ZASTOSOWANIA MATEMATYKI
VII (1963)

M. WNUK (Krakéw)

AN APPROXIMATION TO ELLIPTIC INTEGRALS OF THE FIRST
AND SECOND KIND BY MEANS OF ELEMENTARY FUNCTIONS
AND SOME APPLICATIONS TO PHYSICAL PROBLEMS

1. Statement of the problem. The integration of the mnon-linear
differential equation

a3z .
(1.1) r + a?sinz = 0,
or

d3x
(1.2) —dF +ﬂshya} = 0,
or

d*z
(1.3) Fr + Bz+ya* =0,

where z = z(f) and a,f,y are constants, leads to non-elementary
elliptic functions

?
(1.4) Flp, k) = [ - dy
) Vi—wtsinty
and
L 4
(1.5) B(p, k) = [V1—k*sinpdy.
1}

Equation (1.1) deseribes a non-harmonic motion, for instance, that of
a mathematical or physical pendulum with a large amplitude angle, where
the linearization sinz ~ z is not legitimate. This equation, as well as
the remaining two, are well known in the theory of elasticity (stability
of flexible rods under considerable loads) in theoretical mechanics (some
problems of dynamical stability) and in electrodynamics (vibration of
certain non-linear electric systems). In addition, elliptic integrals may
be met with in the theory of some surface phenomena connected with
the so-called contact problems and also in the theory of structure
of an atomic nucleus. Thus, an exact solution of many problems of the
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physics of solids and of technical physics is not possible unless we use
the functions F(¢, k) and E(p, k), i.e. incomplete elliptic integrals of the
first and second kind, respectively. Both integrals are functions of two
variables: the modulus % and the amplitude ¢, determined in the region D:

{0 <k <1,

(1.6) 0 <o <=/2.

In the particular case of ¢ = n/2 we obtain complete elliptic integrals
of the first and second kind, i.e. K (k) = F(=/2, k) and E(k) = E(=/2, k),
which are also non-elementary functions and cannot be expressed (in
an exact manner) by a finite number of elementary functions. This means
that quantities described by means of elliptiec intcgrals cannot, as a rule,
be expressed directly in the form of an explicit relation or in the form
of an effective formula. This constitutes a considerable difficulty and,
therefore, many authors have tried to find some approximate relations
to replace the exact ones in practical applications, thus permitting effee-
tive solution without resorting to tables. The problem becomes still more
complicated if inverse functions E_,(f8) or K_,(f) are concerned. Let us
consider, as an example, the exact equations

(1.7) T = 4VL|gK (k)
and
(1.8) 8= %Z—K’_’?(ﬁ)-

The first one represents the vibration period of a mathematical pen-
dulum for finite amplitude angles and the second —the deflection of an
axially compressed bar as a function of the load (for the notations, cf. the
end part of this paper, where some simple examples are given).

The usual procedure of replacing a non-elcmentary function by its
expansion in power series, the higher terms being rejocted, is, in the author’s
opinion, not always satisfactory. Such a method, commonly used by
many authors, gives, at most, a relatively good approximation of the
exact solution in the neighbourhood of one point (¥ =0 or k¥ =1, for
instance), while inside the region the method of power series expansion
is not reasonable.

In the present paper we shall show certain possibilities of approxi-
mating the elliptic integrals F (¢, k) and E(¢, k) by simple elementary
functions F (g, k) and E(p, k) constituting a generalization of the Pu-
wein formula. The essential feature of the approximation now proposed
is that the approximating functions are required to differ very slightly
from the exact original values not only at some particular points of the
region in which the function is determined but also in the entire region D.
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2. Approximation procedure. In 1954 a very convenient approxi-
mate formula was proposed by M. G. Puwein [6] for the period T of the
mathematical pendulum

(2.1) T = 2nV L]gcos(p,/2),

where L is the length of the pendulum, g is the gravity acceleration and
@, is the amplitude angle. This equation has no theoretical derivation.
Its application is justified only by the fact that the power series expan-
sion of the exact equation (1.7),

(2.2) = 27 ‘l/_ (1+ _SInz‘PO + in® ‘po + )

has the first two terms identical with those of the expansion of (2.1)
and the difference in the third term is 1/64 only, the expansion of (2.1)
having the form

(2.3) -—27:'/— (1+—sm="’°+—g “’;’4-...).

