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SOME REMARKS ON SYSTEM RELIABILITY **

When investigating the reliability of a system it is necessary to realize
that we are often compelled to take into account not only the failure to
operate but also the fact that the device may operate inadvertently when
it should not do so and we shall call it failure to idle. The ordnance people
use the expression “duds” (ammunition which does not explode when
fired) and ‘prematures” (ammunition which explodes unexpectedly).
Often the expressions “open” and “closed” (“short”) failures are used
borrowed from electrical engineers but this does not seem to be suitable
since it may suggest that such failures occur only in electrical problems
whilst anybody who applies the reliability concepts in practice knows
perfectly well that the existence of these two kinds of failure is very
important. A pilot responsible for the aeroplane should be sure that the
devices at his disposal when operated by him will put the aeroplane’s
control surfaces into the proper position causing the plane to move in
the proper direction but he must also know that, without his interference,
these devices will not cause the aeroplane to change direction unnecessarily.
Similarly, properly designed monitoring devices should give a proper
warning when something goes wrong in the system but they should at
the same time be constructed in such a way that they should not give
an unnecessary (“nuisance”) warning when everything is in order. (The
danger is that, when the nuisance warning occurs too frequently, the genuine
alarm may be disregarded as in the case of the shepherd boy who cried
“wolf” too often.) No wonder that in ordinary everyday work both kinds
of failure are constantly considered by the engineers. Unfortunately,
very often the discrimination between them is not stressed strongly
enough or even ignored by the textbooks and there are few papers on
reliability discussing these two kinds of failure in detail.
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Barlow, Hunter and Proschan [1] discussed the case where the failure
of cach component was distributed according to I'(f) with the conditional
probability of the failure to operate given by p and of the failure to idle
by ¢ = 1 —p. It was assumed that the function F'(¢) is a negative exponen-
tial F(t) = 1 —e* the same for all components and that the failures of
components are mutually independent. The problem solved by them was
to determine according to the value of p what should be the number of
parallel components which would maximize the expected system life.
(See also [2].)

Let us investigate under the same assumptions a different problem
when we have at our disposal m components but, apart from combining
them in parallel, we are also allowed to use them for building any other
two-terminal series-parallel system. It is obvious that if » = 1, then we
have only failures to operate and in such a case the highest expected
life of the system will be obtained when all these components are put into
parallel. Vice versa, if p = 0, we have only failures to idle and the best
arrangement would be to put these m components in series. The problem
arises what would be the best solution if p has a different value somewhere
between 0 and 1.

The series-parallel structures built of m identical components were
discussed by Mac Mahon [8]; some generalizations of his results can be
found in Riordan and Shannon [9]. Knodel [5] and Carlitz and Riordan
[3] discussed the number of different structures when all the components
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Fig. 1. Two-terminal serics-parallel structurcs built of 4 components

are different and some further generalization can be found in omnicki
[6]. Thus, for example, if m = 4 we can build from four identical compo-
nents ten different structures shown in Fig. 1.

If @ is the probability of a component failing to operate and b the
probability of a component failing to idle, then it is easy to cvaluate for
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every structure the probabilities % (a) and v(bd) of these two kinds of failure.
This may be done by writing in the Boolean form the hindrance (or the
admission) function displaying all the possible combinations of component
failures which cause the system to fail to operate (or to idle) and then
by applying the so-called Inclusion-Execlusion Theorem (see, e.g., [4]).

For instance, for structure IV the failure F to operate is given in the
Boolean form as the hindrance function

F = (.A1+A2)(A3+A4) - A1A3+A1A4+A2A3+A2A4,

where A; is the failure to operate of the ¢-th component. The probability
of this failure being for all components equal to @, we have from the
Inclusion-Exclusion Theorem

u(a) = 4a%— (4634 2at) +4a* — a* = 4a2—4a3+ at.

Similarly, the admission function showing the failure to idle is given
in the Boolean form by the expression

G = B1B2 +B3B47

where B; is the failure to idle of the i-th component, and b being the
Probability of failure to idle of any component

v(b) = 2b% — b4,
It is easily seen that, for every structure,
(1) l—u(a) =v(1l—a).

The probabilities of these two kinds of failure for structures shown
in Fig. 1 are given in Table 1.

TABLE 1
Structure % (a) v (b)
I 4a — 6a® 4 4a® — at b4
11 2a — 2a3 4 at 253 — b4
111 a+a3—at 3b2 — 303 + b4
v 402 — 4a3 4 at 2b% — b4
v a -+ 2a2 — 3a® + a b2+ b3 — D4
v a?+4 a3 — at b+ 2b%— 3b% 4 b4
| A% 2a® — al 402 — 4b3 L b1
111’ 3a? — 3a® 4 at b+ 53— b4
11 2a3 — at i 2b — 268 + b4
I’ at : 4b — 6b2 + 4b3 — b4
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Let us assume, following Barlow and Proschan [2], that & = p —pe™*
and b = g—qe~ . Then, in view of (1),

u(a) =1—v(l—a) =1—ov(g+pe ™ and o) =ov(g—ge™?),
and the corresponding expected times to failure are the following:

[ o(g+pe™)—v(g)ldt and [ [v(g)—v(g—ge™™)1ds.

