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ON THE LIMIT BEHAVIQUR OF A SEQUENCE OF QUANTILES
OF A SAMPLE WITH A RANDOM NUMBER OF ITEMS

1. Introduction and preliminaries. One of the important problems
of mathematical statistics concerns the limit behaviour of statisties.
Investigations dealing with those problems in the case of an order statistics
play a particulary important role in the statistical inference. It is partly
because some properties of those statistics do not depend on the distri-
bution from which the random sample is obtained. Limit behaviour of
order statistics and, particularly, of quantiles of random samples of size
% with n — oo was investigated by many authors (see, e. g., [1], [5], [7],
[8] and [4], where the bibilography of this subject may be found).

Now, we are going to consider the limit behaviour of quantiles of
a random sample of size N, where .V is a random variable taking positive
integer values n, n = 1, 2, ..., with probabilities p, depending on a para-
meter 7> 0, i. e,

(1) Pp = Pul(t) =P[N(z) =n], n=1,2,...

We need the following notation:

Let (X4, ..., X,) be a random sample of size » from the distribution
with distribution function F(x). A quantile of that sample we denote
by Y®, where k = [rA]+1 with 0 < A < 1, and [«] stands for the largest
part of x. Further on, we assume that for every 4 of the interval 0 < 2 < 1
there exists at least one value a; such that

(2) A-P[X = ;] < Fay) < 2.

Of course, this value @, is a quantile of the distribution funection
F (.’I}).

2. Almost complete convergence of a sequence of quantiles of a sample.
In [8] one can find the conditions under which a sequence of order statistics
converges in probability and, even with probability 1, to a quantile of
the distribution from which the random sample was obtained.
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Some limit theorems dealing with random-sums can be obtained
immediately.

THEOREM 1. Let a random sample (X, X,, ..., X)) be taken from
the distribution with distribution function F(x) such that there erists only
one value a, satisfying inequality (2). If N — oo in probability with v — oo,
then the sequence {YQ} (K = [N,]14+1, 0 < A < 1) converges in probability
to a,, i.e.

(3) HmP[ | Y —a, =] =0  for every ¢> 0.

Proof. It is known that the sequence Y{ —a, converges to 0
with probability 1 [8]. Using Lemma 2 of [2], we obtain (3).

Now, we are going to prove a stronger result.

THEOREM 2. Let a random sample (X,, X,, ..., Xy) be taken from the
distribution with distribution function F(x) such that there exists only one
value a; satisfying (2). If the parameter v runs through the set of positive
integer numbers n =1, 2, ..., and if, for every é > 0,

(1) EP[

n=1

N
.__L|>6]< 0,
n

where L is a positive random variable with values from the interval (a, b),
0<a<b< oo, then

() Z P[IY®—a,| > ¢e]< oo  for every ¢ > 0.
n=1

Proof. Let the cvent E,, = [|N/n—L| < §]. Then we have
PLYR ~a;l > e]<P[E,J+P[IYR ~a)| > ¢, E,]

< PLEI+PYY —a) > &, n(a—8) < N < n(b+6)]

<P[EJ+P[  max  |¥{P—a>e]
[n(a—d)]<m<[n(b+9)]
_ [n(b+9)] [n(b+9)]
<PE)+ D PIYP>atelt D PIIP<a—el.
m=[n(a—9)] m=[n(a—06)]

By the definition of the empirical distribution function (see [4],
p. 374), we obtain

k
(6) PIY( > 0,4 ¢] = P[S,n(a-,.+e> <]
m
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and

kE—1
(1) PLY( < a,— ] =P[S,,,<al—e>> - ]

where §,,(z) denotes the empirical distribution function.
The estimations given in [4], p. 379, allow us to write

(8) P[Sm(a,1+s)<%]<P[]Sm(az+s)—F(a,1+a)|> :—;-971]
and
(9) P[Sm(az—w >%] <P[|Sm<az—s)—1ﬂ(a,.—e)| > —%"72]7

where F(a;+¢e)—A =%,> 0, and F(a;—&)—4i =1, <0.

Taking into account that S,,(x) for fixed x is the frequency in a Ber-
noulli scheme with probability of success p = F(x) and using the estimate
given in [3], we obtain

(10) PLISp(a1+e) —F(ay+¢)| = %771]<29XP{"’"'3§}7
where ¢ = min(a‘gm, F(a,+ ¢), 1—F(a,1+s)), and, analogously,
(11) PLISp(a1—e)—F(ay—e)| = — 1n:1< 2 exp{—ms}},

where &, = min (— }7,, F(a,—¢), 1 — F(a;—¢)).
According to (6)-(11), we obtain

(12) PT —a, > ¢]
<P[E,]1+2(n(0+ 81— [n(a—8)])(exp{— [n(a—8)]e} +
+exp{— [n(a—0)]el).

Now, observing that the right-hand side of inequality (12) is the
term of a convergent series, we obtain (5).

