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1. THE PROBLEM

Given p obJects X, X,, ..., X,, such as persons, teams, phenomena,
characteristics etc., two problenis are often cncountered:

(1) to order the objects, and

(2) to divide them into groups of similar objects.

To solve these problems, a criterion is needed which would decide
in a unique way which of two orderings or clusterings is the better one.
Such a criterion determines also the best ordering or clustering. The
number of objects is finite, thus the number of possible orderings or
clusterings is also finite. Therefore it is possible, at least theoretically,
to find an optimum soluteon. The number of possibilities is, however,
vast and solving the problem by enumeration is practically inpossible
even with high-speed computers. That is the reason why, having determined
an optimality criterion, one is sceking an algorithm which would give
the optimum or near-optimum solution in a fast way. Often the optimality
criterion is not formulated explicite; it is determined by the proposed
solution methods which — of course — should be objective and unique
ones.

Usually, the mathematician encounters ordering and clustering prob-
lems only if the optimality criterion is not implied directly by the problem
considered or if more general criteria are wanted. Similarity measures
between objects are introduced then and on their basis optimality criteria
are formulated.

Objects characterized by the standardized values of m quantitative
characteristics are treated as points in m-dimensional Euclidean space
whose coordinates are equal to the values of the characteristics, and sim-
ilarity is determined by the distance between these points. Similarity
between characteristics is measured by correlation coefficients or their
Squares. Similarity between plant groups may be determined by the index
of similarity introduced by Marczewski and Steinhaus [3]. Other measures
are, of course, also possible.
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The present paper is composed of two parts. In the first part an
optimality criterion for linear ordering is proposed and an algorithm
allowing to find a near-optimum solution is given. The second part of the
paper contains a discussion of optimality criteria for optimal clustering
of characteristics and a method of clustering based on the optimal ordering
is proposed.

2. ORDERING

2.1. A goodness-of-ordering criterion. The ordering of objects will
be determined by giving a relation of neighbourhood for objects. The
notation for two objects X; and X; being neighbours will be as follows:
X,— X;. This relation has to satisfy two conditions:

(a) X;—X; = X, — X,

(b) every object has at least one neighbour.

The relation of neighbourhood may not be defined for some pairs
of objects.

An ordering will be called linear if the relation — satisfies two addi-
tional conditions:

(c) every object has at most two neighbours,

(d) there exist exactly two objects, say X, and X ,, which have only
one neighbour each.

A relation satisfying conditions (a)-(d) ranges the objects either as
X,,..., X, or as X,,..., X;. Both these orderings will be considered
identical.

An example of non-linear ordering is given by the minimum-spanning-
-tree ordering [1].

The linear ordering X, , X ,-.., X"p is determined uniquely by the
permutation of the indices @ = (a,, a,, ..., a,).

Assume that the distance between every pair of objects d(X,;, X;)
= d; > 0 is defined (in any permissible way). By assumption, these
distances satisfy the conditions

(i) dy =0,
(ii) dij = dyi,
(1ii) dii+dy > dy.

The distance matrix will be denoted by D(a,, a,,...,a,) = (daiaj)'

Thus, every ordering has a different distance matrix. The set of elements
is, however, for all matrices identical.

Let us introduce the notion of object apartness in an ordering.
Neighbouring objects in an ordering will be said to be apart 1 unit, every
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second object is from every other second object apart 2 units, etc. Generally,
in the ordering a,, a,, ..., a, the objects numbered a; and a; will be said
to be apart ¢;; = |4 —j| units. The apartness matrix 4 is identical for all
possible orderings and has the form

Consider the function
bn—1 17—
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‘Function (1) is the weighted sum of distances between every pair
of objects, where the weights are given by the apartness of the objects
in the ordering. The weights of distances of objects being near in the
ordering are small, those of distant objects are great. Intuitively, one
wants such an ordering in which objects with small distances would be
neighbours, i.e. small distances would have small weights, and objects
with great distances would be far apart, i.e. great distances would have
great weights. The suggestion is that a better ordering should have a greater
value of Q*; thus, the best ordering will be that one for which the function
Q* reaches its maximum. Therefore one may formulate the following
criterion of goodness-of-ordering:

CRITERION Q*. The ordering (@1, @1z -- -, a,,) 18 better than the ordering
(@ayy Qgpy o vy Aop) if

Q*(au, P2y -0y “11;) > Q*(azn Aoy - -y Qo).

