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A DISCRETE APPROXIMATION OF THE WEBER PROBLEM
WITH EUCLIDEAN DISTANCE

1. Intreduction. The TWeber problem, known also as the 1-median
Dbroblem, is some specific location problem. It may be summarized as.
follows. In the plane there are given some points whose number and
locations are fixed and specified in advance. The problem is to find a point
in this plane such that the sum of weighted distances between this point.
and the previous ones is minimized.

The roots of the problem are very old. Its ancestor is the problem
formulated first by Fermat in the early 1600’s: “Given three points in
the plane, find a fourth point such that the sum of its distances to the
three given points is as small as possible.” The problem was solved geo-
Metrically around 1640 by Torricelli. In 1750 Simpson generalized this
Problem by including unequal weights for the respective distances. In
1909 Weber used this generalized model to determine the optimal location
of a factory which produces one product with two given distinet sources
of raw material and supplies one customer. By assumption, the three
above points are not collinear, i.e. they are not all on the same straight
line. The optimum was meant in terms of minimizing the sum of weighted
distances between the factory and the raw material sources (suppliers)
and the customer. The distance may be defined in various ways. The
most popular are the rectilinear and Euclidean (quadratic) distances.
Which are also the most important in practice.

Evidently, the above problem may further be extended to the case
of more than three suppliers and customers. In fact, by the Weber problem
We mean now this extended case.

The Weber problem is an adequate model of many practical prob-
lems, for example in spatial planning (e.g., facility location), telecommuni-
cation (the “copper centre” problem for locating a separate telephone
€xchange in a zone area), designing computer and/or terminal networks.
(e.g., the location of concentrators and communication computers), ete.
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As was mentioned above, the most popular distances used are recti-
linear and Euclidean ones. The first is more adequate for the case of highly
urbanized areas, in which, e.g., the roads must follow the street configur-
ations, while the second one is more adequate to non-urbanized areas,
in which the roads may go more or less arbitrarily, mostly along the
shortest path between two points of the plane.

Previous works concerned mostly the Weber problem with the Eucli-
dean distance and in the continuous form, i.e., the point to be determined
could be lccated at any point in the plane.

For the above distances, as well as for many others, the objective
function is strictly convex (or convex when the points are collinear).
Hence, a local minimum, at which the gradient of the objective function
vanishes, is also a global optimum. However, the equations resulting
from the zeroing the gradient are non-linear and have not been solved
analytically yet. Hence, a numerical (recursive) solution was proposed,
e.g., by Kuhn [5]. Unfortunately, this method failed in the case where
a successive point coincided with some of the fixed points. Thus, to over-
come this difficulty, some approaches appeared, e.g., [6] and [1]. Anyway,
the above case of coincidence was shown to be very unlikely [5]. Moreover,
to overcome the non-differentiability a parabolic approximation of the
objective function was applied [3].

Another approach was presented by Lukaszewicz and Steinhaus [7]
who proposed a geometric procedure. Although the proof of convergence
was not given, the method was practically convergent.

Francis and White [2] also tried to use the Newton method for the
minimization of the objective function. It converged fast if it did not
oscillate.

As an extension, other problems were also considered, e.g., the Weber
problem in R™, m > 2 (see [10]).

It may easily be noticed that the solution of the problem is difficult.
In particular, in real life situations (e.g., in telephone networks) the set
of fixed and specified points consists of many thousands of elements.
In such a case all the methods mentioned previously fail. Thus, in the
paper we propose a practical method for some approximation of the
Weber problem. The initial continuous problem is transformed into
a discrete one. This is done by partitioning the area under consideration
into squares by horizontal and vertical stripes. The partitioning of the
area results in a considerable simplification of the analysis. An algorithm
for optimization — simple and efficient — is presented.

Section 2 is devoted to the description of the model considered.
In Section 3 we deal with some specific features of the problem. These
considerations allow us to derive an optimal procedure for solving the
model, which is presented in Section 4. In Section 5 a numerical example



Discrete approximation 259

i§ shown. In Section 6 the efficiency of the algorithm is discussed. Sec-
tion 7 includes concluding remarks.

