[y (t— 2,) 12} ... B{[y (t— @)™}

(2.8) Cv (4) =

by ‘ .
E{[y(¢— o)t [y (t—2) 12y (t—22) ]2}

Thus the moments of %(t) can be calculated if we know the distribu-
tion of the random points on the line or equivalently if we are given
the product densities of the random points of different orders. We finally
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observe that there may be situations where y may depend also on the
origin of the primary process. In this case, the formula (2.9) is equally
true if we replace y(t— ;) by y (@, t— ;).

As an example, let us consider the case when the x;’s are a process
with a stationary positive increments. More precisely we assume that
the distribution of the time-interval between successive events in a simple
renewal process is given by

(2.10) @(t) = 4A%e ¥,

The product densities of degree one and two can be found to be
(see Bartlett [1], page 167)

(2.11)  fi(@) = A— e
(2.12) falty, b)) = A2— 2™ 4, > q,,

If we further assume that each event at x; friggers off a random
process y () which originates from that instant x; of time, the random
variable y(t) assuming a value ¢~™® where n(f) is a simple Poisson

process progressing with respect to ¢ with a parameter u. The mean and
mean square value of u(f) are given by

_4 A w
(2.13) Bt} = = (1—e )=~ (=),
(2.14) E{[u())]*}
= (A—ey 1 — e W __ (et —2pt
—}'s[ T aeten 0 e }]'

It is interesting to note that as ¢ becomes large, mean and mean
square value of «(f) tend to finite limits.

3. Probability frequency function of w(f). As has been mentioned in
section 1, u(f) does not represent a Markovian process and as such it is
not possible to write down the partial differential equation satisfied by
#(y,%). Apart from the nature of y(f), the distribution of random points
on the {-axis need not necessarily be Markovian. If z(n, {) is the proba-
bility that » points have occurred between 0 and ¢ the probability of
occurrence of further random points between ¢ and ¢+ d¢ depends not only
on the number » but on the positions of the events on the t-axis as well.
However, if we confine ourselves to a renewal process progressing with
respect to ¢, it is possible to write down integral equations for the
probability frequency funection of u(t).

Let @(f) be the probability that ne random point occurs up to ¢
given that a random point occurred at ¢ = 0 and let P(u, t)du be the
probability that the random variable takes a value between w and u+ du
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given that a random point occurred at ¢ = 0. For reasons that will be
apparent presently, we shall, in dealing with P(u, ), remove from wu(t)
the random variable y (i) generated by the random point at ¢ = 0. To
obtain P(u,?) we need compound the probability frequency functions
of y(t) and «(?).

To obtain an integral equation for P(u, t) we focus our attention on
the first random point that occurs after ¢ = 0. The probability that the
first random point occurs between v and -+ dz is given by — ¢'(z)d7.
Thus P(u,t) satisfies the equation

¢
(3.1) Pu,t) = —ffdrP(u—y, t—7)¢ (z)n(y, t—1)dy.
¥y o

It is difficult to obtain explicit solution for P(u,¢) even in simple
cases. Defining the Laplace transform of P(u,t) as P(&,t) we can write
(3.1) as

t
(3.2) P(&, 1) = — [P(§, t—7)n(£, t— )¢’ (v)dr.

The moments of % can be obtained from (3.2) by differentiating equa-
tion (3.2) with respect to & at the point £ = 0 and solving the resulting
equation recursively. The first three moments obtained from (3.2) are
found be in agreement with formula (2.8).

4. Physical applications. As an example let us consider the secondary
processes generated by a Poisson process. We shall assume that every
Poisson event gives rise to a discrete Markovian process progressing with
respect to the same parameter, the random variable y(f) assuming only
integral values. The symbol n(¢) will be used instead of y(¢) for obvious
reasons and w(n,t) will be assumed to be the probability frequency
function of »(t) so that the probability that n(f) = n is just y(n, ).

In this case it is easy to compute the probability that the random
variable u(t) assumes the integral value m by considering the joint distri-
bution of the position of events that occur on the ¢-axis. The probability
that the first event happens between ?, and ¢; 4 dt,, the second between ?,
and ¢+ dt,, ... the ith event between ¢; and ¥+ di; and no further event

occurs up to ¢ is given by
(4.1) e~ *pdt e~ M )di,. .. e~ M=) dt e N = ¥t . . . di;.

Thus =(m,t) is given by
(4.2) =A(m,t)

= 2 --ufdtlfdtz fdf'ﬂl’('”’lf t—b)p(ng, t—13)...p(ny, t—ti)l

ﬂlﬂz...ﬂi
Ny tgt A
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Defining the generating funection of =(n,?) and y(n,?) as g(z, 1)
and x(z, %), we obtain

(43) g(=,1)
o0 t

—e* Y [, fdtz... fdt,,a”x(z t—1) 22y t—15)... x(2, t—1,).
N=00 tﬂ-""l
If we still fm't;her specialize and take x(2,?) to be Poissonian with
parameter x we find

(4.4) g(z,1) —e‘“z fazzc1 f dt,.. f dt A"exp[ #(1—2) Z(t—ti)]v-
n=00 i=1

The moments of » can be obtamed from (4.4). Alternatively the
moments can be obtained by making use of (2.5).

