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ON CERTAIN TRANSCENDENTAL FUNCTIONS

0. Summary. Some properties of the functions D(u,v), Qu,v)
and ¥(u, v) defined by equations (1), (2) and (3) are considered. Series
expansions, approximate expressions and asymptotic formulae are derived
for these functions. Furthermore, integrals and particular solutions of
some ordinary differential equations connected with the functions con-
sidered are derived. The functions discussed appear in some technical
problems. The technical application of the functions 2 and ¥ is illustrated
by two examples. [6]

1. General equations. The transcendental functions Q and ¥ are
defined by equations [6]

1 __
1) Q(u, v) =?[e “O(u, v)4 € D(—u, v)],
1 __
(2) Y(u,v) :3[6 “D(u, v)—€"D(—u, v)],
where
. oy = [0
’ ~ Vi o

on the assumption that » and v # 0 are complex.
It is easy to show that £(u, v) is even whereas ¥ (u, v) is odd with
respect to u; hence

Q(—u,v) = 2(u,v), ¥(—u,v) = —¥(u,v).

The functions 2 and ¥ occur in problems associated with current
propagation along conductors which are in direct contact with the earth.
Such problems are considered in [2]-[7], and in other publications.

In technical problems, » and v are real or complex with the requi-
rement that arg « = arg v. Tables of Q(u, v) and ¥(u, v) are encountered
in a number of publications dealing with earth currents. Extensive tables



for real « and v are published in [5]. Short tables for complex # and »
are given for argw = argv = wn/6 and =/4 in [6], whereas for argw
= argv = 2=/9 in [4].

Some properties of the functions 2 and ¥ are discussed in the sequel.

2. Derivatives. From equation (1) we obtain

002 1 oD 0D (—
— = ——[—e‘“cb(u, v)—{—e‘“ﬂ + D (—u, v)+6* 90w, v)
ou 2 ou ou
and substitution of
0D(u,v) e 0D(—u,v) e
Ou a Vurtor ou a Vur oz’
which results from (3), gives
00
(4) B —Y(u,v).
u
Similarly, we derive
liyd 1
5 — = =0 —== .
(5) P (u, v)+ WS

Equations (4) and (5) have been derived in [5].
The differential equation for £ as function of « is
azQ 1
—2u,v) = — ———
d/uZ (u’ ) 'l/u2_l_/v2

which results from (4) and (5). It is easy to verify that boundary con-
ditions for the function 2 are

(6) ) =bf m =—2— [H,(v)— Y, (v)]
and

_6_.({ = —¥(0,v) =0,

0 Jy—o

where H,(v) is Struve’s function of order zero and Y,(v) is the Bessel
function of the second kind, order zero. The integral which appears in (6)
results from formula no. 3.387.7 in [1] for » =1/2 and ux = 1.
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3. Series expansion of function @. The function @ given by (3) may
be represented as

whence,

’

(M) ®(u, v) =§[Ho(v>—yo(v>]+f‘/el

x* 4 v?

if equation (6) is used. Substitution of the series expansion for ¢ into
the last integral gives

jf " dix _Sjifu o* dx
g Va? 4 v? P Var ot

It is easy to verify that

u A u k 2
f v do ———l" 'Y ur4 02— (k— 1v2f dm]
g Vartor Va4 o2

where the first two integrals for ¥ =0 and k¥ =1 are

f In Vui+ 024 u
_—_— ——_—’
J Vario? v

x dx
__]/2 2__gp.
f]/ u:+v )]

wz + /02
Using the equations derived, we obtain

(8) f/—dw— g T T g Y2k

2 2 k!’
e )] =

since the terms involving the logarithm constitute the Bessel function J,(v)
and the terms including o only constitute Struve’s function H,(v). The
coefficients 4, which appear in (8) are determined by

N 1 -
(9) A, =0, A, =Vur4v% ..., 4 = % [ Vur 4+ v2— (k—1) 024, _,].
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Inserting equation (8) into (7), we have

l/u2+'vz+u 4 - 4,
(10) D (u,v) = Jo(o)ln———— —?Yo(v)—l—gﬂ,

whence, retaining the first terms in the series expansion, we obtain

'02) l/uz—i—vz—l—u ( 1)2) >V
lé—4mM—— — 1

(11) D(u,v) =(1—2— - 1—— 1n7_

v? — 1 —
—‘Z‘H/““F””' Zul/u2+vz+---,

where » = 1,7811... (Inx = 0,56772... is Euler’s constant). Equations (9)
and (10) are given in [6].