2. Formulation of the problem. Let us consider a finite set of points
W in a plane. Their Cartesian coordinates are given as {z;, y;> and there
&r'e assigned positive weights w; to them, j e W. We seek for a point ¢
With coordinates (&4 Yo» sSuch that the sum of weighted distances w;d,; is
4% small as possible. The distance d,; between the ¢-th and the j-th points
8 here assumed to be Euclidean, i.e.,

dgj = I/(wq_wj)z'%“ (yq_yj)z'

The above-described problem is the well-known Weber problem.
NOW, we assume that the planar map of the area we consider is a rec-
tangle. This assumption can be easily realized by drawing in the plane
@ rectangle such that each point belonging to W is included in it. Fur-
’Dher, we divide this rectangle by lines parallel to its sides into m vertical
and . horizontal stripes of equal dimensions, i.e., into mn squares. We
asume that for 4 =1 and ¢ = » (the numbers of horizontal stripes)
there exists some point j € W which lies in this stripe. Otherwise, we
%n renumber the horizontal stripes, and then we obtain a smaller prob-
lem. The same refers to the vertical stripes (i.e., the 1-st and the m-th
Ones). Moreover, we assume that elements of the set W are placed in the
Middles of squares. This is a simplification, but in practice we can easily
achjeve a partitioning of the above-mentioned rectangle such that this
Asumption is fulfilled with a negligible error [9] (there appears here
Another optimization problem which is not considered in this paper).
A simple example of such a partitioning is shown in Fig. 1.
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F_ig. 1. The idca of discrete approximation of the area in the Weber problem. The
Circles are the locations of customers, double lincs are the sides of rectangles, and
the heavy line is the boundary of the area considered

Let us put M ={1,2,...,m} and N = {1, 2, ...,n}. To each square
With coordinates ¢ and j we assign a non-negative weight a,, ¢ ¢ N,
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j € M. Tt is defined as the sum of w,’s taken over all the points » (r € W}
placed in the (i, j)-th square [4]. Evidently, if for some square there is
no r (r € W) placed in it, then the corresponding a;; is equal to 0. Then,
we can formulate the problem as to minimize the value of

m

E(@,y) = > Y ayVii—a)+([—y)

i=1j=

—

subject to
a; >0 for each ¢eN, jeM, A= ZZa-j>0,
i=1 j=
where  and y are integers. It must be pointed out that we assume neither
xz €N nor y e M.

3. Some properties of the problem. Now, we deal with some prop-
erties of K (x,vy) defined in Section 2. For brevity, the problem of mini-
mizing K (x,y) described in the previous section is said to be here the
K-problem. First, we present some specific properties of K (z,y) which
simplify — to a great extent — the minimization problem. At the very
beginning we note that the properties of K (x, y) for a fixed and specified
y are the same as the ones for a fixed and specified x. In other words,
the HK-problem has a quasi-symmetry (full symmetry is obtained for
m = n). Then, we can restrict our considerations to the case where ¥
is fixed and specified. We put [8]

(1) D(zy, xy—,) = K(2,,y) —K (22, y)

20 — (0, + ,)
= (B, —@4) by Q5 ’
< 2 Vo, — )+ (y — )+ V (y— i)+ (y —§)°

where z, and 2, are assumed to be two distinct integer numbers. The
values of xz; and x, must be distinet, because otherwise for ¢ = x, = %2
and j = y the denominator on the right-hand side of (1) becomes zero-
(Note that it is inconvenient to make this assumption in the case of a con-
tinuous model, where we use derivatives instead of differences, and it 18
the source of difficulties described, e.g., by Kuhn [5] and mentioned iP
the Introduction.) For a specific case, which plays a crucial role in further
considerations, we have

(x ZZ 29— (22, +1)
ol T V@ — i+ =i+ V (@l — i)+ (y—j)

Evidently, in our discrete model, D(x,1) plays the role of a derivative
in a continuous model and is often used in further proofs and formula-
tions. Now, we state the first property of the K-problem:
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LEMyA 1. If (ao 4% is the solution of the K-problem, then 2°e N
ad yo ¢ 3.