As a second example, let us consider a problem in Carcinogenesis,
In cancer research, the observations are usually confined to a guineau
pig (usually a mouse) on whom a certain amount of Carcinogen is admini-
stered (see for example Tucker [7]). The Carcinogen produces in the body
of a mouse hyperplastic foci according to certain probability laws. Each
hyperplastic focus passes through two stages in its mode of development
and becomes a tumour. And hyperplastic focus has a certain probability
of anihilation in either stage of its life and the conversion of a hyper-
plastic focus into a tumour is only a competitive process in the second
stage of its life. However, once a tumour is formed, it can never be re-
moved and the biological interest centers round the growth of these
tumours and the size of each tumour taking into account the number
of cells of which the tumour is composed. Since the administration of
carcinogen produces only local effects, the random variable that is of
interest is the total number of cells of which the tumours are composed.
The times of formation of tumours correspond to the random points
of section 1 and the growth of the cells in a tumour correspond to the
random process asgociated with the random point. Thus the formula (2.6)
may be used to obtain the moments of the number of cells formed. In
the model used by Tucker, it was assumed that the cells in any indivi-
dual tumour increase in a Poissonian way with a time dependent para-
meter, the time being measured from the time of administration of
Carcinogen. However, a more realistic model will be one in which the
growth depends also on the time of formation of the tumour. Such
a model exactly fits in with the stochastic process outlined in section 2.
Thus the formula (2.8) can be used for the calculation of the moments
of the total number of cells, of course the determination of the product
densities of various orders of the times of formation of tumours is an
independent problem falling outside the scope of the present work.
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Finally, we shall outline a simple problem in the statistical theory
of brightness of the Milky Way. Some years ago, Chandrasekhar and
Miinch ([2]) examined some interesting problems of Stellar Statistics
arising from the distribution of inter-stellar matter. It was assumed
that inter-stellar matter occurs in the form of discrete clouds, the clouds
being characterized by a distribution function governing the optical thick-
ness of the clouds. The contribution to the intensity of brightness arising
from the stars was assumed to be uniform and proportional to the extent
of the astrophysical system. In a more realistic model, the discrete nature
of the stars must be incorporated. In fact, there are two aspects of the
problem. The first relates to the distribution of the stars along the line
of observation while the second, to the distribution of intensities of the
individual stars. We shall assume that the distribution of stars along
the line of sight (f-axis) is specified by the various product densities
fal®y, gy +vvy @) (n =1,2,...) and that the intensities are independently
distributed, the probability frequency function governing the intensity I
of any star being given by & (I). In the notation of section 1, each random
point x corresponds to the cumulative transparency factor ¢ correspond-
ing to the extent x of the astrophysical system since the intensity I of the
star occurring at x is only observed to be IQ at {. Thus u(¢) represents
the total intensity measured by an observer stationed at the origin.
However, (2.9) cannot be used for the moments of u(¢) since the trans-
parency factors ©,,@,,...,@, do not représent independent random
processes. Nevertheless, the ecalculations up to (2.9) can be taken as
applicable in the present case except that the product

B{ly¢—e) "} B{ly(t—2)]%}. .. B{ly (t—2)]%}
is to be replaced by ‘

[ [ [ B} BATS)... B{TY X

Q Q2 Q;

lellelz"_Q:in(Q” Qz; reey Qi’ L1y Tay ooy wi)d91sz---in-

The integrations over Q,,Q,, ..., Q; can be performed and we shall not
explicitly calculate them since the method of calculation of such
integrals is straightforward (see for example Ramakrishnan and Srini-
vasan [4]).

In the last example, incidentally we have also indicated how we can
deal with certain situations where the secondary random processes are
correlated with each other. In fact, the moment formula (2.8) can be
generalized with obvious modifications to include the correlation between
different y’s.
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PROCESY STOOHASTYOZNE ZWIAZANE Z LOSOWYMI PUNEKTAMI
NA PROSTEJ

