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AN INTERACTING PARTICLE MODEL OF ADSORPTION

Abstract. We propose a general lattice model for the study of the dynamics
of adsorption (desorption) processes on surfaces. Basically, the model involves
an interacting particle system on a two-dimensional (square or triangular)
lattice, where the rates of birth (adsorption of a particle onto the lattice) are
Constant, and the rates of death (desorption) depend only on the neighbor-
hood pattern, i.e., the configuration of occupied sites surrounding the particle.
ESsentially, the stability of an adsorbed particle depends on its coordination
Number; a particle of maximum allowed coordination is least likely to desorb.

A set of Monte-Carlo simulations of this model has been conducted
Wherein we study the coverage of the surface as a function of time as well as its
derivative (coverage current). We also propose and analyze estimates of two
different quantities related to the clustering effect: the conditional entropy of
the distribution of occupied sites in different patterns and an index of
Complexity of clusters which, essentially, is the e-entropy of the cluster’s border.

Using the general theory of interacting particle systems, we prove
Analytical results about the behavior of the coverage with respect to time, as
Well as the asymptotic properties of the model.

1. PRESENTATION OF THE MODEL

L.1. Introduction. In the past fifteen years, a large amount of theoretical,
CXperimental and computer simulation work has been devoted to the field of
adsorption (desorption) of particles on surfaces. For example see papers [19],
(1], [10], which give a good idea of the breadth of this area. This body of work
Provided us with a motivation for developing a theory that departs from the
tradition of van Kampen [21] and uses instead the theory of interacting
Particle systems (as presented, e.g., by Liggett [17]).
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Our aim is to provide a comprehensive mathematical framework for this
type of surface process and to show, by means of rigorous analysis, as well as
by statistical studies of Monte-Carlo simulations, that the proposed model
includes many of the features expected to be associated with adsorption
(desorption) phenomena.

The first quantity of physical interest one can try to observe for this type
of physical processes is the evolution of the coverage with respect to time. In
experimental practice it is usually obtained indirectly by the study of its
variations using such tools as chemiluminescence, quartz crystal microbalance
[15], or direct measurement of induced electrical currents [6]. However, it
should be emphasized that the observed current (for instance in potential step
experiments) cannot always be interpreted directly as the derivative of the
coverage with respect to time because of the time dependence of charging the
double layer capacitance. Moreover, the coverage at a given time is, by its very
nature, a discrete random variable. Thus the derivative can be considered only
for its average. In order to avoid any confusion, we will use a special term: “the
coverage current” to denote the derivative of the mean coverage with respect to
time.

A particular feature of the observed deposition phenomena is what is
customarily referred to as the clustering effect, and our model is expected to
mimic it. Various hypotheses have been proposed to explain this clustering
effect. The particles are believed by some (see [6]) to move on the surface itself,
performing some sort of random walk which helps in bringing them together.
Others (see [8], [9]) argue that the clusters are growing from a starting point,
the nucleus, by a sort of a diffusion process and many models have been
proposed to describe the growth of these clusters (cf, e.g., [6], [3]). The last
among these references proposes a very general model taking into account the
adsorption-desorption process as well as the growth of clusters.

In a recent paper, [22], we developed a simple dynamic model of
adsorption-desorption for a lattice gas. This model used two Poisson processes,
the rates of which, interpreted as rates 4 and u of adsorption and desorption
(“births and deaths”) of particles on the surface, depended only on the number
of particles already adsorbed. In the case of a large number of independent
sites, it was proved in [22] that the coverage follows approximately a normal
law with mean

A
A+,u(1 exp[—t(A+w]).