If we have 2N such systems with N of them operating and, conse-
quently, subjected to failures to operate and N of them not operating
and, consequently, subjected to failures to idle, then the expected time
to failure of all these systems will be

(2) N [ [o(g+pe™)—v(g—ge™))dt.

If each of these systems is composed of one component only,
then (2) would give, as the expected time to failure,

N[ lg+pe ™) —(g—g¢™ ) =N [ e7*at = N/a.
0 0

Hence, the ratio By of the expected time to failure of a system 8
to the expected time to failure of the system built of one component is
given by

Rg = A [v(g+pe™™)—o(g—ge~")]dt,
0

where v(b) is the probability of failure to idle corresponding to the struc-
ture 8.

If the structure is such that v(b) = b™, then the corresponding ratio
R is equal to

8 =4 [ [g+pe™)"—(g—ge "] dt
0

and

m

w= 3 (0) ot (-0 3

Thus §; =1 and -
Sm—qsm—l )
m—1
= 10w+ o e (- -
k=1
= %2(’:)?"”@’%( 1)**¢F] = p+q)"‘+—(q Q" = -;t—
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Hence, by mathematical induction,

m—1 k

_ ¢ 1 q ' m—1
S"‘_Zm—k_m+m—1+m—2+"‘+q :

k=0

The above-mentioned result simplifies the necessary calculations.
Thus, for instance, in the case of structure IV of Fig. 1 we have v(b)
= 2b2% — b* 50 that the ratio Ryy is equal for this structure to

_ofd 1,4, €@ s)_i ¢ @,
RIV_2(§+Q)_(Z+3+2+Q —Tt3

For every structure S built of m components this improvement
ratio can be calculated as a function of ¢ or p = 1 —gq. Denoting this ratio
by Rg(p), we define the function

R, (p) = mngs(p),

where the maximum is taken over all series-parallel systems built of m
components. This function measures the advantage obtained by using
m components in the case where p has a given value. The range of p-
-values for which R, (p) coincides with Rg(p) shows for which values
of p this particular system 8 should be chosen in preference to others
a8 yielding the longest life of the system.

TABLE 2
Structure Rs(q) Structure RBgs(q)
1901 —;3—4——1:51—%+q3 I %+%+72_qa
v 1—72+%+%—q3 A %+f61—5Tq2+q3

The ratios Rg for the series-parallel structures built of four components
(shown in Fig. 1) are given in Table 2.
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The ratios Rg(p) and the function R, (p) for m = 4 are shown in
Fig. 2. Of course, in view of duality between structures I and I’, IT and
IT' ete., it is sufficient to study only a half of them. (Indeed, it is easy to
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Fig. 2. Improvement ratios as functions of p for m = 4

verify that the ratio for structure I’ is given by the same function as for
structure I if we write 1 — p for ¢.) From Fig. 2 it is seen that it is sufficient
to consider only 6 structures, that is I, II, IV, IV’, IT', I', out of possible
10 structures as leading to the improved life time. Similarly, for n = 5
from 24 possible series-parallel structures only 10 deserve to be considered.
For m = 6 we have 66 possibilities (see, e. g., [6]) from which only 12
produce an improvement. To find what is the situation for larger values
of m would require the aid of a computer.

It would be interesting to investigate what changes will occur if
instead of an exponential failure distribution some other distributions
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like Weibull or Gamma are used, what happens if instead of m indentical
components we have m; components of type 7, where >'m; = m, as discussed
in [6] and [7], and what results will be obtained if both kinds of failure
are subjected to different distributions. It should be also added that
the engineers are slightly unhappy about a very great number of possible
series-parallel structures and they would welcome some method allowing
them to identify this special, more useful class of series-parallel structures
and to concentrate on these selected structures when looking for a solution.
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UWAGI 0 NIEZAWODNOSCI SYSTEMOW

STRESZCZENIE

W pracy analizowana jest klasa systeméw o szeregowo-réwnoleglej strukturze
elementéw. Zaklada si¢ niezaleznodé elementéw oraz wykladniczy rozklad ezasu ich
pracy. Awarie elementéw moga byé przy tym dwojakie: z prawdopodobienstwem
warunkowym p — moga to byé awarie polegajace na blednym dzialaniu elementu
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(failure to operate) — i z prawdopodobienstwem warunkowym 1—p — moga to byé
awarie polegajace na niespodziewanym dziataniu elementu, gdy powinien on spoczywaé
(failure to idle). Systemy charakteryzuje sie przy uzyciu funkeji niezawodnofci
oraz oczekiwanego czasu pracy. Nastepnie znajduje sie¢ — w zalezno$ci od parametru
p — struktury optymalne, maksymalizujace oczekiwany czas pracy systemu. Systemy
czteroelementowe stanowig ilustracje przedstawionych pojeé i metod.