Attention should be paid to the fact, not mentioned by Puwein, that the
difference between the fourth terms of the expansions (2.2) and (2.3)
is also insignificant.

Let us now point out a relation between the Puwein equation (2.1)
and the full elliptic integral of the first kind K(k), where, in the case
of the pendulum, the modulus of the elliptic integral is k = sin(g,/2).
To this effect we confront (1.7) with (2.1), bearing in mind the obvious
relation

(2.4) cos% = ¥V1—Fk2.
We have
(2.5) 4VL|gK (k) = 2=VL]g Vija—#).

Hence we obtain directly
(2.6) R(k) = =/2)/1— k2,

where K (k) is the required elementary function, which, as will be shown,
constitutes a good approximation of the full elliptic integral of the first
kind almost in the entire interval 0 <k <1.

Equation (2.6) may be generalized by constructing a function of two
variables F(g, k) so that

F(O, k) = F(0, k),
F(p,0) = F(p, 0);

(2.7)
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this means that we require that the exact (original) function and the
approximating function (e¢f. Fig. 1) should have the same value along
two edges of the region D, namely k¥ = 0 and ¢ = 0, and that the value

X ;)=
F(fr k) -K(k) ,.-.-(0' k)= 0

Flpo)=9p § 9 Floo)=9 § ¢ —

Fig. 1

of both functions should differ as little as possible along the remaining
edges ¥ =1 and ¢ = =/2. Of course, for ¢ = =/2 we should obtain
equation (2.6). As the result of many trials the formula

2.8) F(p, k) = /Y 1—k*(1— cosg),

Ep)=9 v 1-a(t-cosgp) E@)=sing
7 7 .
/ E(F0)=E( // EF.x)=E(0)
Epr=0 / =Ex)

Epo)=p ¥ 9 Ewpo)=9 '

Fig 2

whose derivation is omitted, has been found to be the best one(!). Similarly,
for the incomplete elliptic integral of the second kind (cf. Fig. 2) we have
found two expressions

Elp, k) = ¢)/1—ak*(1—cosp),
(2.9)

7 2
E(p, k) = ﬁ/l—ak’—{-kﬂ(smq)_ _T:q,)’

() There are various methods of approximating a function of omne variable,
such as Chebyshev’s or Hermite’s approximation, the minimum square deviation
procedure, etc. No such method is available, in general, for functions of two or more
variables.



An approzimation to elliptic integrals of the first and second kind 209

where a is a constant: ¢ = 1—2*/x* = 0,835742. The accuracy of the
equations just presented will be verified numerically and by the method
of power series expansion of the two functions. The difference between
corresponding terms of these expansions will be decisive. In general,
for a function of one variable, we can write

(2.10) fl@) = Zf‘”’(w)‘”” @)"
and "
(2.11) ) = 3 T

n=0

where f(z) is the exact function, f(z) the approximate funetion and Z,
the point where the functions are expanded in Taylor’s series. Comparing
the n-th terms of these expansions,

o °) CE) ) —fMae)], m =0,1,2,...,

(2.12) (z—z,)"R, =
we can estimate the agreement between a few derivatives of the exact
function and the corresponding derivative of the approximate function.
Thus, we shall be able to appraise the accuracy of the approximation
proposed.

For k =1, ¢, = 0 we obtain

F(p,1) = Intg (3 + 3) — 94 0,1667 ¢+ 0,0417¢° + ..