In this case the coverage current should be expected to decay in an expo-
nential way. However, it has been shown experimentally for different types of ad-
sorption that it decreases actually much less rapidly than it should, were the sites
independent (cf, e.g., [15]). In the second part of this paper we show what types
of behavior of the coverage current to expect when interactions are included.
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The model we present here, although based on the same idea of a birth
and death process, is more general in the sense that the desorption dynamics of
4 particle at one site is allowed to depend on the state of its neighborhood.
Moreover, we study not only the coverage but the global evolution of the
Configuration of occupied and empty sites on the surface, Although the model
does not explicitly include a random walk of particles already adsorbed on the
Surface (which is plausible from the physical view-point), it is able to mimic the
Clustering effect observed in more complicated models. This can be explained
43 due to the adjustment of the rates of death: if the duration of life of an
olated particle is much shorter than for a surrounded one, then fewer isolated
Particles are likely to remain on the surface. It should also be noted that our
8eneral model does not satisfy the reversibility (i.e., detailed balance) condition
(see [17], Section I1.5, and [21], Chapter 5, where this condition is defined in
terms of transfer matrices). As a matter of fact, in the class of spin systems
With finite-range interactions only the stochastic Ising models are reversible
(cf. Theorem 2.13 of [17]) and we certainly wanted to go beyond this category
of particle systems. Furthermore, the assumptions imposed on our model do
Buarantee its ergodicity (i.e., the existence of unique equilibrium distribution)
anyway (cf. Section 3.1), and this is what the detailed balance condition often is
Used for in the physical literature (cf. [2] or [21] for the classical transfer matrix
Approach).

In the first part of this paper, we present the model informally using
heuristic arguments to justify the choices that were made. In the second part,
We propose four parameters which we mean to describe the most important
Properties of our model. The first two of these parameters are the coverage and
An estimate of its derivative with respect to time, which corresponds to that
Part of the observed current due to coverage effects. The third parameter is
2 measure of the clustering effect: it is the conditional entropy of the
distribution of occupied sites relative to the neighborhood patterns. The last
One measures the complexity of the clusters: it is an estimate of the intricacy of
the clusters border. A series of Monte-Carlo experiments was conducted
Wherein we studied the evolution of these four parameters with respect to time.

he outcomes of these experiments are presented in Section 2.2.

In Section 3, we present some results of the mathematical theory of
Mteracting particle systems (cf. [17]). Most important is the theorem of
®Omparison from which we derive upper and lower bounds for the evolution of
he Coverage with respect to time (Proposition 3.2.3). We derive also further
f®sults showing the asymptotic properties of the model.

12. Geometry of the lattice. We. assume that during deposition onto
4 solid surface, the adsorbed particles tend to arrange themselves according to
3 pattern characterized by a regular lattice. The nature of this lattice is dictated
> the geometry of the underlying crystal [13] or adsorbate-adsorbate
teractions [20], or both.
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The lattice sites of adsorption are taken to be the vertices of a regular
planar lattice, either square or triangular. Indeed, these are the two lattices
most widely discussed in the literature (see [19], [20]). Thus, our assumption is
that each site has exactly four nearest neighbors in the first case and six in the
second. As each site may be occupied or empty, the number of possible
configurations assumed by the set of nearest neighbors of a given site is 2* or
2°. For reasons of isotropy and symmetry, those numbers reduce to 6 in the
case of the square lattice (Fig. 1a) and to 13 for the triangular lattice (Fig. 1b).
From now on those configurations will be referred to as “neighborhood
patterns”.

a)

b) 0 0 o\/1 0\/1 0\/1 0 1
0 00 0 0 10 00 0
/\ /\ /\ /\ ><
0 0 0 o0 0 o0 0 1 10
o 1 0 1 0 1
0%1 0 V4 1 1 \/ 0
/\ /\
0o 1 1 -0 o 1

Fig: 1. Neighborhood patterns. Each site on the lattice may be occupied (1) or empty (0). The

number of possible configurations of the nearest neighbor is a priori 2* for the square lattice, and 2°

for the triangular lattice. However, the number of essentially different (up to rotations and

symmetries) neighborhood patterns is only six for the square lattice and thirteen for the triangular
lattice

In principle, the lattices may be infinite. For a finite lattice, in order to
retain the property of each site to have the same number of neighbors, we
consider finite parallelograms the parallel sides of which are identified, so as to
form a topological torus. This procedure is classical in the study of lattice
systems, and the result is usually called “periodic boundary lattice” (cf., .-
[16], Chapter III). See Section 2.2 for more details on this.

1.3. Hypotheses. Let S be the set of all sites. With each of them we associate

0if it is empty, and 1 if it is occupied. Then the general configuration at time t,
denoted by 7, is an element of {0, 1}5.
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We assume that 7, is a Markov process and evolves according to the
following rules:

(L3.1)  The conditional probability of adsorption of a parficle at a given site
x, between times ¢ and t+ 4t, is

PUvs(x) = 1| n,(x) = 0] = A4t +o(41),
where A > 0 is the rate of birth at any site.