STRESZCZENIE

Procesy stochastyczne zwigzane z losowymi punktami na prostej odgrywaja
wielks role w zagadnieniach przyrodniczych. W niniejszej pracy autorzy zajmuja sie
procesami zwigzanymi z losowymi punktami na skohiczonym odeinku osi f. Przyj-
muje si¢, e kazdy z punktéw losowych, ktére to punkty nie muszg byé rozlozone
wedlug rozkladu Poissona, wyzwala proces y(f). Wyzwolony proces poczawszy od
danego punktu rozwija si¢ losowo wraz z parametrem {, przy ezym procesy wyzwo-
lone w réznych punktach moga byé Iub nie byé wzajemnie niezalezne. Proces wyzwo-
lony w punkcie ¢; generuje sygnal y({— t;) okreélony dla chwil péZniejszych. Przed-
miotem pracy jest badanie statystycznych wlasnofci sumy u(t) wszystkich sygnaléw
generowanych w chwili ¢ przez procesy wyzwolone przed ta chwila. Proces u(t) nie
jest na ogél procesem Markowa i préby bezpoéredniego wyznaczenia dystrybuanty
tego procesu sa bezowocne. Moina jednak wyznaczyé wszystkie momenty procesu
u(t) stosujac metody badania proceséw punktowych i prébujac wyrazié korelacje
sumy sygnaléw w zaleinofei od korelacji poszezegbinych sygnatéw jak réwniez kore-
lacji punktéw losowych na osi czasowej. Ponadto, dla proceséw odnowy moZna wy-
prowadzié réwnania calkowe na gestosé rozkladu prawdopodobiefistwa.

Axutorzy ilustruja proponowans metode formulujae kilka zagadnieh z zakresn
wtérnych proceséw Poissona. W zakofczenin pracy autorzy omawiaja krétko zasto-
sowania do innych zjawisk przyrodniczych, takich jak korelacje intensywnoéei &wie-
cenia Drogi Mlecznej i rozklady iloci komérek rakowych w procesie karcynogenezy.
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C. K. CPHHHBACAH m K.C.C. HEP (Manpao)

CTOXACTHYECKHE IIPOLECCH CBA3AHHHRE CO CAVYAHNHBIMHA
TOYKAMH HA nPAMON

PEBIOME

CroxacTudyeckHne NpONEeCCH CBABAHHHE CO CHYYallHHMH TouYKaMmM Ha npaAMOH
HArpanT BHAYUTENBHYI0 POJbL B HCCIEXOBAHMAX B eCTECTBO3HAHMHU. B srolt crarbe aB-
TOPH pPacCMaTPHBANT MONENb CTOXACTHYECKHX NPOINECCOB CBABAHHHX CO CRyYaliHRIMH
TOYKAMY HA KOHEYHOM HHTepBaxe ocm I. IlpeamosmaraeTcA 4TO KAMAAA cayualimas
TOYKA BHBHBAeT CaydalHu# nponece y (). Haummaa ¢ 9To#f To4YKM mpouecc passu-
BaeTCA ¢ TeueHMeM mapamerpa i, HO OTHeNbHHE HPONECCH BH3BAHH PASHHMHU CIy9aii-
HEHMY TOYKAMH MOTYT GHTbH, HIK He GHTHL B3AaUMHO HesaBuMCHMEMH. IIpomecc BHBBAaH-
HHA B TouKe {; mOpompaaeT curHax y(f—i;) onpemeNeHHHN INXA BCeX NOCAERYIOIAX
MOMEHTOB { 3a TOuKOM BH30Ba. B cTaThe aBTOPH HMCCIEAYIOT CTATHCTHYECKHE CBolicTBa
CyMMH u(f) CUrHAZOB NMOPOKAEHHHX B MOMEHTe { BCeMH IpONeCcCaMM, BEISBAHHHIMHA
mo sTroro MoMenTa. Ilponece «(f) Kak NpaBuiIo0 He ABIAETCA HmpomeccoM MapkoBa H mo-
NHTKA HENOCPEeRCTBOHHOTO ONmpefieleRnd ero GyHEKIHH pacupeNesieHHs OKASHBAOTCAH
G6esmonesEnME. Ho ygaerca onpefieuTs BCe MOMEHTH NpoNecca % (f) NPUMEHAA METORH
HCCJIEeKOBAHUA TOYEYHHX HPONECCOB M NHTAACH YCTAHOBUTH 3aBHCHMOCTh KOPpeIANUH
CYMMH OT KOppelAnuil OTHEeNLHHX CHFHAJNOB M KOPDPEIANHHE CIyYalHHX TOYEK Ha
ocu. [Ing mponeccoB BOCCTAHOBIEHHMSA MOMKHO TAKKe BHIBECTH MHTETPANLHHE yPaBHe-
HHA HA INIOTHOCTH PacHpejelieHHd BepoATHOCTel.

ABTOpH Nal0T DpuMepH (OPMYNIHPOBKH HEKOTODHX 3amad s o0macTH BTOPHY-
HHZX npoueccos Ilyaccona. B saKIIOYeHHN NPUBENEHO HECKONBLKHO IPHMeHeHMHE MeTOXRa
K ApyruM npo6ieMaM eCTeCTBOSBHAHHA: K MCCIENOBAHMIO KOPPEIANAYM MHTEHCHBHOCTH
ceera Momounolt Jloporm m pacmpejeleHuna 4HCIA PAKOBHX KIETOK B Ipomecce Kap-
IMHOI'@HEBH.