- Proof. Due to the above remarks we consider only the case in
Which y is fived and specified (later on, this is omitted). Let x, < 0.
Then we have 2¢—(2x,+1)>2¢—1 for each ie N, ie., D(z,,1) >0
d K(x,,y) > K(w,+1, y), due to (1). This means that x°> 1. Now,
We assume that », > n. Hence 2i — (22, 4-1) < 2 — (2n+1) < —1 for each
‘€N, ie., D(w,1)<0, and then K(z,,y) < K(z,-+1,y). This means
Hat 20 < n, and thus the proof is completed.

Lemma 1 results in important consequences. Namely, the solution
Must lie in some square in the area, i.e., in the Cartesian product N x M,
“_’hieh has a finite number of elements. Hence the K-problem has a solu-
tion whicn can be obtained in a finite number of steps. The method is
to seek the solution of the K-problem by a full enumeration of all the
§q“a'1‘es of the rectangle mentioned in Section 2. This method, however,
8 evidently inefficient both from the theoretical and the practical point
f view, Hence, we derive further properties of the model.

Let 2, € N. We introduce the following symbols:

D)= S Y } 21— (22, +1) ’
1 %’ % ’ Vie,—if +(y—4)° + V(@ +1— i) +(y—j)’

2 — (2, +1)
Dg(x ) = vai' ! .
' Z S V(@ — P+ (y—i) + V(@ L —i -+ (y—j)
It i easy to see that D,(x,) <0 < D,(x,) for each x;, € N. Moreover
(2) D, (xy) +D;y(2,) = D(2,1).

Now, we can formulate and prove the next property:
Leyua 2. If D(#,,1) <0, then D(x,+1,1) <0 for each x, € N.
Proof. The assumption D(xr,, 1) < 0 is equivalent to the inequality

2(r) < |D,(2,)]. Consequently, we have to prove the following two
rel&tiOns;

(3)

and

D,(x,+1) < Dy ()

{4) |Dy(24)| < 1Dy (2, +1)].

First, 1ot us consider

9 - [21— (204 3)1[V(@—i)* +(y—j)* + V(@ +1—i)*+ (y —j)] .
[2i—@e+1)1[V (@ +1 -2+ —§)* + V(@ +2 =)+ (y — )
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After some straightforward calculations we obtain

V(e+1—i) +(y— i) — V(e +2 —ip+(y —j)°

Q =
Vie—iP+(y—j)F =V (@+1—i)+(y —j)?

We assume that z+2 <i<n. For brevity, we put z+1—i = a and
y—j =b. Hence a<< —1. It is easy to derive that in the considered

case we get V(a—1)+0*> Va®+b>1. Assume that Q> 1. Thus,
we have

(5) Vie—1):+b2—Var4b2<Var+o:—V (a+1)2+ b2

After some additional calculations we infer that (3) is equivalent to the
relation b* < —b?, where b is some real number, i.e., we get a contradiction-
Therefore, @ < 1. In other words, by the definition of §, the inequality

2 — (20 +3)
Vie+1—i)P +(y—j)F + V(e +2 -0+ (y—j)°
2 — (20 4-1)
S @ = = =
Viz—1i) +(y—j) + V(@ +1—3)*+ (y —3j)

holds for each ¢ (x-2 <7< n). Then, we have

D, (2, +1)
5y 2 — (20, +1)
< M a, - = < Dy ()
2;‘: "V i =iV = =g

for each z, <n—2, i.e., relation (3) is fulfilled. In an analogous way weé
prove that (4) holds. According to (2)-(4) we obtain D (x, +1,1) < D(x,, 1)-
By assumption and Lemma 1 we have D(x,+1,1) <0 for each x, e N,
which completes the proof.

In a similar way we can prove

LemMA 3. If D(x,,1) > 0, then D(x,—1,1)> 0 for each x, € N.