2 4
(2.13)
F(p,1) = p[V/cosp = p-+0,1250¢°+0,0248¢"+ ...
Hence
R, = 0,0000, R; = —0,0417,
R, = 0,0000, R, = 0,0000,
Ry = 0,0000, R, = —0,0169,

For ¢ = n/2 (complete elliptic integral of the first kind) and %k, = 0,
we obtain

w2
F(n/2, k) = K(k) = f __w
J V1—Isinzy
(2.14) = $m(1+0,2500%2 40,1407 k* - 0,0977Tk° .. )

F(r)2,k) = K(k) = =/2)/1— k2
= }n(1+40,2500%24- 0,1563%*+-0,1171%° - . . )

Zastosowania Matematyki. VII, 2 14
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where
R, = 0,0000, R, = 40,0156,
R, = 0,0000, Ry = 0,0000,
R, = 0,0000, R, = 40,0194,
By =0,0000,  .........

The appraisal procedure for the approximation to the incomplete elliptic
integral of the second kind is similar. For ¥ =1 and ¢, = 0 we have

T E(p,1) = ging = ¢—0,1667¢*+ 0,0083¢°—...
215 T® Y P e oI O0

E(p,1) = o)/ 1—a(l—cosp) = ¢—0,1045¢*—0,0033¢° — ...

Hence

R, = 0,0000, R, = 0,0000,
R, = 0,0000, R, = —0,0116,
B, = 0,0000,

Ry = +0,0622, . ........

For the full elliptic integral of the second kind, i.e. along the right-hand
edge of the region D, ¢ = =n/2, and in the neighbourhood of the point
ky = 0, we find

wf2

E(x[2,k) = E(k) = [ V1—k*sin®pdy

0
= }n(1— 0,2500k2— 0,0469%" — 0,0195%° —...)
(2.16)

Ex[2, k) = E(k) = }n Y/ 1— ak?
= 3n(1—0,2089%k2— 0,0659%* — 0,0318%°* —...)

where
By, = 0,0000, R, = —0,0186,
R, = 0,0000, R, = 10,0000,
R, = 40,0401, R, = —0,0123,
Ry,= 10,0000,  .........

The last function under _considemtion i‘((p, k), yields the exact value
for the edge ¥ = 1, i.e. F(p,1) = E(p,1) = sinp. For ¢ = =/2 we find
B(k) = = f/ 1— ak?, which is identical with the sccond expression of (2.16).
The accuracy of the equations proposed, i.e. (2.8), (2.9) and (2.10),
inside the region D has becn investigated numerically by means of com-
puters and tables of elliptic integrals of high accuracy [3]. The results
are shown in Fig. 3. Using these data one might plot the diagram of the
error function
F(p, k)—F(p, k)
(2.17) A(p, k) =

-100 %
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representing a certain surface and defined similarly to the elliptic inte-
grals discussed in the region D. The function 4(p, k) is bounded with the
exception of one point ¢ = n/2, ¥ = 1 where A(p, k) = +oo. This is
an unexpected result, if it is borne in mind that for ¢ = x/2, k =1 we

a b )
V= , - F b k o, _ E k)-Etpk
arc sink Apk)= Fak 100% » Alp.l)= Elpk 100 %
90.!200 ~052 =282 -544 =112 yoo 20° 3Q75 +354 & aoo
§0° Q00 -450 —501 #1954 &° Q00 72 41
5005000 1038 183 V287  L190}301 0e1000 Jsa56 138
4500000 k025 01 150 kORQ75 o300 BAS7T 160 b 159
200802014004 022 k-7 Lgiskao? 2000 1006 %033 L4050
Yooo laoo  laoo laoo  Jacolaco 00 0 _}go0
20° 5 600 8 X g 2° < 80° 90° o
_ Bk -E@k
c) 24 Ap.k)= L 05E 100%
900929 Q0 a0o
00000 L+124 131 Q36

wgoo +349 563 H540  BI&HH

Q00 1+355 353 1409 k1345159

wob000 bz laps Wes  luedraer

1200 ) J#14.9),
20° P

Fig. 3

have both F(p, k) = 4o and F(p, k) = --oo; therefore it might be
concluded that the approximate equation yiclds the correct value. It
can easily be seen, however, that the limit of the expression