When |u| is sufficiently large in comparison with |v|, which is assumed
to be sufficiently small, we have approximately

A, = k=1,2,3,...

%’
according to (9). Then, by use of the series expansions of the Bessel func-
tions J,(v) and Y,(v), we obtain

2

1,12 (Vu2+ v2+ u) >y uk
2 +’; k. k!

We retain the term Vw24 92 on the right-hand side of equation (12),
which permits to calculate @(—wu, v). The series which appears in (12)
can be expressed in terms of the exponential integral function Ei(u).

(12) ®(u,v) ~In

4. Approximate expressions for functions 2 and ¥. From relation-
ship (11) we derive

2 2 2L 2
e "D(u,v) = (1_u_|_“7 _”T) (ln Va —i—/vv +u +In 1,;2)_

v? 3 —
—a + l/u2+’02— Zul/uz—i—vz—{—...

if the series expansion of the exponential function is used. Hence,

2 2 Vu? 2

02 3
— +Vurt o2t Zul/u?—i—'¢7z+...
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and substitution into equations (1) and (2) gives

u2 2 1,12 Vul+4+v24u 2

Q(u,’v) =(1+7—T)1n ’/v _uln"v\—r_f_l/uz_l_fvz_'_'."
w2 2 l/u2+v2+u 1,12 3

Su(u’v) =(1+_2——T)mT—uln ,’U —Zul/uz—l-’vz—l-...

These expressions may be used if |u| and |v| are sufficiently small.

5. Asymptotic formulae. Integration by parts of the integral (3)
gives

P ue® (2u’—v%)e*  3u(2u’— 30v%) e*

+ 2_,_,02) (u2+,02)5/2 (u2+,02)7/2

(u2+v2)l/2 (u
which is the asymptotic formula for the function @, Hence,

D(u,v) ~

B 1 w 2u— v? 3u (2u®— 3v?)
e "D(u,v) ~ @t )" + (uP+ 0°)2 + (U + p%)572 + (u? 4 o) +
and

1 u 2u?—p2 3u (2u?— 302)

eD(—u, v) ~

R Uy L U i e

Inserting these equations into (1) and (2), we derive asymptotic
formulae for the functions (2 and ¥, namely

1 2u?— p2
Q(’U/,’v) ~ (u2+102)1/2 + (u2+1)2)5/2 _‘l—-..’
(13)
1 3(2u?— 3v2)
Yj('u:, ’U) ~ U [ (’ll/2+'02)3/2 (u2+ ,02)7/2 ]
From the first relationship of (13) we obtain
1 1
Q(O’ 'D) N? '—F +

6. Integrals. The indefinite integrals of Q(u,v) and Y(u,v) are
equal to

[Q(u,v)du = —¥(u, o)+ In(ut Vurfo2),
[P (u,v)du = —2(u, v),

which follows from (4) and (5).
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It is easy to show on the basis of equations (1) and (2) that the
functions 2 and ¥ may be expressed as

o0

1 -~ e ?dz
Q(u,v) = ———— |,
() 2 f '02—|—(z— +f Vol (24 u)? ]

17 e ?dz e “dz
Y(u,v) =— —
(% %) 2 JVW{—(z— fl/'vz—i—(z—l—u ]
whence,
e ?dz
f — 2(u,v)+¥(u, v),
l/vz—l—(z—u)2
(14)
~ e *dz
f — = Q(u,v)—¥(u, ).
l/v2+(z—l—u)2

The integral (6) results from (14) as a special case for v = 0.
It may be shown that

T INaztul

| Ve

— 00

du =2Q(I'z, I'a),

(15)

+oo —Iiz+u]

f zt+u e
J letul Veryae

du = 2¥(I'v, I'a)

for real z,a > 0 and Re(I") > 0; e.g.

