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INVERSE CAUCHY PROBLEM AND UNBIASED ESTIMATION

0. Introduction. In this paper we consider an tnverse Cauchy problem
which consists in solving a certain integral equation. This problem has
two different faces: one is concerned with the construction of the minimum-
-risk unbiased estimators and the other with a problem in the theory
of heat conduction. The literature on the first problem is rich (see, for
example, [2], [3] and [6]-[12]). In Section 1 we give a description of the
second problem. Section 1 contains also a formulation of the main problem
of this paper. In Section 2 we give the notation and definitions. In Sections
3 and 4 we prove theorems which are helpful in the proof of the main
theorem of this paper, i. e. in the proof of Theorem 2 given in Section 5.
In Theorem 2 we give the solution of the inverse Cauchy problem. Next,
in Section 6, we use the obtained results to the construction of minimum-
-risk unbiased estimators of functions of parameters in the cases of the
normal distribution with both unknown and known variances (Theorems
3 and 4, respectively). In Section 7 we give examples of applications of
the theorems proved in Section 6 to the construction of minimum-risk
unbiased estimators.

1. Inverse Cauchy problem. The main problem considered in this
paper is to find a solution ¢ (v, ») of the integral equation

n/2 1 n
(1.1) g(0,t) = f(%) eXP[—Et—Z(wi—G)’] @(7, s?)dz,
R"

i=1

where g(6, t) is a known function defined on Ex (0, T), T >0, R" is an
n-dimensional Euclidean space, and

5:%2% and s”=2(w¢—§)2.

We propose to call this problem the inverse Cauchy problem for the
following heat equation:

o 1
(1.2) (—a?_EA)f(e“""e"’t) = 0.
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The term “inverse Cauchy problem” can be justified as follows.

Let ¢(0, 1) stand for the temperature in the space R" at a point 6
on the line 6, = 0, = ... = 0, at the instant {. The solution of (1.1)
consists in finding a function ¢ (%, s?) which may stand for the cylindrically
distributed temperature at the initial instant { = 0. Therefore, the above-
-mentioned problem is “inverse” to the Cauchy problem which consists
in finding the temperature f(6,,...,60,,%) at the point (6,...,0,) at
the instant ¢ provided the initial temperature at the point (0,,...,6,)
i8 given‘by a function (6,,..., 0,).

In Section 3 (cf. Theorem 1) we prove certain properties of the pair
g(0,t) and ¢(Z,s?) which satisfies equation (1.1). Then, the question
arises: whether a pair g, ¢, having these properties, is a solution of (1.1).
An answer to this question is given in Theorem 2 and Corollary 5.1
(Section 5). Theorem 2 and Corollary 5.1 give the solution of the inverse
Cauchy problem (1.1).

2. Definitions and notation. Let T be a fixed positive number, let
D = Rx[0, ) and k(t) = 1/2(T —t). Further, let Ly, wtyy L7y Ly and
L, stand for sets of functions defined as follows:

1. L,y stands for the set of functions defined on E" x (0, T) for
which

1y = [ 1F(@15 s @ny )13exp [ = R()) Y 0]do < + oo
R"

for te(0,T).

2. L, r stands for the set of functions defined on R" for which

1 \
Wl = [ 10y auiesp [ —( 5 e) Dat|ao < + oo
R"

for every ¢>0.

3. Ly stands for the set of functions defined on D x(0,T) for
which

1FN Ly = f |F (v, u, t)|2u®~D2exp [ — k(2) (nv? +u)]dvdu < + oo
D

- for te (0, T).
4. Ly stands for the set of functions defined on D for which

1
Il = [tp(o, wiraeexp] —{ o o) (nos-+) | aodu < + oo
D

for every &> 0.
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A function F(v,u,t) defined on D x(0,T) is called holomorphic
provided F is extendable as a holomorphic function to the set
Dy = {(2y) 22y 23): 2y = U1+ 10g, By = Uy + VU, 23 = §;+ il
and (v, Uy, ;)€ B X (0, 00) X (0, T), (03, us, ) e R},
A function g(v,t) defined on R x (0,T) is called holomorphic pro-
vided ¢ is extendable as a holomorphic function to the set
Dy = {(#1, %2): 21 = 0, +10p, 2, = 1,44,

and ('Dl, tl)e .R X (O’ T), (vz, tg)e .Rz}o
Moreover, let

1 1/2 1
(2.1) N(v,8;4) = (Tm;) exp[_?t(l_@)z]’

(2.2) I'(u,t,n; )

1 a9 Oy () T(k+1/2)
exp[ “”’]() 2 @) T(htn3)’

B Vornt
(2.3) Gn(vy uyt5 Ay m) = N(v,t/n; A) I (u,t, n—1; 7),

where I'(-) stands for the gamma function.