F(x/2,1)—F(n/2,1)
F(x/2,1)

(2.18)
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does not exist. For,

(2.19) lim (%—1) =lim | —— L4 —1| = 4.
Bt = | Veosplntg (% + %)

It should also be mentioned that by making use of the equations
given it is easy to express any non-elementary function

(2.20) W = W[F(p, k),E(p, k)].
in the form of a finite number of elementary functions
(2.21) W= W[F(‘Py k), E(?’) k)],

The degree of accuracy of the approximation may change, which, how
ever, can easily be foretold.

Fig. 4 shows the ranges of applicability of all the three approximate
equations.

Flpk) Elph) Epk)
? 3% <A<6% 2

3X<4<6%

9=50°

3. Examples of application:

3.1. The question is now as follows: what is the amplitude angle
of the mathematical pendulum if the period for a given length L is pres-
cribed to be T =1 sec? To solve this problem with the exact formula
we must write, making use of (1.7),

(3.1) K(sinz%’) — %V%.

Hence, after inverting the function K (sinzg) and rearranging, we have’

T. /g
3.2 = 2aresi K"z(—]/ —)
(3.2) P arcsin Xy 1 7
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Equation (3.2) represents the relation @, = @4(L), i.e. it expresses the
amplitude angle in terms of the length of the pendulum. Hence, for
a given value of L, we should calculate (3.2). This expression and the
further calculation procedure are very inconvenient.

If the Puwein equation (or equation (2.6), which is a generalization
of (2.1) is used, we have
4n2L
gT?
Hence for L =10 em, T = 1 see, for instance, we easily find ¢, = 46°50'.

3.2. Let us now solve a problem of the non-linear theory of buckling.
The deflection of the bar (Fig. 5), after the loss of stability of the rectli-
near form of equilibrium, may be obtained by integrating the non-linear
differential equation (1.1). Of course, the deflection
4 is a function of the load P. Let us write the fi-
nal equations, [5]:

(3.3) @o = 2arccos

21
(3.4) oy = FK'_’i(ﬂ),

(3.5) 6, = 2U[1—E(k)/K (k)],

where the modulus of the elliptic integrals E(k),
K(k) is

(3.6) k = k(m)

Y
and m = P[Py is the dimensionless force. The IM=479
remaining symbols are: § = WP|EJ, EJ — rigi- Fig. 6

dity of the bar, I — length of the bar, Pz = n2EJ|

/412 — critical force (according to Euler’s formula), 0, é, — deflection
of the bar in the directions # and y respectively. The knowledge of g,
is of particular practical importance. We calculate the dimensionless

deflection &, = 6,/l, bearing in mind that § = n¥Vm/2 and
N 4 —
(3.7) B = K(k)~ K(k) = n/2V1—FK.

The assumption K (k) ~ K(k) enables us to invert function K (%), what
would not be otherwise possible, thus we find modulus % explicite

Vmi—1

3. e (z ) _ .
(3.8) k= K 21% —
Hence and from (3.4) we obtain

d 4 _ /mi—1
(3.9) 19,,=~l’1 ==V
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This equation has been derived for the first time in [7] in a somewhat
different manner. This reference contains also a detailed numerical ana-
Iysis of the accurzey of equation (3.9) by confronting it with the exact
solution (3.4) and several other approximate equations obtained in var-
ious ways by a number of scientists: Timoshenko, Mises, Rshanitsyn,
Poeschl, Biezeno, Grammel, Ponomariev, Naleszkiewicz, Zyeczkowski.
Let us mention paper [8], by M. Zyczkowski, in which the function
K (k) is expanded in a power series and the function K_,(8) is found by
inverting the series. This method, although a correct one, requires a lot
of labour. Equation (3.9) turns out to be the most accurate of all the
equations found in literature and the simplest one from the formal point
of view. For m = 3, i.e. for the force P = 3Pg, equation (3.9) gives
the error 4 = +2,0°/,. For m approaching unity this error is very small.
Similarly, by replacing the integrals E(k) and K (k) in (3.5) by the
functions E(k) and K(k), we obtain the deflection in the z-direction
(reduction of the distance between the ends of the bar):
(3.10) 2 =i; = %[m—:/m*—a(m“’—l)], a = 0,835742.
For m near unity we can set a = 1; then 4, = 2(m—1)/m. Equation
(3.10) is less aceurate than expression (3.9). For m = 2,160, i.e. for the