Such a criterion makes it possible to test which of two given orderings
is the better one.
The proposed criterion may be generalized by considering the function
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where f(v) is monotone increasing in v.

Instead of the distance, a measure of similarity between objects
is often defined. If the objects are random variables or characteristics,
such a measure may be given by the correlation coefficients r;; between
them. In such a case it is assumed that #; > 0 for all 4,5 = 1,2, ..., p.
The goodness of ordering may now be defined by the function
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under the condition that goodness-of-ordering is now given by the fol-
lowing
CRITERION (). The ordering (a,y, @ys, ..., @y,;) 18 better than the ordering
(a’217 Aoy «ovy aZp) 7f
Q(A11y Crzy -y 1)) < Q(Bagy ooy - -0y Byy).
Under this criterion the best ordering is that one for which the
function ) reaches its minimum. .

2.2. Quasi-optimal ordering. The ordering (a,, a,, > .y a,) will be
called quasi-optimal if no better one can be obtained by transposition of
two objects. )

Definition. The ordering (a,, a,, ..., a,) is called Q- (or @*-) quasi-
-optimal i Qag, Gay ey @y N5y 0,) S Q(Ary ey @y, @, ey Q)
for every pair 4,7 =1,2,...,p (or if Q*(ql, ey Wy ey Uy ey @)
Q% (@yy ovvy @iy ooy Gy ..oy @), Tespectively).

It follows from the definition that an optimal ordering is 9180 a quasi-
-optimal ordering. The opposite theorem is not true.

2.3. Algorithm for quasi-optimal ordering. Let the objects be ordered
in the sequence (1,2,...,8,...,%, ..., p). The valuc of the function @ will
then be Q(1,2,...,8,...,t,...,p). A transposition of objects nymbered
s and t leads to the ordering (1,2, ...,%,...,8,...,p)and to Q(1,2, ..., ¢,
eeey 8y ..., p). The quantity )

g8, 1) =Q(1,2,...,8, ..., ..., p)—Q(1,2,...,8,...,8,..., D)
denotes the change of criterion @ caused by a transposition of objects
X, and X,. Because of

Q(1, 2yt 80y p) = Q(]~7 2y 8yt p)—g(s, 1),
one obtains a better ordering by transposition of X, and X, if ¢(s, t) > 0.

The value of q(s,t) is easy to calculate even without a computer.
It equals

-1 h—1
1
(B) a5, ) = =7 D (osre—Tornsse) + O (—h+20) (g —Typnsr) -+
r=1-8 r=1
n—s
+h 2 (Ts,s-é-'v‘Ts+h,s»t—r)7
v=h+1

where h =t—s and ¢t > s.
The following formula may be of use. If s <t < u <w, we have

Q(l, . yty ey 8y ey Wy eey Uy .oy P)
=Q(1,...,8, .y ly ity Wy, P)—q(s, ) —q(u, ),

where ¢(s,t) and q(u, w) are calculated after formula (3).
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From the definition of quasi-optimal ordering it follows directly

COROLLARY. If (a,,...,a,) is a quasi-optimal ordering, q(as, a;) < 0
holds for every pair of s,t =1,2,...,p, 8 <1

Now we may proceed to formulate the algorithm for finding a quasi-
-optimal ordering.

Let us have the ordering @, = (@, G,y -..) Gp).

