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ON THE BINDING NUMBER OF SOME HALLIAN GRAPHS

L. Definitions and notation. We consider only finite undirected graphs
Without loops or muliiple edges. Our terminology and notation will be
Standard except for indicated. For a graph G =(V, E) and a set X c V' we
denote by I'y(X) (or, briefly, I'(X)) the set of vertices joined to vertices in X.

set of independent edges that cover all vertices of a graph is called a 1-
f“CtOr of that graph. By a (1, 2)-factor of a graph G we mean a set of
Independent edges or vertex disjoint cycles which cover all vertices of G.

bkusly, we can restrict the cycles in the above definition to odd ones.

A graph G is hallian if |I' (X)| > | X] for any set X < V(G) or, equivalent-
ly, if G has a (1, 2)-factor. Obviously, G is a hallian graph if its vertices can
covered by a set of vertex disjoint even paths or odd cycles. A graph G is
{nhalhan if for any set A of vertices of order at most k the subgraph of G
duced by the set ¥(G)\4 is hallian. The largest k such that G is k-hallian
is called the hallian index of G and is denoted by h(G). The vertex
Connectivity »(G) of a graph G is the minimum number of vertices whose
®moval results in a disconnected or trivial graph. Clearly,

h(G)<d4(G)—1 and x(G)<d(G),

Where §(G) denotes the minimum degree among the vertices of G.
For concepts not defined here, see [1].

@ 2. Some properties of hallian graphs. The main purpose of this section is
O show relations between orders of I’ (X) and X, X < V(G), for k-hallian
and I.connected graphs. Let G be a given graph and let

Fo={XcV(G): X O and I'(X) # V(G)}.
Lemma 1. Let G be a graph on n vertices. If G is l-connected, then

IF(X\X| > 1

for any set XE?(,'.
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Proof. For [ =0 the lemma is obvious. Let /> 1 and Xe #;. There
exists a vertex v¢ I'(X). If ve X\ I'(X), then I'(v) is disjoint from X, and s

| I (X)\X| =T (v)| > (G) >
If veV\(X U (X)), then I'(X)\ X is a cutset of G, so |[(X)\X] >

TueoReM 1. Let G be an l-connected and k-hallian graph on n vertices.
Then

1T (X) 2 1X|+r

Jor any set X e %;, where r = min {l, k).
Proof. Let Xe %;. By Lemma 1 we have

I (X)\ X] =

so choose A4 < I'(X)\ X with |4| =r. The graph G = (V(G)\A> is (k-7
hallian, hence hallian, whence |Ig.(X)| = |X). Thus

[T (X)| = e (X) +14] = | X]|+7,
as required.
CoroLLARY 1. Let G be a hallian graph on n vertices and let
r = min {h(G), x(G)}.
Then there exists a set X o€ F¢ such that
[T (Xo)l = | Xol+r.

Proof We consider two cases.

Case 1. r = h(G). Then there exists a set 4 = V(G), |A| =r+1, S“"h
that the graph G’ = (V(G)\ A) is not hallian. Thus there exists X < V(G)\
,such that |4 (X)) < |X], and

o (X)) < [T (X)|+14f < | X]+7+1.

So |I'(X)| < 1X|+r. Since I'(X) # V(G), the converse inequality follows fro®
Theorem 1, and the result is proved in this case.

Case 2. r =x(G). Let Y = V(G) be a cutset of r vertices and let X b¢
the set of vertices on one component of G\ Y. Then, evidently, |I'(X)| <iX
+r. Since the converse inequality follows again from Theorem 1, the result i
also proved in this case,

THEOREM 2. Let G be a graph on n vertices. If any set X e %, satisfies
II'(X)| = | X|+k, then G is k-hallian and k-connected.

Proof. For k = 0 the theorem is clear. Let k > 1. Suppose G is not k-
connected or G is not k-hallian. Then x%(G) <k or h(G) <k. Let

r = min {x(G), h(G)}.
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By Corollary 1 there exists a set X,e Fc such that |I'(X,)| = | X, +r, where
r <k, a contradiction.