(132)  The conditional probability of desorption of a particle at a given site
x, between times t and ¢+ A4t is

P14 a(x) =0 | A,(t, X)] = p, At +o0(A1),

where the conditioning event 4,(t, x) is “At time ¢, x is occupied and
its neighborhood pattern is p.”, so that #, = 0 is the rate of death of
a particle in pattern p.

(1~3-3) If p and p’ are two neighborhood patterns such that p’ is obtained
from p by adding a molecule on a free site, then Bp = iy

Hypothesis (1.3.1) is equivalent to assuming that the interval of time
tween a desorption and the following adsorption at one given site has an
Xponential distribution with constant parameter. This is the case if we suppose
that the particles, present in large concentration in the solution, strike the
Surface randomly, according to a Poisson process of rate A. Then the interval
of time for the adsorption to occur at a given site is exponential with parameter
4= A/N.
Hypothesis (1.3.2) amounts to saying that the interval of time before
€sorption at a given site is an exponential random variable with parameter
My, depending on the neighborhood pattern of the site. It can also be seen as
the duration of life on the surface of a particle in pattern p and its expected
Value s 1 /u,- Therefore, the monotonicity relation imposed by (1.3.3) accounts
Or the intuitive idea that the more a particle is surrounded by others, the more
Stable is its state, and thus the harder it is for the particle to desorb. This
YPothesis makes our system what is usually called an attractive spin system,
nd (see Section 3) it is an equivalent of an attractive adsorbate-adsorbate
"teraction. Not only does it correspond to a physical reality, but also it is most
Useful from a theoretical point of view.
. Let us consider the case where all the rates ¢, are equal to u. Then all the
Sttes are independent. If n particles are present at a given time on the surface,
€0 the interval of time before the next desorption is an exponential random
Variable with parameter nu. Hence, in this particular case, the number of
Particles present at one given time on the surface is the Markov process that
a3 been studied in [22]. Tts distribution at any instant of time and, virtually,
®Very other variable associated with this model can be computed explicitly.
For other recent work on adsorption-desorption models see [23].
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Remark. We assume that all quantities are non-dimensionalized with
respect to the rate of adsorption A. Multiplying each of the rates of birth ¢
death by the same constant amounts to a simple change in the scale of time.
Without loss of generality we may (and will) assume that the rate of birth Ais 1.
Then our model has exactly as many effective parameters as neighborhood
patterns.

2. THE MONTE-CARLO EXPERIMENTS

2.1. Parameters studied. Simulation of Markov processes such as described
in 1.3 is a standard procedure and has already been used for different types of
models (see [12] and [5]). The usual starting point is to simulate #,, the
evolution of the whole configuration with respect to time, but one of our aims
was to select a few parameters that are easy to calculate and contain as much
information as possible.

We chose to focus on the study of the distribution of occupied and empty
sites in different neighborhood patterns. For each neighborhood pattern p, we
denote by my(¢) (resp., m3(t)) the number of occupied (resp., empty) sites in
pattern of neighborhood p at time t. We show that these random variables
convey all the information necessary to study both the evolution of coverage
with respect to time and the clustering effect. |

First, notice that the coverage of the surface at time ¢ is given by the
formula

@.1.1) o) = Nl-Zm,l,(t),

where N is the total number of sites on the lattice. Of course, as far as the
coverage current Iy(¢) is concerned, it is meaningless to differentiate 0(f) to
obtain an estimate for I,(¢). However, it is possible to construct an estimate
directly from the m,’s and mQ’s:

212 1) = %(Z m3@)— 3 p,m(0).

To justify this, notice that between ¢ and ¢+ At, the curve 6(t) increases by
1/N with probability At m0(¢) (remember that A = 1). It decreases by — 1/N

. - p
with probability 4¢Y t,my(t). Hence formula (2.1.2) is an estimator of the

expected slope of 0(?) at time t.