d, A & A
%= %=F
2
07889 ——————
1
| 1+
]
|
!
! N y
1 1732 _P m=
m ﬁf j’;f [ZM-430)
Fig. -6

load P more than twice as high as the critical load Pg, the value of ¥
calculated by means of (3.10) is charged with the error 4 = —3,6°/,.
For m — oo, i.e. for infinitely increasing force, equations (3.9) and (3.10)
both yield values in agreement with the exact solution, ie. 4, — 0,
¥, — 2. The relevant diagrams are shown in Fig. 6.

3.3. The intensity of the magnetic field produced at the point 0
by a linear current ¢ in a conductor in the form of an ellipse (Fig. 7) is
expressed, according to the Biot-Savart law, by the formula

. T/2

4 ——y—
(3.11) H,= % f V1—é*sin’pdy,
0
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where ¢ = Va?— b%/a is the eccentricity of the ellipse and p is a coeffi-
cient depending on the choice of the system of units. Setting E(e) = E(e)
we obtain the simple approximation (%)

4
(3.12) H, = 2“T"”V1—aez, @ = 0,835742.

ZM-431
Fig. 7

A gimilar procedure can be used to compute the magnetic intensity due
to a linear current in a circular conductor, for a point 0 not lying at the
centre of the circle (in the plane of the circle or not). The coiresponding
equations will not be quoted here.

b 9,

[ZM=3372)

Fig. 8

3.4. Figure 8 represents four non-linear systems described by the
differential equations mentioned at the beginning. Three of them are
mechanical systems: the physical pendulum, the elastic pendulum with
a programmed length and a vibrating system with a non-linear spring

(3.13) P = azt fr*

(3) The maximum error for (3.12) is not greater than 1,7 9/,.
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or
(3.14) F = ashpz,

where a, f are constants, # = x(t) is the displacement, F is the force,
and ¢ is the time. The fourth system is a C, y—electric system, fed with
a sinusoidal excitation voltage; the non-linearity of the coil may be
prescribed, for example

(3.15) i = ayp+By?,

where ¢ = i(t) is the intensity of the current, C is the capacity, and ¢
is the magnetic flow.

All the above cases reduce, after integration of the corresponding
differential equation, to [2]:

(3.16) vt = F(o, k),

where y is a constant. In this manner the time dependence of the displa-
cement of the pendulum, the deformation of the spring and the current
impulse of the system are described by means of an incomplete elliptic
integral of the first kind. In particular, for ¢ = =/2 we obtain a complete
elliptic integral of the first kind K (k) (for the computation of the vibra-
tion period 7, for instance). Making use of the equations of section 2 and
setting F(p, k) = F(p, k) or K(k) = K(k) we can obtain, in each parti-
cular case, the required effective approximate formulas.

The author wishes to thank Prof. dr M. Zyczkowski for his helpful
suggestions.
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M. WNUK (Krakéw)

APROKSYMACJA CALEK ELIPTYCZNYCH PIERWSZEGO I DRUGIEGO
RODZAJU PRZEZ FUNKCJE ELEMENTARNE ORAZ NIEKTORE 1CH
ZASTOSOWANIA W FIZYCE