Lemmas 2 and 3 imply the following theorem:

THEOREM 1. First, let  be fized. If K(»,y,)—K(x,y,+1) < 0, thew
any pair {x,y>, ¥y = 1vy,+1, cannot be the solution of the K-problem. If
K(x,y,)—K(x,y,+1) >0, then any pair {x,y>, y<Yy,, cannot be tht
solution of the K-problem.

Second, let y be fized. If K(x,,y)—K(x,+1,y) <0, then any pair
(o, y>, > 2,+1, cannot be the solution of the K-problem. If K (xy,Y)
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—K(z,+1, y) >0, then any pair {x,y)>, € < x,, cannot be the solution
of the K-problem.

) In some specific situations we have non-zero a;’s only for ¢ =1,
J=1landi=mn,j=mori=1,§j =mand ¢ =n, j = 1. The non-zero
a;’s are sometimes placed only on some diagonal of the matrix created
by the squares of the rectangle considered. Both these cases mentioned
above are called the degenerate K-problem, and further on the non-
degenerate K-problem is mainly concerned. Now, we can formulate the
next property:

THEOREM 2. Let (x°, y°> and (&, §> be some optimal solutions of the
non-degenerate K-problem. If (x° y°> = (&, §>, then there exists a sequence
of airs (o, ypd: i =1,2,..., h) such that <@y, ys) = (2% Y%, (o, Y
= <@, 9>, and one of the four conditions

Zivry Yy = <o +1, 90, iy Yirr) = <X—1,9,
(I Yiv1) = &, Y; +1), iy Yipr) = By Y —1)

holds Jor each ¢ =1,2,...,h—1 and each {x;,y,> for i =1,2,...,h is
also the solution of the non-degenerate K-problem.

Theorem 2 follows immediately from Theorem 1. Moreover, we
ha:Ve to notice that in the case of the degenerate K—pff)blem Theorem 2
fails. This can be shown, by a simple counterexample, as follows. Let
%1 =1, a,, =1, and let all the a;;’s be zeros for other squares. Morcover,
YVe assume that n = m. It is easy to find that each ordered pair {i,¢),
t'=1,2,...,n, is the optimal solution of the K-problem considered.
FuI‘thermore, K(i,i) =V2(n—1). For simplicity, let n = 4. Hence
K(1,1) = 3vV2and K(2,1) = K(1,2) = 1+V13. Thus K(1,1) < K(1, 2)
= K(2,1), which completes our counterexample.

In other words, Theorem 1 (and — in the case of the non-degenerate
K-problem — also Theorem 2) states that the K-problem is convex.
From Theorem 2 it follows that any solution of the non-degenerate K-
Problem is not separated from other solutions, if they exist. Thus, they
are grouped together.

In [8] there were given some heuristic ideas for the solution of the

“Problem. They give good results in practice. The coordinates of the
Suboptimal point proposed in [8] are defined as follows:
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However, for some reason it may happen in practice that the single
-optimal solution of the K-problem is not preferable. Thus, we may be
interested in another optimal solution (if it exists) or even in a subopti-
‘mal solution. In the next section we give an algorithm for determining
such solutions.

4. Algorithm for determining all the (sub)optimal solutions. The
preceding section gives the basis for a simple technique determining the
optimal solution of the non-degenerate K-problem. The idea of the al-
gorithm is based on the convexity of the problem (Theorem 1) and on
Theorem 2. First, we choose the starting point. Its coordinates can be
determined by using formulae (6) and (7). Second, we check whether
for any point in the neighbourhood of the current point the value of the
objective function is not greater than that for the current point mentioned.
If so, then this point becomes the new current point, etc. Otherwise,
the current point is optimal.