To quantify the clustering effect, many choices are possible: from studying
correlations between sites [5] to counting the number of clusters of fixed size of
evaluating the size of the biggest [12]. We propose to do this quantification
by measuring the degree of dependence of the occupation of a site on its
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Beighborhood pattern. Let us define the function S.(f) by the formula
1 0 1 1
S.(t) = — my(£) +my(t) my(t) L m,(t)
) ) N my(2)+mS () gm§,(t)+m,‘?(t)

o . mo) )
my (t)+md(t) gm},(t)+mg(t) ’

r

With the usual convention that 0-log0 = 0. This function represents the
°9nditional entropy of the distribution of occupied sites with respect to the
distribution of sites in different patterns. :

It can be proved easily ([4], Chapter 10) that the above conditional
®ltropy is a non-negative number verifying the inequality

S() < —0(1)logh(e)— (1 - 6()log(1—0(),

With the equality taking place if and only if the occupation of a site is
ndependent of its neighborhood pattern. On the contrary, in the extreme case
of 3 Completely clustered configuration, most of sites are either occupied with
a4l neighbors occupied or empty with all neighbors empty, and the quantity
8.9 is then close to zero. Thus it is natural to choose

2.13) 8(t) = S.()/(—0()logb(r)—(1—0(s))log(1 — 6(1)))

35 2 measure of the clustering effect. S(t) will be called here the standardized
Conditiong] entropy. It satisfies the inequalities 0 < S(t) < 1, and the smaller S(t)
5, the more clustered the configuration at time ¢ becomes.

Another interesting aspect of the clustering effect is that the clusters may
Ot only of different sizes but also of different shapes. In order to take into
acCount the degree of intricacy of those shapes, we chose to study the following

:_Stimates of the total length of the border between occupied and unoccupied
ltes:

ben

L) = 3 L mb©@—n(p)+3 £ mS(0) (o)

in the case of the square lattice, and
L) = %z m;(t)(s_n(p))+2—3f—3-§mg(t)(n(p))

' the case of the triangular lattice. In both expressions, n(p) is the number of
OCCupied neighbors of a site in pattern p.
f Of course, lengths of the border can be compared only for two con-
8urations having the same coverage. In order to compare lengths at different
COverages, we define C(t) by the formula

@1, _ Log(L(t)
! “O= Logv-o0)
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Quantity C(t) can be regarded as a measure of complexity of the border of
clusters, and is closely related to the notion of ¢-entropy of a curve (cf. [18’

2.2. Computer experiments. The simulation (run on a DEC PRO 350
microcomputer) takes place on a rectangular lattice of size N x (N+1). The
abscissa (resp., ordinate) of a site is an element of the set of integers modulo
N (resp., N +1). We establish a one-to-one correspondence between the set of
sites and the set of integers modulo N2+ N. To a site of coordinates (x, y) there
corresponds

k=(N+1)x—Ny (Mod N2 +N).

The inverse of this mapping assigns the site with coordinates (k (Mod N),
k (Mod N +1)) to the integer k. This allows us to store each configuration of
sites in a one-dimensional vector with N% + N Boolean coordinates. Associated
with each site is a Boolean vector representing its neighborhood pattern.
Suppose that the current configuration is such that the numbers of occupied
and empty sites in neighborhood pattern p are m} and mg, respectively. Then
the next event to occur will be either an adsorption with probability

EmNE mp+mpp,)
14 14
or a desorption at an occupied site in pattern p with probability
My (2 mp +mp ).
r .

All adsorptions (resp., all desorptions at a site in pattern p) have equal
probabilities. The choice of the next event is decided by the generation of
a pseudo-random number, using a generatot of a convergence type:

g(x) = (2*3+5)x+1 (Mod 229).

Then the program scans the vector of sites to find the coordinate cor-
responding to the event that has been decided. It reactualizes the status of this
coordinate and the patterns of its neighbors. Finally, the scale of dimensionless
time is increased by

At = (Y. my+mpp )t
p

Rigorously it should be increased by a random number generated according to
an exponential random variable with average At. We believe that this
approximation does not influence the results.

For a given set of rates {u,} and a size of the lattice, we first determine
a value T representing the time when it can be assumed (approximately) that
the coverage has reached its asymptotic value. Then the interval of time [0, T]
is divided into 100 intervals by the instants t, = i(77100), i =1, ..., 100.

The experiment consists of running the program of simulation, starting
from an empty lattice at ¢t = 0 until the scale of time reaches the value T, For
each instant ¢, the program computes the quantities 0(t), Iy(t), S(t), C(t),
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Using the formulas (2.1.1)2.1.4). So the result of one experiment is a file of
100x 4 data.

