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1. Introduction. In the paper of Kuczura [4] the relations between
the stationary probability distribution of the state of the piecewise Markov
process and the stationary distributions of some imbedded Markov chains
have been found. In the proof the imbedded renewal process and the key
renewal theorem have been used (Smith [5]). Here we give different proofs
of Kuczura’s results and also some generalizations using in proof the me-
thod of extension of a piecewise Markov process to a Markov process and
assuming, first of all, the stationarity of the extended Markov process.
These two methods have been shown in [1]-[3] by applying to the
analysis of some processes in queueing theory.

2. Definitions and notations. We introduce the definition of the
piecewise Markov process in Kuczura’s sense. Let § be a discrete state
space. The stochastic process Y (t) is called a piecewise Markov process if

(i) there exists a sequence of random variables ... < w_; <w, << w,
< wy < ... such that, for every ne N, where N = {..., —1,0,1,2,...},
{Y (), w,_, <t< w,} is the homogeneous Markov process in which we have

PP(t) = Pr{¥(s+1) =j| Y(s) =i, Y(w,_,) =k}
for any s and ¢ with w,_, <s<s+it< w,,
(ii) py = Pr{¥ (w,) = j| Y (w, —0) = ¢} are the elements of the transi-
tion matrix (p;), and
(iii) Fp(w) =Pri{w,—w, ,<u|Y(w,_,) =k}, 1,j,ke8, are the
distribution functions with #,(0+) = 0.
Remark. A. Kuczura considers the process Y () for ¢t > 0 assuming

wy = 0. In considerations concerning stationary processes this restriction
can be omitted.

The change of the state of the process in regenerative moments w,,
ne N, is called a regemerative transition (the transition to the same state

is possible), and the transition without regenerative moments is called
Markovian.
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The intervals w,_, <t<<w,, ne N, are called Markovian segments.
It follows from the above-given assumptions that, if at the beginning
of the segment the process is in the state k, then the distribution F, of
the segment length and the Markovian transition matrix (P#(?)) may
depend upon k, but they are independent of n.

Denote by (6%) the Markovian transition intensity matrix. Obviously,

PP .
o = tim L0 i,

)
o) = ﬁmﬂ = Z v

3 ?

i,j, ke S.

Let us define the semi-Markov process
Z(t) = Y(w,_y)y Wp<t<w,, nelN.

The extended process (Y(t), Z (t)) is also a piecewise Markov process
with a state space § x8 and with identical regenerative moments w,,,
ne N. Obviously, for any s and ¢ with w,_, <s<s+t<w,, we have

(2.1) Pyyp(t) =Pr{Y(s+¢) =j, Z(s+1) =1| Y (8) =i, Z(s) = k}
= 0, PP (1),
(2.2) Pign = Pr{¥(w,) =j, Z(w,) =1| Y(w,—0) =1,
| Z(w, —0) = k} = 0Py,
(2.3) F(u) =Pr{iw,—w, ;< u| Y(w,_,) =k, Z(w,_,) =k} = Fy(u),
where i, 7, &, le 8, and é is Kronecker’s delta.
From equalities (2.1)-(2.3) it follows that the analysis of the piece-

wise Markov process is equivalent to the analysis of the extended process
(Y (1), Z(2)).

3. Imbedded Markov chains. Let (Y (t), Z(t)) be the extended piecewise
Markov process characterized by the triple (Fy, (py), (6%)). Let us con-
sider the following sequences of random variables:

R, = (Y(w,—0), Z(w,—0)), R, =Y(w,—0), 8, = Y(w,), mnel.

These sequences are homogeneous Markov chains, since w,, ne N,
are regenerative moments. Let us introduce the following notation for
the transition probabilities:

) =Pr{R, = (j, k) | B;_, = (i, m)},
ry =Pr{B, =j| R, , =1},
85 =Pr{S, =j |8y =1, ¢,j,k,meS.



Steady-state distributions 27

It is easy to see that these probabilities can be expressed by the
above-given formulas as follows:

(8.1) ) = f PP (w) AF (),
Ty = Z"(z’;)’
k
(3.2) fZP‘” ) D AF;(w), i,5,ke8.

Consequently, the steady-state probability distributions of the imbed-
ded Markov chains, i.e.

¢ =Pr{By =(j, )}, ¢ =Pr{B,=j}, o;=Pr{8,=j}, j,heS,

satisfy the homogeneous systems of equations

3:3) g = 3 S,
Z 1 Qs

(3.4) O'j 228,”'0'1:, j, kES,

the entire probability conditions

7k ] j
and the equality
(3.5) 0 —2 ®, jeS.