However, there occur situations when the problem mentioned has
more than a single solution. A simple example for the degenerate K-
problem is given in the previous section. Let us now consider a particular
case of the non-degenerate K-problem. We assume that a,;, = a,,, = a,,
= ¢y, = 1 and that all the remaining «,;’s are equal to 0. Let n = m = 2k,
where k is some positive integer, k > 1. It is easy to prove that the points
kyky, <kyk-+1>, <k+1,k), and {k+1,k+1) are optimal (the value
of the objective function is here 2kV2+2V (k—1)*+k*—V2). Moreover,
in many practical cases we are interested not only in the optimal solu-
tions but also in some suboptimal solutions; for instance, if we want to
locate a factory or a telephone exchange, but the optimal solutions are
not realizable. This non-realizability can follow, e.g., from the fact that
the optimal solution coincides with some lake, some highly urbanized
area, etc. Then we must seek some suboptimal solutions, which are both
the nearest to the optimal one (in terms of the value of K (-, +)) and real-
izable in practice. In other words, we are interested in solutions such
that their value of the objective function is not greater than (1 4 #) K (z°, y°),
where {x?% y°> is the optimal point and r is some positive constant, usually
7 < 1. Obviously, by using + = 0 we obtain all the optimal solutions
of the non-degenerate K-problem only. The subsequent steps of the
algorithm are the following:

1. START.

Define the set of feasible solutions Q<N x M.
Compute z and ¥ by (6) and (7), respectively.
@y Yy <<, G-

Compute K (x, y).

K<K(z,y).

Al
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Initiate the set of results Z<{<=z, y)}.

Initiate the set of feasible starting points V<Z.
Take any point (x,y> e V.

If (x+1,9> ¢Q—Z, then go to Step 14.

o LBy, Y1y <@ +1, Y.

. p<0 (p is the control parameter).

. Go to Step 17.

. If (x—1,y> ¢Q—Z, then go to Step 20.
- &1y Y1 <=1, Y.

. p<1.

IT<{Ca,b): a<xr—1,aeN, b=y}

. W<{(a,b): azx+1, acN, b =y}

. Go to Step 29.

. If (e, y+1) ¢Q—Z, then go to Step 24.
21.
22.
23.
24.
25.
26.
27.
28.
29.

&1y Y1p <2, Yy +1).

p <0.

Go to Step 27.

If (x,y—1>¢Q—Z, then go to Step 45.

@1y Y1p <<, y —1).

p<1.

T<{{a,b): a =2, b<y—1,be M}

W< {a,b): a =2,b>y+1,b e M}.

Compute K (x,,%,) (the value of the objective function at the

lew point).

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44.
45.
46.
47.

K, <K(xy, y,)-

If K, > K (the new point cannot be optimal), then go to Step 39.
{w,y><<{xy, ¥y, (changing the current point).

If K, = K, then go to Step 42.

K <K, (the better solution).

Q<Q —Z (reducing the set of feasible solutions).

If p =0, then Q<@ —T.

If p =1, then Q<@ —W.

Go to Step 7.

If p =0, then Q<@ —W.

If p =1, then Q<@ —T.

Go to Step 10.

Z <«ZV{{x,y>} (enlarging the set of current “optimal” solutions).
V<Vu{{z,y>} (enlarging the set of feasible starting points).
Go to Step 10.

V<V —{{x, y>} (diminishing the set of feasible starting points).
If V # @, then go to Step 9.

The minimal value of the objective function is equal to K. In

the case of the non-degenerate K-problem the set Z contains all the optimal

7 — Zastos. Mat. 18.3
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solutions. In the case of the degenerate I{-problem the set Z consists
of some optimal solutions (there may be optimal solutions which do not
belong to Z).

48.
49.
50.
51.
52.
53.
54.
55.
b6.
57.
H8.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
4.
75.
76.
77.
78.
79.

If »r = 0, then go to Step 80.

K<(1+7)K.

Define the set of the new feasible solutions @ <N x M —Z.
Initiate the set of feasible starting points V <«Z.

Take any starting point {x,y)> e V.

If (vx+1,y> ¢Q—Z, then go to Step 57.

@1y YD <2 +1, ¥

T<{<{a,b): a=w+1,aeN,b =y}

Go to Step 68.

If <#—1,y>¢0Q—Z, then go to Step 61.

(&1, Y1 <> —1, ¥).

T<{<a,b): a<zr—1,aeN,b =y}

Go to Step 68.

If (w,y+1)>¢Q —Z, then go to Step 65.