1. Calculate ¢(a;,, a;y) for all s,t =1,2,...,p,8 <.

If for all pairs s and ¢, s < t, holds q(a;s, a;y) < 0, the ordering @, is

quasi-optimal Go then to 5 If there exists a g(a;,, ai) > 0, go to 2.

2. Find g(ay,, axr) = nlEtXQ(aks? Apy)-
S,

3. Transpose the objects numbered ay, and aj,.

4. Denote the new permutation of indices by @, = (@1, @py1y-..
<oy Opyy ) and go back to 1.

5. Calculate the value of Q(ax, ags) ---, ag),).

Since Q (@) > Q (@, ,) for every k, the procedure ends with an ordering
@x = (@g1; Ggay ---y Ggp) Such that ¢(agg, ag) <0 for all s <i. That
ordering is a quasi-optimal one.

2.4. An example. The presented algorithm has been used to find
the quasi-optimal ordering of 14 characteristics of motor ability. (The
data were kindly provided by Mr. W. Czworonég from the Academy of
Physical Education, Warsaw). The characteristics were the following:
1.100 m run, 2. shot-put, 3. high jump, 4.30 m run (velocity test),
5. 250 m run (endurance test), 6. vertical jump, 7. standing broad jump, 8.
triple jump, 9. knee bends, 10. weight lifting, 11. 60 m hurdles, 12. discus
throwing, 13. javelin throwing, 14. broad jump.

The matrix of sample correlation coefficients is given in Table 1.
The algorithm leadsto the following quasi-optimal ordering:

1. 250 m run (endurance test), 2. 100 m run, 3.60 m hurdels, 4. 30 m
run (velocity test), 5. broad jump, 6. vertical jump, 7. triple jump, 8.
standing broad jump, 9. high jump, 10. knee bends, 11. shot-put, 12.
weight lifting, 13. discus throwing, 14. javelin throwing.

The corresponding matrix of correlation coefficients is given in Table 2.
The value of @ is equal to 193,860.

3. CLUSTERING

3.1. The problem. The clustering problem may be stated as follows.
Given p objects, they are to divide into % clusters in such a way as to
have some optimality conditions satisfied. Intuitively, the clustering is
& good one if the objects within clusters are similar and non-similar
objects belong to different clusters.
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Let us treat the objects as points in Euclidean space of appropriate
dimension and let us know the distances between them. Denote by X,
j=1,2,...,p; the point j in cluster i, and by §; the centroid of this
cluster. Let d(X,;, S;) denote the distance of point X;; from §;. A possible
optimality criterion for clustering is the criterion of minimum sum of
squares of distances of the points from their centroid.

CRITERION K. Among all possible divisions of the points X, ..., X,
into k disjoint non-empty clusters the optimum one is that for which the

quantity
E P
K=Y M a&Xy,8)

i=1 j=1
reaches its mintmum.

If characteristies form the objects which are to be divided into clusters,
one uses an optimality criterion based on Wilks’ statistics which is used
to verify the hypothesis that £ groups of random variables with normal
distributions are mutually uncorrelated [6]. Let C; denote the matrix
of sums of produets of deviations for the characteristics which belong to
group ¢, and C the appropriate matrix for all characteristics. Wilks’
statistics is given by the formula

k
(4) w = ICI/H 104

If every characteristics of group 4 is uncorrelated with every charac-
teristics of group j, and if this conditionis satisfied for all pairs of indices

k
such that ¢ # j, then |C] = [[|C;| and W = 1. In all other cases W is
i=1

smaller than 1. The optimality criterion is formulated as follows:

CrITERION W. Among all divisions of p characteristics into k disjoint
and non-empty clusters the optimum one is that for which (4) reaches its
minimum.

The idea of this criterion is clear; optimal is such a division into
clusters for which the clusters are correlated as small as possible.

Given a fixed number of clusters, the problem of finding an optimal
clustering is theoretically solvable for both criteria K and W. Up to
now, however, algorithms for fast clustering arc not known. The number
of possible divisions is vast enough and even high-speed computers do
not allow to slove the problem by enumeration. Therefore, instead of
searching for the optimum solution, “good” solutions must satisfy.