For each set of parameters, the experiment described above is repeated
30 times. Then another program uses the 30 data files so created to compute
the averages and standard deviations of the four quantities we want to study
for each of the instants t;- The final result is a file of 100 x 8 data. Another
Program plots these data, which permits their comparison.

Some of the results we observed were to be expected. For instance, we ran
4n experiment with all rates of death being equal, and the results fit the
Prediction of [22] with very good levels of confidence. However, other results
Were less expected and quite intriguing. In particular, it turned out that, for
co_mparable rates, the behavior of the models on the square lattice and the
triangular lattice were remarkably alike (see Fig. 2 for an illustration of this).

Dother interesting feature was that radical changes that can be observed in
the behavior of the coverage current when the range of rates is expanded. The
8raph of I,(t) changes from a convex, exponentially decaying, type of curve to
4 curve with a much more irregular behavior, such as the one observed in Fig. 2.

The range of values for the rates of desorption also influences the
Clustering effect. For instance, when the rate of death of a particle is 100 if it is
1Solated and less than 1 in any other case, then very few isolated particles tend
10 remain on the lattice. Such a situation is illustrated in Figs. 3 and 4, which
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Fig. 2, Mean coverage current (Iy(t) = d0(t)/dt) as a function of time assuming a wide range of death
Tates. The rate of death #, in pattern p (for both square and triangular lattices) corresponding to
different curves is indicated on the graph. TRIANGULAR 5 means that p, = 5("3ne1+1
1?QUARE 5 is for p, = 57"P*1, TRIANGULAR 10 is for p, = 10~ ®®"#*1 and SQUARE 10 is
Or p, = 107 "@)+1, #, depend only on the number n(p) of occupied neighbors of a site in pattern p.
The €xponential curve corresponding to the case of independent sites is given for comparison. For
®Xperiments described in this paper the total number of sites on the lattice was 10100. Also, all
the quantities are non-dimensionalized with respect to the rate of adsorption A
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Fig. 3. Mean standarized conditional entropy S(t) (cf. (2.1.3)) as a function of time assuming a narrow rangé
of death rates. This curve corresponds to a simulation on the square lattice, the rate of desorption being

100 for an isolated particle and p, = 1—02n(p) for a particle with n(p) neighbors (n(p) = 1)
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Fig. 4. Actual configurations of occupied sites at different instants of time for a simulation on th¢

square lattice with the same rates as for Fig. 3. At each of the five instants of time the appearance of

the grid should be compared with corresponding values of the function S(f) on Fig. 3, which
measure the degree of clustering in a given configuration
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Compare the quantitative behavior of the conditional entropy S(f) with the
aspect of the grid at corresponding times. Finally, an interesting type of
behavior was observed for the quantity C(t), measuring the complexity of the
shapes of clusters. It decreases almost linearly with time, with a slope
depending on the range of values for the rates of death (Fig. 5).
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Fig. 5. Mean complexity of clusters as measured by (log L(t))/Log(N-0(t)), where L(t) is the length of
the border between occupied and empty sites and N-6(t) is the number of occupied sites at time £.
The four curves correspond to the same experiments as those in Fig. 2, It is worth noticing that the
Curves corresponding to the triangular lattice (dashed line) decrease slightly more rapidly than the
Curves corresponding to the square lattice. This indicates that the clusters in the triangular lattice
tend to be more regular than in the square lattice for a comparable set of parameters

2.3. Conclusion. The results are not sufficient to draw very general
conclusions; the simulations were limited by the capacity of the computer.
However, the experiments showed such a diversity of behaviors that at a very
early stage we felt a need to reduce our study to particular choices of the
Parameters y,. It is also possible, but cumbersome, to estimate these rates by
4 quantum mechanical computation of the global energy of different patterns of
neighborhood for specific choices of the surface net (e.g., Pt(110)) and adsorbate
(e.g., Pb). Another possibility that would go one step further than the Ising
model (cf. Section 3.4) would be to consider that some harmonic forces of
interaction are superposed on top of the forces of attraction between particles.
This would lead to the rates of death of the form

b = WO () + 1)1,
}Nhere u>0,0<h< 1, and n(p) is the number of occupied neighbors of a site
In pattern p.
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3. THEORETICAL RESULTS

3.1. Definitions. The model presented here is a particular case of spin
systems, the theory of which is itself imbedded in the general framework of
interacting particle systems.