Remark. If X,,..., X, (n>1) are independently distributed
normal random variables with means 0,,...,0,, respectively, (— oo
< 6; < o0) and identical variances ¢ > 0, then

A3 Dndish 13 w-snne
n(—z 1,2(01: 45 4, n)

are the density functions of X, 8% and (X, §2), respectively, where

and

n

— 1 c B —
X = — Xi alnd. Sz = (X.t _— X)z.

Random variables X and 8% are independently distributed for each
(01 -y Ony 2).
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3. Properties of solutions to the inverse Cauchy problem.
THEOREM 1. Let ¢e Ly and

(3.1) 9(6,1) = [@(4, n)Ga(6,0,¢; 4, n)dAdy
D
for (6,t)e R x (0, T),
(3.2) F(vu,t) = f‘P(ﬂv 7)Gp (v, u, t5 A, n)dAdy
D

for (v, u, t)e D x(0, T).

Then

(a) ¢ is a solution of equation (1.1) if and only if ¢ is a solution of
equation (3.1) with identical g(-, +);

(b) there exists at most one solution of equation (1.1);

(e) g(-, -) ts holomorphic;

(d) at all continuity points of ¢,
(3.3) lim F (v, , t) = @(v, u);

t—0

(e) it follows that

(3.4) Poyu = 3 =D (ﬁ)k.f"g(w,n,

F E'T((n—1)/2+Fk) \2
where
3.5 7 0 1 02
(3.5) ot 2m o0vr’

and the series in (3.4) is absolutely and almost uniformly convergent;

(f) F(v, u,t) is holomorphic;

(g) the relation
(3.6) F(v, 0,¢) = g(v, 1)
holds.

Proof. The kernel of the integral on the right-hand side of (3.1)
is the density function of » independent normal variables with the same
mean 6 and variance ¢. Thus, in view of the Remark in Section 2, part (a)
is obvious.

Since G, (0, 0,t; A, n) is an exponential family of distributions and
(4, 7) is the complete sufficient statistic for (0,?)e R x (0,T) (see [5],
Theorem 1 of Chapter IV), it follows from ’

[@(3y 1)@a(6,0,8; A, m)dAdn =0, (6,8)e Rx(0,T),

that ¢ = 0 almost everywhere. Therefore, equation (3.1) has at most one
solution, where ¢g(-, -) denotes the same funection as in equation (1.1).
Hence, the inverse Cauchy problem (1.1) has at most one solution.
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Part (¢) is an immediate consequence of a theorem on exponential

families of distributions (see [5], Theorem 9 of Chapter II).
Next we prove part (d). Let us remark that

1 6)2
(3.7) F(; Y’ e,-,Zwi—o),t)
1 \mi2 1 %
= ('2?) R{‘P(fa SZ)GXP[— m ¢=§1 (; — ei)z]dﬂﬁ

is the Poisson integral. According to a theorem of Weierstrass (see [4],
Section 56.8) we have

, 1 . -
(3.8) I,i?F(WZ 0;, 2 (6;—0)% t) = (01, ..., 6,)

= ‘P(§’ 2 (6; —6 );)

at cach continuity point of ¢(0y, ..., 6,). But for every point (v, u)e D
there exists 0¢ R® such that

1 _
v =— E 6; and u = E (6, —0)2.
n

lim # (v, 4, t) = @ (v, u)

t—0

Hence,

at each continuity point of ¢. Thus, the proof of part (d) is complete d
Let G, (v, u,t; 4, ) and J be given by (2.3) and (3.5), respectively.
We shall now prove that

‘ v I((n—1)p2) w
(3.9)  Gn(v,u, 85 Am) = ; k! I((n—1)/2+F) (7

Remark that
(3.10) G(v, u, 1; Ay 1)

k
) T @, (v, 0,15 4, n).

oo

I((n—1)/2) [ u] N (un[t)*  T(k+41/2)
R N 2 @) T(k+(n—1)/2)