Example. Let
N = D'Z,
k=1

where Z,, k = 1, 2,... , n, are random variables having the same Poisson
distribution with parameter x. From Hsu-Robbins’ theorem [6] results

- |l >z,
ZP k=q; —p| =8| < oo for every 6>0,
n=1

80 (4) holds. Thus, for such a random variable, one can use Theorem 2.

3 — Zastos. Matem. 13.3
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3. Limit distributions of quantiles of a random sample. Now, we
are going to investigate the limit behaviour of quantiles of a random
sample (X;, X,,..., Xy) of size N from a continuous distribution with
distribution function F(x) and probability density f(z)

The fellowing theorem holds:

THEOREM 3. Let F (), f(x) and a,(0 << A < 1) be the distribution function,
density function and quantile of the random variable X, respectively. Neuxt,
let Y (K = [NA]+1,0<i<1) be the quantile of a random sample
(X1y Xoy .oy Xy), where N is a positive integer-valued random wvariable
independent of X. If the density function f(x) is continuous and positive
at the point x = a,;, and if, for every ¢ > 0,

28]:0,

where a = EN — oo with v — oo, then the quanitile of the random sample
(X1, Xoy ooy Xy) s asymptotically normally distributed with parameters
a; and (A(1—2)/[a])*/f(a;).

Proof. Let

N—a

(13) lim P[

T—>00

l o

Zi = ]/ mq—f_l) fla) (Y —ay),

and let hy, (2) be the density function of Z{™.
It is sufficient to prove that, for any arbitrary pair of real numbers
21, 2, such that 2, < 2,,

22
1
lim Pz, < 2% < 2,] = lim j by (2)dz = 1/_ f exp{—22[2}dz.
2n
1

T—>00 T—>00

Simple calculations give

o0 (- <] 29
Ple, <ZP < 2] = Y Pley < ZP < 219, = Y Py [ hinl(2)de
n==1

= pn zzhkn(z)dz+ pn zzhkn(z)dz = v pn 22hlm(z)dz‘l‘
L

jn—a|=as 2y |n—a|<ae 2 |n—a|=as 2y

N — £2 2]
2 <] i@t 3 [ ()= hga )

a In—al<¢a 2

+p|

Now, we observe that according to (13)

Z Pnf by (2) d2 < 2 P --P[

\n—aj=ac |n—al>=ae

N—a

!)s]—>0 as T — 00,
)
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and
N _ Z_ 22
lim P H ‘ < s] Bga (2)d = Tim f gy (2) d
TT—>00 a T—>00
21 z

1 2
= — expi—=z2/2ldz.
e f {—/2}

The last equality follows from the known theorem concerning the
asymptotical distribution of a quantile of a sample [8].
To complete the proof, we must still estimate

2 ]’nf wn(? hk[a] ))dz

|n—a|<ea

Z
(| N —a 2
<P <ol [ max (o) - huga(allas
L a i a(l—e)<n<a(l+8)
—~ -+ — Z2
N—a
<P <e f max [y (2) — Py ()] d2
: a 1, la-al<n<la(i+e)]
(| N—a| ] _
<P < &¢| max Jf (hn[a](z)— min By (2)) d2,
L a - \ [a(1-g))<n<[a(1+¢)]

Z9

f ( max Pin (2) — Pygq (2)) dz} .

[a(1-8)<n<[a(1+¢)]

On the basis of the considerations given in [4], p. 380, we get

M1=1) = )
1 n—k+1 1 f(a“L]/ n fla)/]
Vor n 1—)‘) f(a;)

k — A=1\ 1+Q(n,z)
2V = z2—
((% ) " l/n) Vi(l—2)

(k—1)e2+ (n—k)d2 22 (1)
- no

' 2 %

C) T(2) (

- exp

Y

where k = [ni]+1, 0 < i< 1, and

A

¢ = ]/—— (1+Q(n,2)), d= ]_—Z(l Q(n, 2)),

lim @ (n,z) = 0;

n—oo
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and a similar formula for Ay, () obtained from (14) by putting there [a]

instead of n.
According to (14) and to the similar formula for hyy,(2), we obtain

T—>00 [a(1—e)]<n<[a(1+4-€)]
and
lim ( max e (2) — Ry (2) = 0.
=200 [a(l-8)]<n<[a(1+¢)]
Hence

22
lim Z Pn f(hkn(z)_hk[a](z))dz =0,
21

T—00 |n—aj<ea

which completes the proof of statement of Theorem 3.

Remark. One can easily see that, for the random variable N of the
example of Section 2, a == nyu and (13) holds. Thus, Theorem 3 can be
applied in this case.
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0 GRANICZNYCH WEASNOSCIACH CIAGU KWANTYLI
Z PROBKI 0 WIELKOSCI LOSOWE]

STRESZCZENIE

W pracy podano pewne graniczne wlasnoéei kwantyli z proby zawierajacej
losowy liczbe elementéw. Wlasnoéci te ujete s3 w trzech twierdzeriach, bedacych
uogdlnieniami twierdzen Gniedenki i Smirnowa o granicznych wlasnosciach kwantyli
z proby o liczebnosei n, gdzie n — oo.