"Let S be a countable set of sites, and X = {0, 1}° the set of all possible
configurations of those sites. A spin system is a Markov process on X such that,
in a small interval of time, the current configuration can be changed (flipped) at
only one site, the rate of occurrence of this flip depending on the site and the
configuration.

Let #n, be the current configuration at time ¢, and x a site (1,(x) is the status,
0 or 1, of the site x at time t). Then '

P{ni+ a(x) # ne(x) | 0, = n] = c(x, n) At +o(4y).

The coeflicients c(x, #) are called the rates of flip of the spin system. When
n(x) = 0 (resp., n(x) = 1), c(x, n) can be interpreted as the rate of birth (resp.,
death) at site x.

Since in our case the rates of flip ¢(x, ) for each x depend only on a finite
number of coordinates of , the Markov process #, exists (cf. [17], Chapter III).

When S is finite, the set of configurations X is also finite, and it is
a consequence of a well-known result that then any spin system on X is ergodic,
i.e., it admits a unique invariant measure and the process converges in law to
this measure, regardless of initial distribution (cf,, e.g., [14]). When § is infinite,
this is no more the case: even some very simple models (e.g., the stochastic Ising
models) may not be ergodic. -Physicaily, the lack of ergodicity permits first
order phase transitions.

Apart from a few particular cases, even for relatively simple models, the
theory of spin systems is quite difficult, which justifies a use of the Monte-Carlo
simulation techniques. However, some theoretical results about spin systems
exist and are useful for our purposes. We describe them in the following
sections. Section 3.2 is devoted to the Comparison Theorem. We first use it to
provide two-sided estimates for the evolution of the coverage function with
respect to time (Proposition 3.2.3). Another important consequence of the
Comparison Theorem is Theorem 3.2.5 that describes the asymptotic behavior
of an attractive spin system. The constant process and the stochastic Ising
model are two important particular cases of our model (Sections 3.3 and 3.4)
and the Comparison Theorem can also be used to extend some results already
known for those particular processes (Propositions 3.3.1 and 3.3.3).

3.2. The Comparison Theorem. We first proceed to define a partial order
between measures on the set of configurations X. X itself is naturally endowed
with a partial order by

< {enx) < {(x), VxeSs.
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.. This, in turn, yields the notion of a monotone function on X: fis monotone
if and only if

(n<{=f) <fQ), VY, {eX).

Let .# be the set of those functions on X which are both continuous and
Monotone: the prototype of functions in .# is the function counting the
Number of occupied sites inside a given finite set.

" DermviTioN 3.2.1. Let v, and v, be two measures on X. We shall say that
Vi, if

[fdvy <[ fdv,, Ve .

To interpret this definition, let us notice that if v, and v, are probability
Measures on X and v, < v,, then the average number of occupied sites in any
finite set is smaller for v, than for v,

The basic tool for our study is the following theorem. Its proof (omitted
here) is an application of coupling techniques and can be found in Chapter IT1
of [17].

ComPARISON THEOREM 3.2.2. Let c,(x, ) and c,(x, 1) be the rates of two
Spin systems satisfying the following condition: if n<{, then

Cl(x, ﬂ) < CZ(x3 C) ]f ﬂ(X) = C(JC) = Os
e, m) > ey(x, 0 if () =L =1.

Let {8,(), te[0, o[} and {S,(t), te[0, o[} be the semigroups of these spin
Systems and let v, and v, be two measures on X such that v, <v,. Then

VS, () <v,8,(t) for all t 0.

Interpretation. If v is the initial distribution of 7,, and {S(t)} the
Semigroup of a spin system, then vS(z) is the distribution of the process at time
t. Now, assumption (+) means that when 4 < ¢, the rate of birth (resp., death) at
any site of the first spin system is smaller (larger) than for the second one. The
1(_’gical conclusion is that if the first spin system starts with a deficit in occupied
Sites, this deficit will never be erased. '

In our case, as an immediate consequence of the above theorem, we can
Provide upper and lower bounds for the mean coverage E(0(z)) at time ¢.

