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1. Introduction. Dean [1] investigated theoretically Taylor’s problem
on the two-dimensional motion of an infinite cylinder in a rotating homo-
geneous incompressible fluid by comparing two fluid motions: a general
two-dimensional motion of the cylinder in a fluid and a second motion
derived from the first by the superposition, on the whole system, of a con-
stant angular velocity £. It is noticed that the second motion is dynam-
ically possible whenever the first is and the motion of the ecylinder
relative to the liquid is not altered by superposition. It is further observed
that the stress system in the second flow differs from that in the first
only by a scalar stress. Noll [3] and Oldroyd [4] noticed that the result
holds for liquids having visco-clastic properties. Later, the present author
[6] recorded the validity of Taylor’s result for a general isotropic con-
ducting medium in the presence of a constant axial magnetic field. Re-
cently, Huilgol [2] examined the Taylor problem with the superposition
of a translation, in addition, to constant angular velocity.

The aim of the present note is to investigate this problem for a general
1sotropic incompressible conducting medium in the presence of a constant
axial magnetic field. The essential assumptions are the following: the
medium is weakly conducting (which always happens when the cylinder
is of infinite conductivity), non-magnetic, free of charges, isotropic and
incompressible, the motion is two-dimensional, the applied magnetic
field H is perpendicular to the plane of motion of the cylinder and the
perturbation in it due to interaction with the fluid velocity is negligibly
small.

2. Basic equations. The two-dimensional motion of such a liquid
is governed by the equations of magneto-hydrodynamics, written in the
simplified form as
(1) o(Dq|Dt) = DivS — oul Hq
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together with the continuity equation
(2) divg =0,

where ¢ = (u, v) is the fluid velocity, ¢ the density, ¢ the eleetric con-
ductivity, u, the magnetic permeability of the liquid, and H the intensity
of the applied magnetic field. Also, § denotes the stress tensor which, for
an incompressible fluid in motion, can be expressed as 8§ = —pI+ T,
where p is the isotropic pressure, and T the deviatoric stress tensor. Body
forces are neglected here, but any conservative system of body forces
can be freely accommodated by a simple adjustment in the pressure

contingent.

The equation of continuity (2) is identically satisfied by intro-
ducing the stream function vy, satisfying the equations u = —dy/dy
and v= dy/ox.

We compare two plane motions: (i) a motion of a cylinder in the
liquid in on incrtial frame OX Y and (i1) the motion of cylinder in a second
frame, denoted by 2, which is obtained from (i) by a three-dimensional
translation V(¢) and by a superposed rigid rotation £(¢), normal to the
plane of motion. These two motions are designated by the subscripts 1
and 2, respectively.

If (u,, v,) and (@, b;) be the components of the velocity and accel-
eration, respectively, in the first motion, then the velocity (u,, v,) and
acceleration (a,, b,) in the second motion can be expressed in terms of
the Lagrangian coordinates

(3) Uy = Uy — Y —6, v, = vl—l-.Qw—t.Z
and
(4) @y = a;—20Qv,— Pw—8, by, =b,+20u;,— Qy—d,

where ¢ and d are components of V(t) in the directions # and y of the
inertial frame 1, and the dot (-) denotes differentiation with reference

to time ¢.
The strcam functions %, and v, in the two motions are now

related by
Yo = v, +3 2% (22 + y?) +cy —dw.

Since V() is independent of the space coordinates, curlV = 0 and
hence V can be expressed as the gradient of a scalar ¢,

V =V(cx+dy+ez+f).
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The equations of motion (1) in the two motions in the directions z
and y can be written as

0 0
oa, = 5; [Sa:z:]r + "@ [Sa:y]r - o'luezaﬂz Upy

0 0
Qbr = % [Sa:y]r + @ [Syy]r _ Gluiﬂz’vr’
together with the boundary condition
(uﬂvr)n:"-— T:172’

on I', where s and n denote the directions of the tangent and outward
drawn normal, respectively, at a point P of I', the contour of the cylinder,
and («,, v,), is the velocity along n.