= G, (v, 0, 15 4, )
k=0

and that the series appearing on the right-hand side is absolutely and
almost uniformly convergent with respect to (u, t) on the set R x (0, o).
Next, replace exp[—u/2t] by its Taylor expansion with respect to «,
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and change the order of summation. After an easy calculation we get

G (vu, t; 4, 7m)

~1\ © 1 * I'((n—1)/2 +k)
=P(n2l)gk!r((n—n/zm)(%) [(_1)k = 1 . X

I ) R

It is now easy to prove by induction on k that

kan('v, 0,¢; 4, 7m)

=[(_ x T(n— 1)/2+k)2( ()PU-F; 1/2)(;7t)j]><

X Gn(v, 0,85 4, 7).

Thus, the proof of formula (3.9) is completed.

Because @e Ly, integral (3.1) is absolutely and almost uniformly
convergent on R X (0,T). Moreover, because A*n'¢(4, n)e Ly for Ek,1
=0,1,2,..., we can differentiate under the sign of the integral. There-
fore,

Trg(v,1) = [ @k 1Ty (v, 0,1; 4, n)dAdy.
D

Hence, by the absolutely and almost uniformly convergence of
series (3.9) and absolutely and almost uniformly convergence of integral
(3.2) on D x(0,T), we obtain (3.4).

To prove part (f) it is enough to note that, in view of (3.7) and of
Theorem 9 of [5], Chapter II,

F(%Z 0 3 (0 —’é>2,t)

is extendable as a holomorphic function to the set (6,,..., 6,)eC",
Rete (0, T), Imie R.

Since part (g) is obvious, the proof is completed.

4. Cauchy problem for the heat equation. The Cauchy problem,
as it is well known, consists in finding a function fe L,z With contin-
uous partial derivatives of the second order with respectto 6,(i = 1, ..., n)
and of the first order with respect to ¢ and, moreover, satlsfymg the
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conditions

o 1 i
(4°1) ('5{ —EA)f(oh eeey Bm t) = 07 (617 seey Gmt)ER X(O’ T)7
(4'2) lgllf—w”-r‘n,k(t) = 07

where ye L, 7.
We need the following theorem which may be easily deduced from
Theorem 1.3 proved in [1]:

THEOREM (Eidelman). The Poisson integral

(4.3) (b1, ..., 05, 1)

1 n/2 1
~(=) R{w(wl,...,wn)exp[——gz(w,-—ei)Z]dw

is a solution of the Cauchy problem and satisfies the inequality

(4'4) ”f”Ln,k(t) < GHw”Ln'T'o,
where C is a constant.
In the class of functions fe Ly, ks Which satisfy the condition

T
(4.5) J 1Sz gy B < o0,
0

the solution of the Cauchy problem is unique.
In the proof of Theorem 1 (part (d)) we noticed that if » is a fun-

ction of
1

r = — . 2 — L —r)2

z nZw, and s Zj(ac1 z)
only, i.e. if
(4.6) P(&yy -oey Tp) = @(7, 8%),
then f is a function of (1/n))6;, Y'(6;—6)% and ¢t only, i. e.

1 N -

(4.7) $1y o 0008 = F (5 D01, 3 0,-0,1)

where F (v, u,t) has continuous derivatives of the second order with
respect to v and %, and of the first order with respect to ¢. By differentiation
we infer that

0 1 1 _
(4.8) ('(% —?A)F(‘n—z 01"2 (6; —0), t) =0
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if and only if
0 1 02 0 02
4, - (n—1)— —2u——| F t) = 0.
(4.9) (ﬁt 2n 0v? (n—=1) ou “auz) (0%, 1) =0
COROLLARY 4.1. Let e Lp. Then
(4.10) F(v,u,8) = [ (A n)Gp(v, %15 4, n)didy
D

18 a solution of the following problem:

0 1 02 . 0 02

)F(fv, u,t) =0,

(vy u, t)e R2x (0, T);
(412)  Lm|F (o, 4, ) —p(0, Wlgy, =05 (0, % e Dx (0, T).

t—0

In the class of functions F (v, u, t), which satisfy the condition

T
(4.13) [ 1B (o, u, Dz, d < oo
0

and have continuous derivatives of the second order with respect to v and wu,
and of the first order with respect to t, the solution of problem (4.11)-(4.12)
8 um’qye.

In view of the connections of equation (3.2) with (3.7) and of equations
(4.6)-(4.9) with the Cauchy problem (Eidelman’s Theorem), we obtain
the assertions of Corollary 4.1.