+o00

e—I‘l:z;+u| —Fu du f —TI'u du
_0[ l/u‘~‘+ az f l/u2—|— a,2 l/u2+ a?
and substitution of ¥ = —1/I"and » = t/I', respectively, into the integrals

on the right-hand side of the last equation gives the first relationship
of (15) if (1) is used.
Consider the integral

f Q(u,v)e”"du,

where Re(a) > 0, Re(v) > 0 and 2 is complex. Integrating the last integral
by parts and considering (4), we have

—az

f Q(u,v)e du = ¢
a

1 [0 ¢}
Q(=,v)— ;f Y(u,v)e ™du.
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Integration by parts of the integral which includes the function ¥
gives

—az —az
€

Q(z,v)— 2

a 02

f Q(u,v)edu = Y(z, v)+

1 r 1
+—2f Q(u,v)e " du— — &(—az, av)
a a?
2
if (5) is used. Hence,

(16) f Q(u, v)e~ " du

ag

e 1
— a2a_1 [e“’z!)(z, v)— - Y(z,v)— ;Q(—az, ‘w)]’

when a # 1.
We obtain similarly

(17) fg(u, v) ™ du

az

1
: T [e"z!?(z,vH ° T(z,v)—;ds(az, av)

a?— a ]
and
0 a w e~ -
f Y(u,v)e ™ du = az—1 [e Flzy )= a Q(2, 0)+0(—az, ‘w)_ ’
z a w az
f![’(u, v)e™du = 1 [6 (2, v)+ a Q(z, v)—D(az, a'v)]

for Re(a) > 0, Re(v) > 0 and complex z.
The integral
+00

[ Q@u, Naye 2" *du
— ¢ [ Q(I'yu, Nae)e™ dut+ ™ [ Q(Iyu, I'ya)e~"s%du

can be expressed in terms of (16) and (17) by substitution of n = I'u,
and as the result we obtain

(18)
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By use of the integrals which have been considered previously, we
obtain

+00
(19) f W(Tyu, Iya)e~ "7 qu

— 00

or,
Fz I [P([2, I'a)—¥ (2, I'ya)],
% r—u
(20) f oy 2T, Ty
or,
= fa_s (P12, )= ¥ (e, Ta)),
= r—u
(21) f g YU Tiaye "M

2
=W [z, I'a)—T,Q2(x, I'ya)].
Equations (18)-(21) are valid for I} # I,, Re(I}) >0, Re(I},) >0,
a >0 and real z,
Now, consider the integral

~ K (au)cosxu K, (a|lul)
(22) f ou2+F2 2 f uO+F2 i,

where K,(aw) is the modified Bessel function of second kind and order
zero, whereas « is real, a > 0 and Re (/") > 0. Using an integral represen-
tation of K,(au), the integral (22) becomes

1 }:w ei:cu + eiuv dv P
4: % u2—|-r'°" % ‘/rv2+a_2 v

+00 00 + 00

1 1 —I'lix+v|

S S f cos(z+v)u du]dv T ¢ dv,
2 _J Veta u?+ I 4ar _J Vot a?

according to formula no. 3.723.2 in [1]. Hence,

(23)

F K
f o(a;u) cosTu du = —— Q(I’w Ta)
w24 I'2 2r

0

if the first equation of (15) is applied.
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Similarly, we obtain

T
T du =E¥’(1’w, I'a).

(24) fmuKo(au)sinwu
0
Equations (23) and (24) are valid for real z,a > 0 and Re(I') > 0.
Integral (23) has been derived in [7] for real I

7. Differential equations. It is possible to obtain particular solutions
of some differential equations.
A vparticular solution of the equation

d?
L Iiy(o) =
dx? Var L g2
is given by
¢ jm e~ =" dy ¢ 5

for real x, complex ¢, a > 0 and Re(I') > 0 if the first equation of (15)
is used.
A particular solution of the equation

daty cx
(25) az’ —Iy(x) = W
takes the form
(26) y(x) = —c¥(Ix, I'a)

under the same assumptions as previously.
Particular solutions of the equations

d2
Y _Iiy@) = (I, I'a),

dx?
dZ
d—;’; _Iy(z) = ¥(I'yx, I'ha)
are
C
S — A O T O & I a)—
27) y@) = ppE—py 9 L) =18, La)),

c
y(w) — ﬂ[w(rlw’ Fla)—yl(r2w7 an/)],

respectively, for real @, complex ¢, a >0, Re(Il')) >0, Re([,) > 0 and
I’y # I'y. It should be noted that equations (27) are derived by use of (18)
and (19).
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8. Applications.

8.1. Currents and potentials along underground conductors. Let us con-
sider an underground conductor carrying the longitudal current I(x)
which flows in the positive direction of the x-axis lying along this con-
ductor. We denote by V(x) the potential which is produced along the
conductor by I(z). It is assumed that currents and potentials vary with
time as exp(iwt), where o is the angular frequency.