From the principle of material indifference, the deviatoric stress tensor
for an isotropic incompressible medium in motion remeins unaltered by
the superposition of rigid motions to the inertial frame. Hence, in the two
motions 1 and 2, 7, = T,. From [5] we obtain

0
o(a—a,) = — 'é;‘(pz_pl)_fwiﬂz(uz_ul)
and
a 2 2
o(by—b;) = “@(Pz-pl)_aﬂeﬂ (v —y).
Employing (3) and (4) and rearranging, we get
0 oy - .
5(1’2—1’1) = 9[29'(%:E +~Qz“f'+0] —}-quiH2(Qy+c)
and

0
dy

which yield on integration

0 . .
a?,l +92y+d] + oplHY(— Qx +d)

(D2 —p1) = 0»[29

Pr—Pr=0(2Qp, + 3 Qv+ V1) + o H* (V-7 —2Q4) + C,

where A is the area enclosed by the contour Iy and C is the constant
of integration, independent of the space coordinates (z, y).

We thus have: if a plane motion of an incompressible medium be
dynamically possible in an inertial frame of reference, the same motion
is also possible in any other frame of reference which is rotating with
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a constant angular velocity about an axis normal to the plane of motion
and also when this frame undergoes a time dependent but spacially inde-
pendent translation. This result is thus equivalent to the introduction
of a conservative body force. We thus establish the Taylor result holding
for any isotropic conducting medium in the presence of a constant magnetic
field and a superposition of a three-dimensional translation.

3. Force system on the cylinder. The reaction (F,, G,) per unit length
of the cylinder and the couple H, exerted about the centre of mass (x,, ¥,)
of A are given by

F, = [{[8z]rcos(n, x)+ [Sy],sin(n, x)}d4,
r

@, = [{[Sa]rc08(n, @)+ [8,,]sin(n, 2)}d4,

and

H, = [(n{[Sz]cos(n, )+ [8;,]sin(n, 2)} -

— E{[8yyl,c08(n, x)+ [8,,]sin(n,x)})d4,
where & = z,—x, and n = y,—y. Employing these results, we obtain
F,—F, = —A[o(Q*2,+202Vy+¢)+ouHc],

Gr— Gy = Alo(Pyo—20U,+d) + ot H'd],
and
H,—H, = —A[o{D*(cy,+ dw,) +éd — cd} + o H (6d — cd)],

where (U,, V,) is the velocity of the centre of mass of A in the motion 1.
Let M be the mass per unit length of the cylinder in plane motion. Then
the forces on the cylinder in the second motion are statically equivalent
(i) to the forces in the first motion and (ii) to another force with compo-
nents

—M[Q2y+22V,+¢+ oplH?c /o]
and
+M[ Py, +22U,+d+ ouH>d[o]
together with a couple of magnitude
— M2 (cyo+ dwy) + 6d — 0d + opl (6d —od) o]

about the axis of rotation.
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0 RUCHU OBROTOWYM I POSTEPOWYM
WDWUWYMIAROWYM PRZEPLYWIE IZOTROPOWE] CIECZY PRZEWODZACE]J

STRESZCZENIE

Autor analizuje zagadnienie Taylora dwuwymiarowego ruchu nieskonezonego,
obracajgcego si¢ walca w cieczy jednorodnej, niescisliwej, przez poréwnanie ogdlnego
dwuwymiarowego ruchu walea w cicczy z ruchem powstalym z poprzednicgo przez
nalozenie na caly uklad dodatkowego ruchu obrotowego o stalej predkosei katowej.
Celem tej noty jest zbadanie tego zagadnienia w przypadku dowolnej, izotropowej,
niesciliwej cieczy przewodzacej w obecnosci stalego pola magnetycznego. W istotny
sposob wykorzystuje si¢ zaloZenia, Ze ciecz jest slabo przewodzaca, amagnetyczna
i pozbawiona ladunkéw, ze ruch jest dwuwymiarowy, dzialajace pole magnetyczne
prostopadle do plaszezyzny ruchu walca i Ze mozZna zaniedbaé zaburzenia tego pola
wywolane w nim przez ruch cieczy.