Let us remark that the function F(v, u,?) appearing in Corollary
4.1 may be considered as the solution of the Cauchy problem cylindrically
symmetric with respect to the line 6, = ... = 6,.

Remark. In the case of a spherically symmetric solution of the
Cauchy problem it is easy to obtain an analogon of Corollary 4.1, where
G, should be replaced by I'(u,t, »; ) and an analogon of part (e) of
Theorem 1, where

I'(n/2)
k'F (n/2+k)

k g%
(2) o I'(0,1; n; n),

I'(u,t,n;n)
while I'(u,t, n; n) is given by (2.2).
We can easily deduce from Corollary 4.1 and Theorem 1, part (a),
the following

COROLLARY 4.2. Let Fe Ly, and e Lp. If F is a solution of problem
(4.11)-(4.12) and if (4.13) is satisfied, then @(Z, s?) is the unique solution
of the inverse Cauchy problem (1.1) with ¢(0,t) = F (0,0, t).
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COROLLARY 4.3. Let Fe Ly satisfy (4.13). Suppose the limit

(4.14) lim F (v, u, t) = @ (v, u) o
t—0

exists at almost every point (v, u), pe Ly and ¢ is continuous at almost every

point (v, ). If F is a solution of problem (4.11)-(4.12), then ¢(Z, s2) is the

unique solution of the inverse Cauchy problem (1.1) with g(6,t) = F (6, 0, 1).
In the next sections we shall nse Corollaries 4.2 and 4.3 to the con-

struction of the solution of the inverse Cauchy problem (1.1). Moreover,

the corollaries will be used in the proof of Theorem 2.

5. Solution of the inverse Cauchy problem. Let us suppose that there
exists a solution of the inverse Cauchy problem (1.1). Then, it follows
from part (¢) of Theorem 1 that ¢(0, t) is holomorphie.

Now, let us consider the inverse problem. Suppose ¢ is a holomorphic
function, series (3.4) is absolutely and almost uniformly convergent and
the function ¢, continuous at almost every point of D, is defined almost
everywhere by (3.3).

In Theorem 2 and Corollary 5.1 we prove that under weak restrictions
the funection ¢ is a solution of the inverse Cauchy problem.

THEOREM 2. Let g(v,t) be a holomorphic function and let series (3.4)
and their derivatives be absolutely and almost uniformly convergent on
R2x (0, T). Let F, given by (3.4), be an element of Ly . Finally, let pe Ly
and satisfy the condition

(5.1) lim |[F — gl = 0.
If t—0
T /

J 1z, dt < oo,
0

then (%, s2) is the unique solution of the inverse Cauchy problem and con-
dition (d) of Theorem 1 holds.

Proof. To prove this theorem it is enough to note that the function
F given by (3.4) satisfies equation (4.11). Hence, F is a solution of problem
(4.11)-(4.12). The assertion of Theorem 2 follows now from Corollary 4.2.

COROLLARY B.1. Let ¢ be defined almost everywhere by (3.3) and contin-
uous at almost every point (v, w). If the assumptions of Theorem 2 regarding
9, F, and ¢ are satisfied, then (%, s2) is the unique solution of the inverse
Cauchy problem.

Remark. A counter-example showing that assumption (5.1) eannot
be omitted will be given in Section 7.

Evidently, Theorem 2 and Corollary 5.1 provide a manner of deriving
the unique solution of (1.1).
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The right-hand side of (3.1), which is the expected value of the
funection ¢(v, u), may be considered as a mapping A from L, into a set
of holomorphic functions A¢ =g.

On the set of functions g(-, -) satisfying the assumptions of Corol-
lary 5.1 we can define for the mapping A the inverse mapping A~!
having the property A~ 'g = ¢. Note, that A™! is of the form

A—lg = Bg It=07

_ c I'(n—1)/2 u\*
B = Z k' ((n—1)/2+k) (2) 75

k=0

where

while 7 is given by (3.5).