It is shown in [2] that approximate relationships between I(x)
and V (z) form the differential equations

(28) W Z21@) = Pw), L - _¥v),
dx dx

where Z and Y are the unit-length impedance and leakage conductance
of the underground conductor, respectively, whereas E,(x) is the electric
intensity impressed along the conductor by external factors. When the
conductor is buried in the vicinity of a point earth electrode which is
placed on the earth surface at a point opposite to = 0, the impressed
electric intensity becomes '

I, x

(29) E'(2) = oy (@t aE’

where I, denotes the current which leaves the earth electrode, y — earth
conductivity, and a — distance between earth electrode and conductor.
Elimination of V(x) from (28) with (29) gives
I Y1
@) = —
dx? 2nty (@°+ a®)

(30)

where I' = VZY with the requirement that Re(I') > 0 is the propagation
coefficient of the conductor.

Equation (30) is also valid for the conductor which lies on the earth
surface, as has been shown in [6].

Now I(x) becomes

( 31) I(x) = ;f; ¥(I'z, I'a)

cas the solution of differential equation (25) which is given by (26) with
t= —YI,/2ny.
The potential impressed by I(x) in the conductor is derived from
! second equation of (28). Hence,
1 dI I,

1
V) = =g g = | 9T T ]
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if equation (5) is applied.

8.2. Voltage between sheath and cable conductor. The longitudal cur-
rent I(x) flows in the sheath of an underground cable. This current pro-
duces the voltage between the sheath and a cable wire ag (see [3])

(32) U(x) =%[efc$ f I(w)e T dy—eTc® f I(u)erc“du]’

where I', = I/(G—}—in)Zc, Re(I;) >0, Z, is unit-length internal Impedance
of cable sheath, Z, — unit-length impedance of cable wire, @ — unit-length
leakage conductance of cable insulation, ¢ — unit-length capacitance
between sheath and cable wire.

Equation (32) may be represented as

Z T—u r
—_ __._8. _— - clx—ul
(33) Ula) = — _0[ p— I(u)e du.

If the cable is burried near the point earth electrode which lies on
the earth surface, the current in the sheath is given by (31). Hence,

+00
YZ.1 r—u

4y z— Ul

and substitution of (21) with Iy = I" and I', = T, gives

YZ. I,
Tcy(Fz—]’g)

U(w)=2 [Q(I’m,]’a)—%.{)(]’cm, Fca)]-
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M. KRAKOWSKI (Lédz)
O PEWNYCH FUNKCJACH TRANSCENDENTALNYCH

STRESZCZENIE

W pracy omowiono szereg wilasnoseci funkeji @ (u, v), 2(u, v) i ¥(u, v) okreslo-
nych przez réwnania (1), (2) i (3). Wyprowadzono szeregi potegowe, wyrazenia przy-
blizone oraz wzory asymptotyczne dla tych funkeji. Wyznaczono kilka calek oraz
podano rozwiazania szczegélne kilku réwnan rézniczkowych zwyczajnych, zwigza-
nych z funkcjami Q i ¥. Rozpatrywane funkcje znajduja zastosowanie w niektérych
zagadnieniach technicznych. Podano dwa przyklady ilustrujace zastosowanie prak-
tyczne funkeji 2 i V.

M. KPAKOBCKHM (Jloass)

O HEKOTOPBIX TPAHCHEHJAEHTHbBIX ®YHKIIUAX

PE3IOME

B cratbe paccmoTpeHH cBoiicTBa QyHrumit D (u,v), 2(u,v) n ¥Y(u,v) ompe-
HedleHHHWX ypaBHenuamu (1), (2) u (3). Jaa satux PyHRUMN DOJTydyeHO IIpeACTaBIeHUs
B BHJlee CTENEeHHHX pAAOB, npubiamkeHHble QOPMYJH U ACUMITOTHYECKHME pPasJo-
meHnAa. OmnpejesleHO HEKOTOPHe MHTerpajsl M II0JYYEHO YACTHHE pelIeHUA HeKo-
TOPHX OOHIKHOBEHHHX AMPQepeHUUAJTbHHX YpaBHeHUMH CBA3AHHHX ¢ PyHKUUAMHU £
u ¥. PaccmarpuBaeMble QYHKIMM NPUMEHAIOTCA B HEKOTOPHIX TeXHUYEeCKUX npolbiaemax.
TexHndyeckue npuMeHeHusa GyHruuii Q m ¥ MITOCTPUPOBAHBI ABYMA NpUMEPaMH.