Since the random variables R, and S, are related by a regenerative
transition, the distributions {g;} and {o;} are related as follows:

(3.6) o = Y pyer, jeS.

4. Steady-state distributions. Now we proceed to the analysis of

(Y(t), Z (t)) as a process of continuous parameter. Let us introduce the
following notation for the steady-state probabilities:

q(k)—Pr{Y(t) =j7Z(t)=k}a Qj=Pr{Y(t):j}’ j,keS.

Let X (t) be the time length from the moment ¢ to the nearest regen-
erative moment. Let us write

PP(x) =Pr{Y(t) =§,2(t) =k, X(t) < a}, j,keS, x>0,
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LemmA 1. The stochastic process (Y (1), Z(t), X () is Markovian.
The probabilities P{ (x) satisfy the system of differential equations
(41) P (x)— P (0) — 6P (@) +
+ ) 09PO(2) + 83 F(w) D py D PP'(0) =0, j, ke,
) 14

1#5

Proof. From the analysis of the state of the process at the moments
t+h and ¢t (h > 0) we obtain

Pr{Y(t+h) =j, Z(t+h) =k, X(1+h) < @}
=(1—0WR)Pr{Y(t) =j,Z() =k, h< X () < o+h}+

+ D 6 PRPr{Y(t) =4,2(t) =k, k< X() < o +h} +
1#J

+ 0y Fu(@+ah) D D pyPr{¥(8) =i, Z(t) =1, X () < h} +o(h),
l i
j, keS8, ae(0,1).

Dividing sidewise by % and taking the limit for » — 0, we obtain
the system of differential equations (4.1).

LeMMA 2. The steady-state distribution function of the process X (1)
i8 of the form

(4.2) P(@) =Pr{X(t)< @} = ) o; [ (1—F;(u))du,
j 0
and we have
(4.3) P§""(0) = ve§"’, j7 ke S7
where
(4.4) 1Y% pmlo f (1—Fy(t)dt.
14 - Y; v; 3

Proof. An addition of (4.1) side by side over j and k gives the dif-
ferential equation

P'(@) =P'(0)+ > Fy(n) D py D PP (0).
j ) l

Since P(0) = 0 and P(o0) = 1, this equation has the solution

(4.5) P@) =D M PY(0) Dpy [ (1 —Fj(w)du,
l J 0

1
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where

(4.6) PPN 0 Zpa%j =1
1 4 J

Let us write

1
lim—Pr{X(f) < b} =».
o b
It is easy to see that
PF(0) = lim%Pr{X(t) <WPr{Y(t) =j, Z(t) =k | X(t)< b} = »o{.
h—0

From this and from (4.6), using (3.5) and (3.6), we obtain (4.3) and (4.4).
Substituting (4.3) into (4.5), we obtain (4.2).

THEOREM 4.1. For the extended piecewise Markov process (X (1), Z (1)),
the steady-state probability distributions satisfy the relations

(4.7) vo; +20V‘)q"‘) = 90, +22 00q®,  j, keS.

15

Proof. Adding equalities (4.1) over k¥ and taking the limit for @ — oo,
since P (z) -0, F () -1 and P{M(z) —¢®, we obtain

- B 0= Y00+ Yo+ Yoy IHO) =0, jes.
k

15

Substituting (4.3), in view of (3.5), (3.6) and (4.4), we obtain (4.7).

CoroLLARY 4.1. If the Markovian transition intensity matrices are
identical, 0 = 0, then

(4.8) ve;+ 934 =05+ ) 0,0, je8.

t#]
THEOREM 4.2. The steady-state probabilities of the process ( Y(t),Z(t),X (t))
are given by

(4.9) PP (@) = v0y, [ (F(@+1) — Fy () PR () dt

Proof. Let us consider the following Chapman-Kolmogorov system
of differential equations for the transition probabilities PP (t):

(4.10) P () = —60PR@+ D 0PPR(), k,jes.

1]
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Multiplying the left-hand side of (4.10) by vak(Fk(m—{—t) -Fk(t)) and
integrating, we obtain

L =0, [ (Fulo+t)— Fu(0) P
[

(o]

= oy, (B (€4 1) — Fio (1) PR (1) | — f v, PE) (1) & (Fy, (4 + 8) — Fy (8))

[oe]

d
= —5kjvaka(w)—d—w( f vak(Fk(a;+t)—Fk(t))ch’;)(t)dt)Jr

+ [ vo Pl 0aF. ),
0

where the last term on the right-hand side, by (3. 6), (3.5), (3.1) and (3.3),
equals »o{®) .