CoroLrLArY 2. If k' is the largest integer for which the assertion of
Theorem 2 holds, then h(G) =k’ or »(G) =k’

3. On the binding number of hallian graphs. The binding number of G,
denoted by bind(G), is defined by

Ireon

XE.?"G IX.

bind (G) =

The binding number was intensively investigated by Woodall; see [4] and its

l'eferences If bind (G) is large, then the vertices of G are well bound together,

ie, G has a lot of edges fairly well distributed. If the binding number is large,

then the minimum degree, the connectivity, the chromatic number are also

large. Clearly, bind(G) =0 if and only if G has an isolated vertex.
Woodall has proved in [4] the following

ProrositioN 1. If G is a graph on n vertices, then
n—1

n—6(G)’

ProrosiTioN 2. bind(K,) =n—1 for n>1

ProrosiTioN 3. If n > 3, then

bind (G) <

) 1 if n is even,

bind(C,) = {(n—l)/(n-—-Z) i nis odd.

PROPOSITION 4. If n> 1, then |
i 1 if nis even,

bind (P,) = {(n-— Yn+1) if nis odd.

We note that G is hallian if and only if bind(G) > 1. Using Theorem 1
and the next lemma we shall obtain a lower bound for bind (G), where G is a
hallian graph.

LEmMMA 2. Let G be a graph on n vertices. If Xe %g, then
| 1X] < n—3(G).
Proof. Let ve V(G)\I'(X). Then X nI'(v) = @, and |I'(v)| = 6(G). The
Tesult is immediate. :
THeOREM 3. If a graph G on n vertices is k-hallian and l-connected, and
"=min{k, I}, then
n—o6(G)+r

bind (G) = n—5(G)
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Proof. If Xe %, then |I'(X)| = |X|+r by Theorem 1. Thus, by the
above and Lemma 2, :
Ir(X) _1Xl+r _ n=6(G)+r
> > -.
| X]| (X n—4(G)

The result follows.
LeMMA 3. If a graph G on n vertices has h(G) =8(G)—1 and »(G)
> h(G), then
n—1
n—96(G)’

Proof. As a consequence of Theorem 3 we have

bind(G) =

n-—1
n—o6(G)

and by Proposition 1 we obtain the required equality.

4. The binding number of the Cartesian product of some graphs. AD
application of the preceding results. Let G, and G, be graphs with vertex sets

V(G = {x1, ..., %} and  V(G)) = {y1, ..., Ym}-
The Cartesian product of graphs G, and G, is-a graph G, x G, with vertex
set V(G,)xV(G,) and
{E Vs (Xks yl)}EE(Gl xGy)

if and only if i =k and {y;, y}€ E(G,) or j=1 and {x;, x;}e E(G,).
Kane et al. [2] have given the following
CoNJECTURE. Let n >3 and m > 3. Then

bind(G) >

mn—1

bind(C, xC,) = ——

if mn is odd. -
Using Theorem 1 and Lemma 3 we will prove this Conjecture. Moré-

over, in a similar way we calcu]ate bind (P X Cp), bmd (C, xKp) and
bind (P, x K,,). '

The connectivity of the Cartesian product of two connected graphS is
described by Sabidussi [3].

ProvosiTioN 5 ([3]). If G,. is l,-connected and G, is I,-connected, then Gl
x Gy is (I +1;)-connected.

CoRroLLARY -3. The graph (C, xC,,) is 4-connected for n>3, m=> 3.
CoroLLARY 4. The graph (P, xC,) is 3-connected for n =2, m > 3.
CoroLLARY 5. The graph (C, xK,) is (m+ 1)-connected for n >3, m =3
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CoroLLARY 6. The_graph (P, xK,,) is m-connected for n>= 2, m > 3.
Moreover, if G is I-connected and 6(G) = I, then x(G) = 1. Hence
#(CyxCp) =4, %(P,xCp) =3, x(CoxKn)=m+1, x(P,xK,)=m.

"LEMMA 4. If H is a spanning subgraph of G and H is k-hallian, then G is
k-hallian. Moreover, h(H) < h(G). |
CoroLLarY 7. Let G, and G, be hallian graphs. Then

h(G, xG,) > max {h(G,), h(G,)}.

Moreover, if either G; or G, (but not both) is hallian, then h(G, xG,) is
greater than or equal to the hallian index of this graph.

LemMma 5. If n> 2, m> 3, then

2 ifmis odd,
A(Pax Cr) = {0 if m is even.
Proof. Let G = P, xC,, Since
: 1 if mis odd,
C)=
A(Cn) {0 if mis even,
We have |
1 if mis odd,
2 . .
h(G) {0 if m is even.