PROPOSITION 3.2.3. Consider the spin system defined in Section 1.3. Let Ho
(resp., I1) be the rate of death in the empty (resp., full) neighborhood pattern. Let
0(t) be the coverage (proportion of occupied sites at time t) and E(0(t)) its
Mathematical expectation. If at time t = O the configuration is empty, then, for all
t>9,

(1—exp[—(A+uo)t]) < E(0() <

(1—expL—(A+puy)t]).

A+ pg A+,
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Proof. Hypothesis (1.3.3) implies that, for any pattern p, the corresponding
rate of death u, satisfies p, < p, < po. Let us define the rates c;(x,7):
i=1,2, by

1 if n(x) =0,
abe = {uo if 1) =1,
N if n(x) =0,
DNy =1,

and the neighborhood pattern of x is p. Now, one can apply the Comparison
Theorem to ¢; and c,, with v, and v, equal to the Dirac mass on the empty
configuration. As the proportion of occupied sites is a monotone function, it$
average value is less for the first spin system than for the second one. But in the
first spin system, the rates do not depend upon the configuration, so that the
sites may be considered as independent. As we already proved in [22], the
mean coverage in this case is equal to

(W3 + o)1 —expL—(3-+ ko)1),

Hence the first inequality holds. The second inequality is obtained in an
analogous fashion.

The Comparison Theorem is especially important in the case of so-called
attractive spin systems. '

DEFINITION 3.2.4. A spin system with rates c(x, 1) is said to be attractive if
assumption () is satisfied by c,(x, n) = c,(x, 1) = c(x, 7).

One checks easily that assumption (1.3.3) is the translation of the above
definition to our particular case.

The next theorem describes principal properties of attractive spin systems-
They are direct consequences of the Comparison Theorem. The notation o
(resp., 4,) designates the Dirac mass on the empty (resp., full) configuration-

THEOREM 3.2.5. Let {S(t), teR*} be the semigroup of an attractive spit
system. Then:

(@) 0oS(s) < 9,S(t) for 0K s <t

(b) 6,8(s) = 6,8() for 0<s<t;

() 60S(t) < uS(t) < 0,8(t) for t =0 and any probability pu;

(d) v=1im 6,5(t) and v = lim §,S(t) exist;

t—=w t—w
(€} if uis a probability measure, t,— oo and v = lim pS(t,), then v<v< Y

n—ao

() v and V are extreme points in the set of invariant measures.

Interpretation. This theorem allows us to restrict our study by
prescribing the starting point to be either the empty configuration or the full
configuration: The two types of evolutions so obtained constitute, in someé
sense, lower and upper bounds for any other possible behavior (property (¢))
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These two choices of the initial distribution have been taken into account in
our simulation program. Moreover, in the infinite case, the comparison of the
asymptotic measures y and v provides a simple criterion of ergodicity: The spin
System is ergodic iff v = 7.

Even more information can be derived from the monotone behavior
described in (a) and (b): We already noticed that the mean coverage E(0(1) is
a2 monotone function. If the initial configuration is empty, then the mean
Coverage is an increasing function of time, and if the initial configuration is full,
then the mean coverage is a decreasing function of time. As expected, this
Property was verifted in the simulation (cf. Section 2.2).

3.3. The contact process. This process is a very important particular case of
our model. It was introduced and first studied by Harris (cf. also [17], Chapter
VI, and [11]). It is defined on the square lattice Z2 by the conditions: if
nx)=1, c(x,n)=1; and if n(x) =0, c(x,n) =nh, where h is a positive
Constant, and » is the number of occupied neighbors of x. (Note that, formally,
to consider the contact process as a particular case of our model, one has to
Ieverse the roles of 0 and 1.) The main result in the theory of contact processes
is the existence of a critical value h. such that the contact process is ergodic for
h < h, and is not ergodic for h > h,. Computing the exact value of h. is usually
a difficult problem. The best rigorous result known in this direction seems to be
the estimate 1/3 < h, < 1. The existence of a critical value for the contact
Process allows us, through the Comparison Theorem, to construct conditions
for ergocity of a particular case of our model:

PROPOSITION 3.3.1. Suppose the rates of a spin system are defined as in
Section 1.3, on the square lattice, with u, = 0. Let h and h be defined by

R=Inf{heR | p, <h(d—n@)}, h=Sup{heR|u,> h({4—n(p)},

Where n(p) is the number of occupied neighbors in pattern p. Then, if k < h_, the
Spin system is ergodic, and if h > h,, the spin system is not ergodic.