The methods of finding good solutions may be divided in two groups:
agglomeration and division methods. Agglomeration methods begin with
treating each cluster as consisting of one element. The number of clusters
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is then successively diminished by one through merging of clusters after
given rules. The methods of Ward [5] and King [2] belong to that type
~of methods.

Division methods begin with treating all objects as one cluster.
The number of clusters is then successively increased by 1 through division
of one of the existing clusters after given rules. Such a method is the
division of the minimum spanning tree in the Wroclaw taxonomy [1].

3.2. Optimality criterion for division of characteristics into clusters.
Division of a set of characteristics into clusters of characteristics mu-
tually strongly correlated or into clusters with correlations as weak as
possible between them is an intuitive demand. Some formalizations of
it, however, may lead to unsatisfactory results. King [2] observes that
an application of the W-criterion to division into k¥ = 2 clusters resulted
in optimum divisions into a one-element and a (p —1)-element clusters.
I have tried several simple division criteria and obtained also paradoxical
results. Thus, the criterion of maximum sum of the sums of intra-cluster
correlation coefficients and that of maximum sum of mean intra-cluster
correlation coefficients (summed together with the ones on the main
diagonal) lead to k—1 clusters of one clement each and one cluster of
p —k-+1 elements. The criterion of maximum sum of mean intra-cluster
correlation coefficients gives division into clusters of nearly equal numbers
of elements. These experiments learned me to formulate the criterion of
division of characteristics after correlation coefficients in a rather elab-
orate way.

Assume that each of the characteristics X,, X,,..., X, has been
obtained for » individuals. Denote the normalized values of those charac-
teristics by x;,, where o« is the individual number. The set of values
(s Ty + ..y X;) May be treated as a point in n-dimensional Fuclidean
space. The square of the distance between two characteristics is equal to
the square of the distance between two such points. It is equal to

dz(Xi, X]) - 2(1—7"1']').
Elementary algebraic derivations lead to the conclusion that — with
such a distance definition — the K-criterion is equivalent to the
following

CrirERION K'. Among all divisions of p characteristics into a fixed
Rumber of k disjoint and non-empty clusters the optimum division is that

one for which
k P
K E' L ¥
= - Vit
i=1 Pi s,t=1



30 F. A. Szczotka

reaches its maximum, where r; 4 is the correlation coefficient between char-
n;

acteristics numbered s and t in cluster number i. The sum D) r; o represents
S,t=1

the sum of all correlation matrixc elements, thus also of the ones on the main
diagonal.

Besides of the geometrical interpretation, the K’-criterion has also
a “statistical” interpretation. Assume that division into clusters of char-
acteristics is made for the purpose of reducing the number of charac-
teristics, i.e. to replace the characteristics of one cluster by the weighted
mean

where X;;,) = 1,2, ..., p;, are the characteristics of cluster 4, normalized
to mean zero and dispersion 1. The quantity Y, is the distance between
the projection of point X; = (X;, X, ..., Xy,) on the main diagonal
of the coordinate system and the origin of the system. This quantity is
called the first centroid component [4]. It is easy to calculate that

Vs

EY, =0, Var¥,=BEY?—=— T o
pL §,t=1
where the symbol E denotes the expected value. It is also easy to verify

that
Var Y, < p% [p; = Ps

The variance of Y, is thus the greater the stronger the correlation
between characteristics; it assumes its maximum equal to p; if all cor-
relation coefficients are equal to 1. For K’ to be maximum is equivalent
to requiring the maximum of

k
2 (Var Y, —p,).

i=1

That condition is easily generalized. Its interesting interpretation
n factor analysis will be published elsewhere.