Applying the same transformation to the right-hand side of (4.10),
we obtain

R = [ vou(Fy(a+0)—Fy(0) (— 6PPR )+ D) 09 PR(1))dt

1#J

= — 00 [ vou(Fy (@ + k) — Fy (1) PY (1) dt +
0

+ e<k>( f 10| B (@ +1) — Ty (t )Psg;)(t)dt).

i#j

Comparing L = R we have

(o]

a
([ roulButo+—Fu) P ) -

oo

—yolf) — B(f)(f v, (Fy (@ + 1) — Fp (1)) P () dt) +

A f v0,(Fy(@+8) — B (0) P (0)@t) + 0, Fi(a) = 0.
i#]

From this, using (4.3) and (3.6), it follows that the solution of the
system of equations (4.1) has form (4.9).
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COROLLARY 4.2. The steady-state probabilities of the process (Y(t), Z(t))
and Y (t) are equal to

0

(4.11) ¢p = f vo, (1 — Fy (8)) PR () dt,

(4.12) g; —Zq‘k)—f v Y op(L—Fp (1) PR (1)dt, e,
k

Relation (4.8) has been proved in [4], expression (4.7) is a generaliza-
tion of these relations for the case of Markovian transition intensity ma-
trices (6%) dependent upon %.1

5. Imbedded remewal process. The moments of the regenerative
entries into the state % (ke 8) for the piecewise Markov process Y (¢) consti-
tute the renewal process. Let u;, denote the mean time between successive
signals in this renewal process. The calculation of {u} is equivalent to
the calculation of the steady-state probability distribution {o;}.

THEOREM 5.1. For the piecewise Markov process Y (t), the sequences
{w;} and {o;} satisfy the relations

1
(5.1) —_— ='VO'J', jE S.
] .

COROLLARY 5.1. The sequence 1/u; satisfies the homogeneous system
of equations

. 1 1 )
(0.2) -_— = Zsij_—, jGS,
K s Mg
with the condition
1
(5.3) Z =1.
F V; U

Formula (5.2) follows from (3.4) after substitution of (5.1), and
formula (5.3) follows from (5.1) and (4.4).

Proof of theorem 5.1. Let F; denote the probability distribution
of the time length from the moment of the regenerative entry into the
state ¢ to the moment of the regenerative entry into the state j and let

o

/‘l"l'j =f (1—F,U(t))dt, i,jGS.

0

It is easy to verify that

1—Fy(a) = +22f () Pa(l — Fy(x—t))dF,(8), 4,58,

k l#5 0
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which, after side by side integration, leads to the equalities

1 g L
by = D [ D PROBLAFD, i 8.

1#j 0 k
In view of (3.2) we have

1 -
227} = + Zsizﬂzjy i,je 8.
L P
Multiplying these equalities sidewise by o; and summing them
over ¢, using (3.4) we obtain, after reduction,

g; 1
Oy bij = E, — = —, Where u; = u.
: Y; 14
This completes the proof of theorem 5.1.

References

[1] I. Kopocinska and B. Kopocinski, Queueing systems wilth feedback, Bull.
Acad. Pol. Sci., Sér. sci. math. astr. phys., 19 (1971), p. 397-401.

[2] — Queueing systems with mived input stream and feedback, Zastosow. Matem.
14 (1974), p. 177-183.

[3] A. Kuczura, Queues with mized renewal and Poisson inputs, Bell System Techn. J.
51 (1972), p. 1305-1326.

[4] — Piecewise Markov processes, SIAM J. Appl. Math. 24 (1973), p. 169-181.

[6] W. L. Smith, Renewal theory and its ramifications, J. Roy. Stat. Soc. B 20 (1958),

b P. 243-302.

MATHEMATICAL INSTITUTE
UNIVERSITY OF WROCLAW

Recetved on 10. 6. 1974

MARIA JANKIEWICZ i B. KOPOCINSKI (Wroclaw)

STACJONARNE PROCESY PRZEDZIALAMI MARKOWSKIE

STRESZCZENIE

W pracy przedstawiamy nowe dowody oraz pewne uogélnienia wynikéw
A. Kuczury, dotyczacych relacji miedzy granicznymi rozkladami prawdopodobienstwa
stanu procesu przedzialami markowskiego, zdefiniowanego w [4], i granicznymi
rozkladami prawdopodobienstwa lancuché6w Markowa wlozonych w chwilach regene-
racji. Zakladajac stacjonarnoéé rozszerzonego procesu wykorzystujemy w dowodach
metode rozbudowy procesu przedzialami markowskiego do procesu Markowa.