STRESZCZENIE

Calkowanie pewnych nieliniowych réwnah réiniczkowych prowadzi do uzycia
nieelementarnych funkeji F(p, k) oraz E(p, k), to jest niepelnych calek eliptyez-
nych I-go i 1I-go rodzaju, odpowiednio. Wystepowanie funkeji F(p, k) oraz E(p, k)
uniemozliwia w wielu przypadkach podanie efektywnych wzoréw koncowych, co
jest klopotliwe zwlaszeza tam, gdzie zachodzi potrzeba odwracania funkeji nieele-
mentarnych, na przykiad — znajdywania modulu pelnej calki eliptycznej K (k)
lub E(k). W pracy przedstawiono mozliwosci aproksymacji funkeji F(p, %) oraz
E (g, k) przez proste funkcje elementarne F(p, k), E(p, k), ktére stanowia uogélnie-
nie przyblizonego wzoru Puweina (1954). Dokladnoéé uzyskanych wzoréw sprawdzono
metoda rozwijania w szereg potegowy ,.oryginaiu” (funkcji nieelementarnej) oraz
joj odpowiednika — funkecji elementarnej. Ponadto, na podstawie dostatecznie do-
kladnych obliczeh numeryeznych zbudowano funkeje bledu A4 = A{p, k) okreilona
w obszarze 0 < p < ®/2, 0 <k < 1.

W zakohczeniu pracy podano przyklady zastosowan proponowanych funkeji
przy rozwiazywaniu pewnych nieliniowych zagadnien elektrodynamiki oraz teorii
sprezystosei.

M. BHVK (Kpaxos)

AIDPOKCHMALNWA SJIHNTHYECKUX HHTEIMPAJIOB IEPBOro
H BTOPOIr0O POJA SJNEMEHTAPHBIMH OVHRKIHAMHA M HX HEKO-
TOPBHIE NPHUMEHEHHA B OH3UKE

PESIOME

Unrerpuposanue HEKOTODHX HeawHeWHuX auddepeHnuanbHHX YPaABHEHHH Be-
EET K MCIOJNIL30BAHNIO HedJieMeHTapHHX ¢ynukunit F(p,E) u E(p,k) — HeNOAHKX saann-
THYECKHX MHTerpaioB 1-ro u 2-r0 peja cooTBeTcTBeHno. Yuactue Qynkuuit F(p, k)
u E(p,k) BO MHOTMX CAyyanaX He AaéT BOBMOMHOCTH HanucaHufA dQQPeHTUBHHX HoOHeu-
HHX $opMyH, 4T0 0COGEHHO HEBHIIOJHO B TeX CIy4aAX, KOrjga fABadAercA Heobxomm-
MHM MMeTh JeJo ¢ OOpPaTHHIMU HEdJNEeMEHTAPHBIMU QYHKUUAMH, HAIPUMED — B cayudae
HaXOMJIeHMA MONYJa MOJHOTO daaAMNTHYeckoro unrerpana K(k) mam E(k). B paGore
OPEACTABIEHH BO3MOMHOCTH ANPOKCUMALMM pyuxuun F(p,k) n E(g.k) nocpencrsom
OPOCTHIX HJEMEHTAPHHX QYHKOuU (F¢,k) .E((p,k) apagomnxca obobuenneM npn6an-
mennoli fopmyan Iysetina (1954). Tounocts monydeHHHX Popmyan Cuina npomepera
METOAOM PABNOMEHMUA ,,0PUTHHANA’ (HedieMeHTapHON (YHKIMH) U COOTBETCTBYOIeH
anemenTapHoll pyHKUMH B creneHHO# pAx. Hpome aroro, Ha OCHOBE NOCTATOYHO TOY-
HEIX HYMepMYHHIX pacuéroB Guna nocrpoena Qyukuus omubor 4 = d{pk) onpene-
nenHasa B obfnactu 0 o< /2, 0K k<K 1.

B sakalounTenbHoft uacru paGoTH npuBeAeHH IPUMEPH TDUMeHeHMM npexia-
raeMux QyHKOUH ANA penleHNA HEKOTOPHX HeAMHEHHHX BOIPOCOB BJIEKTPOANHAMHUKE
¥ TEOpPUM YNPYTOCTH.
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