6. Application to the problem of unbiased estimation. Let X,,..., X,
(n >1) be » independent and identically distributed normal variables
with mean 6 (— co < 0 < o0) and variance ¢t (0 <t<T). Let g(6,?1)
be a known function. The general problem of the theory of unbiased
estimation is to find functions vy(24,...,,), called estimators, having
the property

(6.1) Ee,tL(‘Po; 6,1) = inon,tL("Pi 0, 1), (6,t)e R x(0,T),

where L(-; 0,1), called the loss function, is convex for each 6,:. The
infimum in (6.1) is taken in the set of estimators y(-) satisfying

1 n/2 1
(6.2) fw(ml, ey Ty) (?n—t) exp[—gt—z (wi—ﬂ)z]dw
R"

= Bop =g(6,1) for (6,t)e Rx (0, T).

An estimator satisfying (6.2) is called unbiased, whereas y, satisfying
(6.1) and (6.2) is called a uniformly minimum-risk estimator in the class
of unbiased estimators or, for short, UM R-estimator.

In view of Rao-Blackwell’s theorem, it is sufficient to consider in
(6.1) estimators based on sufficient statistics

z=%2 X, and 8= ) (X—Xp

only. Since X and S? are complete, there exists at most one unbiased

estimator of g(0, t) based on X and S2. Hence, in view of (6.2) and (1.1),
we have the following

. ':.F]EHEOREM 3. Suppose X,,...,X, (n>1) are n independent and
identically distributed normal variables with mean 6« R and variance te(0, T').
Further, let the loss function L(-; 0, t) be convex for every (0, t). Then ¢(x, 83)
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is a UM R-estimator of g(0, t) if and only if (-, -) is a solution of the inverse
Cauchy problem (1.1).

Remark 1. From Theorem 3 it follows that Theorem 2 and Corollary
5.1 may be used to the construction of the UMR-estimators of g(6, ?).

Remark 2. If a function F is known and the assumptions of Corol-
laries 4.2 or 4.3 are satisfied, then the function ¢ is a UMR-estimator
of ¢g(0, ).

Now, let us consider the problem of construction of UMR-estimators
for the case where the variance is known and equal ¢,. Let g(v) be a holo-
morphic function. Remark that series (3.4) is now of the form

=y D(n—1)/2) [w\t[ 1\ o%
(6.3) F(v, u,t) = F(v, u) = kZ_:k!F((n—l)/%){—k)(E) (— %) W"’(”)’

Suppose the series is absolutely and almost uniformly convergent.
Let us write

azk
(6.4) Fi(v, u) = w* — g (0).

If, for k¥ =1,2,..., the functions Fy(x, s?) have finite expected
values, then there exist the conditional expectations E,,(Fy(%, s?)|X)
for k =1,2,...

Since X and 82 are independent, we obtain

rv=

- o
Boo|Fu(%, 8%)1 X) = By (82)° ( - g(v))

I((n—1)/2+k)( 0*
T((n—1)/2) (av‘*"“" ‘”’)M‘

= (2to)k

Suppose that F given by (6.3) is an element of Ly, . Then, F(z, s3, ¢)
is integrable term by term and we obtain

By, (7 (n—1)/2) ( 1

(n—1)/2+K) 4n

1 to 0%
%_( ) (a’vzkg( ))v=5.

1 to \¥ 0%
(6.5) bo) = > 37 (22 o

k=0

k
) B,y (7| X)

Let us write
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and
(6.6) @ (v, u) = F(v, w) = F(v, u,t),

where F, defined by (6.3), does not depend on ¢&.
It is easy to see that if

T
(6.7) J gl @ < oo,
0

then the assumptions of Theorem 2 on F and ¢ are satisfied. Thus, it
follows from Theorem 3 that in the case where (6, t) is unknown ¢ (%, s?)
is a UMR-estimator of ¢g(0). Since

(6.8) 1(Z) = B o(7, 87| X),

k(z) is an unbiased estimator of g(6) provided that the wvariance t, is
known. In view of Rao-Blackwell’s Theorem and the completness of
X, k(%) is the unique UMR-estimator of g(6). Thus, we proved the fol-
lowing R

THEOREM 4. Let X,, ..., X, (n>1) be n independent and identically
distributed normal variables with unknown mean 6¢ R and known variance t,.
Let L(-; 0), the loss function, be convex for every Oe R and let g(-) be
kolomorphic. Finally, let Fe Ly, and Fye Ly, be given by (6.3) and (6.4),
respectively (T >1,). If ¢, given by (6.6), satisfies (6.7), then h(Z) is the
unique UM R-estimator of ¢(6).