If m is even, then removing any vertex x will destroy the hallian property
Since G — x has an odd number of vertices but no odd cycles. Thus h(G) = 0.
Assume that m is odd. Let A = V(G) and 4| = 2. If A consists of vertices of
two copies of C,, then the vertices of G— A4 are covered by two even paths

m~X and odd cycles, the remaining copies of C,,. If A consists of vertices of
Fhe Same copy C,, then it is not difficult to see that the vertices of C, — 4
!nduce exactly one odd path and at most one even path. One of the end
Vertices of the odd path and the corresponding vertex of an adjacent copy

m €an be covered by an edge (see Fig. 1). In this way vertices of C,,— 4 and
Vertices of an adjacent copy C,, can be covered by even paths (Fig. 1), s0 G
=4 is again hallian, Thus h(G) = 2. On. the other hand, §(G) = 3, so h(G)

=
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Lemma 6. Let n>3, m> 3. Then

3 ifmornisodd,
h(Cax Cn) = {0 if m and n are even.

Proof. Let G =C,xC,. By Lemmas 4 and 5 we obtain

2 if mor nis odd,
0 if m and n are even.

h(G) 2{

If m and n are both even, then the result follows by the argument of Lemma

3. So suppose that one of them, say m, is odd. Let 4 = V(G) and [A4] = 3.

A consists of vertices of three copies of C,,, then it is clear that G—A has 2

cover by even paths C,,— A and odd cycles C,,. If A consists of two vertices

of the same copy C,, and one from another copy, then the vertices of G-4

can be covered by even paths and odd cycles; see the proof of Lemma 5

(noting now that each copy of C,, has two others adjacent to it). If A consists

of vertices of the same copy C,, then the vertices of C,,— A induce only even
paths or exactly two odd paths and at most one even path. In the first

possibility it is clear that the vertices of G— A are covered by even paths and
odd cycles. In the second possibility the vertices of C,,— A and all vertices of

the two copies adjacent to it can be covered by even paths (see Fig. 2) SO

that the graph G—A is still hallian. Thus k(G) = 3. But §(G) =4, and $0

h(G) = 3.

r !
I ’ 1 1
\___é___ _+__ ___+___ _J
| ; i

Fig. 2

THEOREM 4. If n >3, m 2 3, then

mn—1
- - dd,
bind(C, x C,) = {mn—4 if morniso
1 if m and n are even.

Proof. Let G=C,xC,. If m or n is odd, then by Corollary 3 and
Lemma 6 the graph G satisfies the hypothesis of Lemma 3 and the result
follows. If m and n are even, then by Lemma 6 and Corollary 1 we have
h(G) = 0 and x%(G) = 4. According to Corollary 1 there exists a set X o€ Fo
such that [I'(X,)| =|X,|, so bind(G) = 1.
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Using Lemmas 3 and 5 and Corollaries 1 and 4 we prove in the same
way as Theorem 4 the following

THEOREM 5. If n>22, m >3, then

mn—1
} is odd
bind(P, xC,) = {mn—3 Y m is odd,
1 if mis even.

Now we will calculate bind(P, xK,,) and bind(C, xK,,). First we notice
that the following lemma is true:

LemMA 7. If n>22, m>3, then h(P,xK,) =m—1.

Proof. Let G = P, xK,,. By Lemma 4 we have h(P,xK,) > m—1. Let
4 S V(G), |A| = m—1. Note that removing at most m—2 vertices from each
copy of K,, leaves a hallian graph, since the remaining vertices of each K,
can be covered by a single edge or a cycle. If all vertices of 4 are of the same
Copy K,,, then the remaining vertex can be paired by an edge with a vertex
In an adjacent copy of K,, and it is easy to see that the graph G—A is
hallian. Thus h(G) = m—1. Since 6(G) = m, it follows that h(G) =m—1.

LemMmA 8. If n>3, m> 3, then h(C, xK,) =m. '

Proof. Let G = C, xK,, and suppose that at most m vertices of G are
Témoved. The resulting graph is hallian by the argument of Lemma 7 unless
all the vertices removed are from the same copy of K,,, in which case the
result is obvious. Thus #(G) > m. But 6(G) =m+1, and so h(G) =m.

From Lemmas 7 and 3 we obtain
THEOREM 6. If n> 2, m >3, then

) mn—1
bind (P, xK,,) = —
From Lemmas 8 and 3 we obtain
THEOREM 7. If n =3, m> 3, then
mn—1
bind(C, xK,) =———.
mn—n—1

We express our sincere thanks to the referee for his useful suggestions
towards the improvement of this paper. He brought to our attention that the
Conjecture of Kane et al. [2] has been also settled in the affirmative by D. R.
Guichard (see Ars Combinatoria 19 (1985), pp. 175-178).
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