@1y Y1) <<, Y +1).

T<{(a,b): a =2,b>y+1,be M}.

Go to Step 68.

If (w,y—1>¢0Q—Z, then go to Step 77.

{1y Y1) <<y Yy —1).

T<+{<a,b): a =2,b<y—1,be M}.

Compute K(z,, y,).

K, <K (zy, Y1)

If K, < K (the new point is suboptimal), then go to Step 73.
Q <@ —T (diminishing the set of feasible solutions).

Go to Step 53.

@y Y < {1, Y-

Z<ZU{{x,y)>} (enlarging the set of suboptimal points).
V<Vu{{z,y>} (enlarging the set of feasible starting points).
Go to Step 53.

V<V —{{z, y>} (diminishing the set of feasible starting points).
If V £ @, then go to Step 52.

In the case of the non-degenerate K-problem the set Z contains

all suboptimal solutions {x, > such that K (z, y) < K (2° y°)(1 +r), where
{x% y*> denotes the optimal point. In the case of the degenerate K-prob-
lem the set Z consists of some suboptimal solutions (but not necessarily
all of them).

80.

STOP.

5. Numerical example. To show the example of the solution of
some non-degencrate I -problem we consider the situation demonstrated
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in Fig. 2. The map of the area considered is embedded into the rectangle
Which is divided into n = 20 vertical and m = 20 horizontal stripes, i.e.,
400 equal squares. The number located in each square is equal to the
Corresponding weight a,; and there exists only one optimal point which
has the coordinates # = 11 and y = 10. The solution was obtained on
the ODRA 1305 computer with computational time less than 1 sec. after
the inspection of 9 possible locations.
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Fig. 2. An example of the discrete Weber problem. The optimal square is shaded

6. Efficiency of the algorithm. Let us now consider the efficiency
of the algorithm. It is obvious that the efficiency depends upon the number
of optimal (or suboptimal, as defined in Section 4) points, which is diffi-
cult to estimate. Moreover, it depends also on the distance between the
S.tarting point {z, #> and the optimal point (z° y°> defined in the recti-
linear way, ie., |g —a° 41§ —y°. To evaluate this distance we need the
following lemma:
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LEMMA 4. The point {x° y°> is the optimal solution of the K-problem
if and only if

(8) f@’ 90— << f(a'—1,9") +1,

where

9

Zn' g’a (l/(w—@ +(y —j) +l/,(90+1—i)'+(?/—j)"_1

3 5 jay (Ve =i == +Via—ir 1=
glz,y) = =15
> DagV(@—iP +(y—j)+V(@—if +(y+L—y))"

The proof of this lemma is obvious and is based on the convexity
of K (-,-). For instance, if {«° y°> is the optimal point, then D(x° 1) <0
and 1)(00o —1,1) > 0, which implies (8), etc. (Lemma 4 was not stated
before because it had not any influence on the method of seeking the
optimal solution, as was evident in Section 4).

If we assume that the starting point is determined by wusing (6)
and (7), then we can estimate

flas 4°) +J;(w° ~1,9°) _3}. N

k=lz—2"+ 1§ —9° ~|

g y°)+g(’ 9" 1)
2

’

2

and we take &k = entier(k+0.5). But the above estimation is rather of
less practical importance because in practice [8] we have k ~ 2.

Now, we restrict our considerations to the case » = 0, i.e., to seeking
optimal points only. We need 3mn additions, m 4+ n 4 2 multiplications,
and 1 division for defining the starting point by (6) and (7). To compute
the value of the objective function we have to perform x(m+41) sub-
tractions, 2mn additions, n(2m +1) multiplications, and mn extractions
of a square root. Since we check A points, we need mn(2h -+ 3) additions,
hn(m-+1) subtractions, hn(2m +1) 4+ n 4 m + 2 multiplications, 1 division,
and hmn extractions of a square root. To evaluate the value of the par-
ameter & we notice that the number of optimal solutions is not greater
than 4 in the case of the non-degenerate K-problem. This follows from
the strict convexity of the problem and the example presented in Section 4.