7. Examples.

(a) As we already mentioned, assumption (5.1) in Corollary 5.1 cannot
be omitted. In fact, let

(v, t —]/Tex [—i'v”]
g\, ) = e P o’ |’

Then, in view of (3.4), we have F (v, u, t) = g(v, 1).
Since ¢(v, ) = 0 at each point (v, u) with » # 0, it follows that

(T — ty™2

2 — 2 — ——
”F_¢”Lk(t) - ”g”Lk(t) = const l/m

and

But ¢(%, s?) = 0 is not a solution of the inverse Cauchy problem.
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(b) Now, we shall construct the UMR-estimator for 6°t". Let g(v, t)
= ¢*t". In view of (3.4), we have

F (v, u, t)
r+[s/2] k
n—1 1 w\k 1\
=P( 2 )g; kzr((n—l)/2+k)(?) v H(_% %

. o [k r 8 \,i—k —2j
(o — zzz(.)( )(),k 2,
( 7)1(29) AV AR v "
Moreover, let

(1.1)  o(v, u) = F(v, u, 0)
[s/2]

Y Kbl KA (—1y 1V
_F( 3 )Wuv2(r+j)!l’((n—1)/2+r—|—j)(2n)(2‘7)!X

j=0
. rﬂ')(s_) LAY
x( i N\2j)\2er )
Because the assumptions of Theorem 2 regarding g, F and ¢ are
satisfied, it follows from Theorem 3 that the function ¢(Z, s?) given by

(7.1) is the unique UMR-estimator of 6°¢".
It is possible to show in a similar manner that

R (n—1)j2) ([ s%\*
Sm“’; k!F((n—l)/2+k)(4n)

and

_wa I((n—1)/2) (32 )k

CoS % —

! —

£ E'I((n—1)/2+k)\ 4n

are the UMR-estimators of sinf and cos 0, respectively.
(¢) Let F(v, u,t) satisfy (4.9). Further let

g(v,t) =F(v,0,t) and ¢(v,u) =1limF (v, u,t).
t—0
As pointed out in Remark 2 of Section 6, if the assumptions of
Corollary 4.3 are satisfied, then ¢(z, s?) is a UMR-estimator of g(6, t).
It is easy to see that by these means UMR-estimators can be derived

from the functions
1

Fi(v, u,t) = sinvexp[— 2—],
n

1
F,(v, u,t) = cosvexp [— —2;],

4 — Zastosow. Matem, 14.1



50 A. Kozek

a%t
Fq(v, u,t) =explav+ T I

7 2a —(r—1/2 au
+(0, 4, %) =(1_n—1t) exp[l—Zat/(n—l)]’

where a can be complex.

(d) In case where the variance t, is known, we can apply Theorem 4.
Take ¢g(0) = 6° as an example. Since the assumptions of Theorem 4
are satisfied, h(x) given by (6.5) is the UMR-estimator of 6°. Evidently,
in the considered case, we have

(e) Because the given formulas for UMR-estimators involve some
series, the methods proposed in this paper may be inconvenient in practice
for some functions g(0,t), whereas other methods may be simpler. For
example, using Kolmogorov-Linnik’s method [3] (see also [10]) it is easy
to show that

~ n—p\@-DPe p 1 w B
ha(®) = f( - ) exp| = ;;Z%—W]x
A 0 “

=1

»

1 \»2 1
—_— . — )2
SR A

is the UMR-estimator of

1 |2k 1
g4(0) = f(m ) eXP[—gZ‘(yf—O)z]dy,
A 0 0 %=1

where 4 = RP? is a measurable set and p < n.
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0 ODWROTNYM PROBLEMIE CAUCHY’EGO I NIEOBCIAZONEJ ESTYMAC)I

STRESZCZENIE

W pracy rozwazane jest réwnanie calkowe (1.1), gdzie funkcja g jest znana.
Funkcja ¢(Z, s2), bedaca rozwigzaniem tego rdwnania, moze byé interpretowana
albo jako poczatkowy rozklad temperatury w przestrzeni R™, powodujacy, Ze na
prostej 6, = ... = 6, w chwili ¢ bedzie temperatura g(0, {), albo jako nieobcigzony
estymator funkeji g, zalezny od statystyk dostatecznych.

W twierdzeniu 2 podano sposob znajdowania rozwigzania réwnania (1.1).
W zastosowaniu do teorii estymacji otrzymano metody znajdowania nieobciazonych
estymatoréw, zaleznych od statystyk dostatecznyech w przypadku rozkladu normal-
nego.