3.3. Division by using the optimum ordering. It is right to assume
that division of optimally (i.e. so that consecutive objects are similar)
ordered objects leads to a clustering which is satisfactory in the sense
of having in clusters similar’ objects. Therefore I want to propose the
following principle of clustering, where we assume that the ordering
X,X,... X, is Q-optimal:
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Definition. A division into k clusters is called admissible if it is
performed in the following manner:

G, = {Xi: 1 =1,2, ---7p1}7
G, ={X;: i =p,+1,p,+2,..., 0, +Ds},

Gy ={X;: T =P+ + Pk +1, ..., D}

ORITERION AK'. An admissible division into k clusters is optimal if
the quantity K' reaches its maximum.

To find the optimal division into & clusters, it is necessary to verify
(*z1) admissible divisions. I believe that in practice one obtains a good
clustering applying the agglomeration principle to admissible divisions.
One should therefore begin wiht &k = p clusters by considering cach
characteristics as one cluster. The number of clusters is then successively
diminished through

(a) merging of neighbouring characteristics,
(b) merging of a neighbouring characteristics with a cluster of several
characteristics,

(¢) merging of two clusters consisting of neighbouring characteristics.

Among the in such sense admissible clusters it is necessary to choose
in every step that one for which K’ is maximum.

3.4. An example. The set of motor ability characteristics (see 2.4)
has been clustered after the A K’'-criterion. Table 3 presents the optimum
divisions for ¥ = 13,12, 11, ..., 2. The characteristics are numbered as
in the quasi-optimal ordering. Characteristics belonging to one cluster
are parenthesized. However, for one-element clusters no parentheses were
used. The last column of Table 3 gives the values of K'.

The method known as Wroctaw taxonomy [1] divides into clusters
as follows. A minimum spanning tree over all objects is formed. For
division into % clusters, k —1 greatest distances are deleted in the tree.
This method has been applied to the mentioned set of characteristics
using as distance the values 1 —7; in the minimum spanning tree. Table
4 presents the clusters obtained in such a way. Besides of the division into
13 clusters, the division of the quasi-optimal ordering lead-to a greater
K’ than the division of the minimum spanning tree. For Lk = 13 the
Wroclaw taxonomy merged characteristics nos. 2 and 4 in one cluster
which was an inadmissible clustering in the first method.
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TABLE 1. Correlation matrix for 14 tests of motor ability
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1

2 269 1

3 491 .422 1

4 842 .347 563 1

5 .738 .266 .493 .745 1

6 .607 .431 .582 .685 .478 1

7 .603 .483 .547 .678 .510 .708 1

8 .639 .482..606 .715 .554 .724 .792 1

9 .454 .648 .483 .540 .395 .510 .561 .551 1

10 .269 .611 .257 .357 .250 .365 .420 .403 .656 1

11 .760 .333 .578 .787 .703 .571 .616 .658 .463 .287 1

12 .249 .740 .353 .324 .265 .315 .454 .407 .534 .538 .298 1

13 .238 .588 .323 .304 .311 .280 .343 .349 .401 .375 .304 .561 1
14 .741 .413 .667 .816 .745 .641 .654 .709 .545 .346 .765 .378 .366 1

TABLE 2. Correlation matrix for 14 tests of motor ability. The variables are
in quasi-optimal order

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
7138 1
703 .760 1

745 .842 787 1

2745 741 .765 .816 1

478 .607 .571 .685 .641 1

554 .639 .658 .715 .709 .724 1

.510 .603 .616 .678 .654 .708 .792 1

9 493 .491 .578 .563 .667 .582 .606 .547 1

10 -395 .454 .463 .540 .545 .510 .551 .561 .483 1

11 266 .269 .304 .347 413 .431 .482 .483 .422 .648 1

12 250 .269 .287 .357 .346 .365 .403 .420 .257 .656 .611 1

13 265 .249 .298 .324 .378 .315 .407 .454 353 534 .740 .538 1
14 311 .238 .333 .304 .366 .280 .349 .343 .323 .401 .588 .375 .561 1