Proof. The hypothesis y, = 0 implies that the system considered above
admits §,, the Dirac mass on the full configuration, as an invariant measure. If
we reverse the roles of 0 and 1, so does the contact process. Now suppose that
two systems having §, as an invariant measure verify assumption () of the
Comparison Theorem. If the first one is ergodic, then for any initial
distribution v we have

lim v§,(t) = 6,.

t—w

Then, since vS,(t) < vS,(t) < J, for all ¢, we also have

lim vS,(t) = 8,

t— a0

and the second system is also ergodic.
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The importance of the previous proposition is enhanced by the following
transformation, which turns any spin system into an attractive spin system with
d, as an invariant measure.

If c(x, ), xe S, ne X, are the flip rates for a spin system, then define new
flip rates by '

E(xa é) = Sup{lC(x1 11)—~c(x, C)]
tnw)—L{(w)| <&(w) for all weS} if &(x) =0,

&(x, §) = Inf{e(x, n)+e(x, OI:
n(x) # {(x) and |p(w)—{(w)| < &w) for all weS} if &(x) = 1.

PROPOSITION 3.3.2. If the process &, corresponding to E(x, &) is ergodic, then
S0 is the process n, corresponding to c(x, n).

This transformation and the proof of Proposition 3.3.2 can be found in
[17], Chapter III.

In our particular case, where the rates c¢(x, 1) are defined as in Section 1.3,
the transformation gives rates of a similar type, the roles of 0 and 1 being
exchanged: if {(x) =1, ¢(x, &) = 14+puy; if &(x) =0, &(x, & = ji,, where i,
depends upon the neighborhood pattern p of x in configuration £.

Coupling Propositions 3.3.1 and 3.3.2 yields the following general suf-
ficient condition of ergodicity for our model. '

ProposITION 3.33. Let h = Inf{heR | i, < h(4—n(@))}. If /(1 +p,) < hes
then the model with rate of birth equal to 1 and rates of death p, is ergodic.

However, this condition is not necessary as is shown in the example of the
spin systems defined in Section 1.3 with rates 4, additionally verifying the
condition

1, = p+h{4—n(p))

for some non-negative u and h. The coalescing duality argument ([17];
Chapter III) shows that this spin system is ergodic for any h as long as u > 0.
Transforming it by a method described above gives the contact process with
parameter h/(1+ ). Note that this example can be seen as a particular case of
a voter model with defections as defined in [7], Section 4.

3.4. The stochastic Ising model. The stochastic Ising model is in a sense the
best known and the simplest of all classical particle systems. One of its
characterizations is that it is a spin system with positive rates, which is
reversible with respect to some measure on X. Proofs of results we are listing
here can be found in [17], [7] or [16] (the latter focusing on the connections
with Gibbs states and Markov fields).

In this section we consider a spin system defined in Section 1.3, with the
rates of death u, satisfying the condition p,= u-h"® for some u >0 and
0 < h < 1, where n(p) is the number of occupied neighbors of a site in pattern p-
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" In the usual terminology (cf. [17]), this system is a stochastic Ising model
dssociated with the potential J defined on subsets of the set of sites S by the
formulas

J({x}) = Log(uh?),
J({x, y}) = kTj2logh if x and y are neighbors,
J(R) =0 for any other subset R of S.

The model admits as a reversible ‘and thus invariant) measure, the Gibbs
States corresponding to the same potential. Thus the ergodicity of this spin
SYstem is linked to the absence of phase transition for the corresponding
Potentia], : -

We summarize in the following theorem the classical results relative to the
®rgodicity of this model.

THeOREM 3.4.1. If uh? + 1, then the model is ergodic. If ph* = 1, then it is
€rgodic iff

1logh < B, = 4Arcsinh(1).

If the system is not ergodic, then any invariant measure v is a convex combi-
hation of

v=1md,S(t) and v =1imd,S()

t— o [Amde o]

(ef. Theorem 3.2.5).

A Monte-Carlo study of both transient and asymptotic behaviors of some
Stochastic Ising models on the square lattice has already been conducted by
ammersley and Mazzarino [12]. "
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