00 ~I O O b W -
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TABLE 3. Optimal clusters for tests of motor ability

k K’

13 1 2 3[4 516 7 8 9 10 11 12 13 14 13.816
12 1 2 3[4 516 (7 89 10 11 12 13 14  13.608
11 1[2 3 4 516 7 8 9 10 11 12 13 14  13.807
10 12 3 4 516107 89 10 11 12 13 14  13.599
9 1[2 3 4 5][6 7 8 9 10 11 12 13 14 13.290
8 1[2 3 4 5][6 7 8] 9 [10 11] 12 13 14 12.938
7 1[2 3 4 51[6 7 8] 9 [10 11 12] 13 14  12.567
6 1({2 3 4 5][6 7 8] 9 [10 11 12][13 14] 12.128
5 1[2 3 4 5][6 7 8 9][10 11 12][13 14] 11.625
4 102 3 4 5][6 7 8 9 10][11 12 13 14] 11.143
3 [1 2 3 4 5](6 7 8 9 10][11 12 13 14] 10.393
2 [1 2 3 4 5 6 7 8 9 101[11 12 13 14]  9.530

TABLE 4. Clustering of the motor ability tests by the Wroctaw taxonomy

k K/

13 1 3[2 45 6 7 8 9 10 11 12 13 14 13.842
12 1 32 4 516 7 8 9 10 11 12 13 14 13.599
11 1 3[2 4 5161([7 89 10 11 12 13 14 13.391
10 1[2 3 4 5]161([7 89 10 11 12 13 14 13.148
9 [1 2 38 4 516 1([7 819 10 11 12 13 14 12.849
8 [1 2 3 4 5]61([7 89 10 [11 13] 12 14 12.589
7 [1 2 3 4. 5 9] 6 [7 8] 10 [11 13] 12 14 12.010
6 [1 2 3 4 5 9][6 7 8] 10 [11 13] 12 14 11.701
5 [1 2 3 4 5 6 7 8 9] 10 [11 13] 12 14 11.009
4 [1 2 3 4 5 6 7 8 9][10 12]J[11 13] 14 10.665
3 [1 2 3 4 5 6 7 8 9][10 11 12 13] 14 10.133
2 [1 2 3 4 5 6 7 8 9][10 11 12 13 14] 9.530

F. A. SZCZOTKA (Warszawa)

0 PEWNE]J METODZIE PORZADKOWANIA I GRUPOWANIA OBIEKTOW

STRESZCZENIE

Niech dla obiektéw X;, X3, ..., X), beda okreslone odleglosei d(X;, X;) = d;;.
Autor proponuje — jako kryterium dobroci uporzadkowania Xoy Xay - Xap—
funkeje (1), przy czym wieksze wartodei Q* wskazuja na lepsze uporzadkowanie.
Jezeli obiektami sa cechy X;,..., X, o znanych wspoétezynnikach korelacji 7; > 0,
to proponowanym kryterium jest funkeja (2), przy ezym na lepsze uporzadkowanie
wskazuja mniejsze wartosei @. Podaje sie algorytm dla znalezienia uporzadkowania
quasi-optymalnego, tzn. takiego, ktorego nie mozna poprawié przez transpozycje
dwoch obiektow.

3 — Zastosowania Matematyki XIII.1
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W drugiej czescei autor proponuje i dyskutuje nastepujace kryterium optymalnosei
podzialu eech Xy, ..., X, na k grup. Za optymalny uznaje si¢ ten podzial, dla ktérego

Dy
jest maksymalne, gdzie p; jest ilosciag cech w grupie o numerze i, a Y 7; 4 jest
. S,t=1
suma wszystkich wyrazéw macierzy korelacji tych cech. Sugeruje sie, jako praktycznie
dobry sposéb podzialu na grupy, pociecie optamalnego (lub quasi-optymalnego)
uporzadkowania na k odcinkéw w ten sposob, by K’ osiggato maksimum.



