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1. INTRODUCTION

There are several ways of solving a bivalent programming scheme,
e.g. pseudo-Boolean [4], branch and bound [1], Boolean branch and
bound [3], and others (for these, see the reference list in [4]). Indepen-
dently of the choice of the method, the greatest efficiency is reached if
the programming scheme in question contains only linear pseudo-Boolean
equations and inequalities. The purpose of this review paper is to con-
struct a set of linear programming schemes for the maximum independent
set, minimum covering set and covering edge family, maximum matching
and minimum dominating set of a given undirected graph. In these
schemes the number of variables equals with those of the schemes given
in [4], and whence they can offer an alternative for determining the
above-mentioned sets.

2. NOTATIONS AND DEFINITIONS

In what follows, we shall consider finite, connected and undirected
graphs G = (V, E) without loops and multiple edges. V is the set of
vertices of G, and F the set of edges. We shall follow the notations and
definitions of Ore given in [7].

A set I of vertices of G is called independent if there are no connecting
edges between any of its vertices. A maximum independent set I, of @
is an independent set such that |I,| > |I| for any independent set I of @,
Where [I| denotes the number of elements in the set I. The set of inde-
Pendent edges is defined analogously.

A set K of vertices of G will be called a covering set if each edge of G
has at least one end point in K. A covering set K, is a minimum covering
set if |K,| < |K| for any covering set K of @. An edge family D(e,) is a
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covering edge family of G if it has at least one edge ¢, at each vertex of G.
The definition of the minimum covering edge family is obvious.

A subset D of V is a dominating set for G if every vertex not in D
is the end point of some edge from a vertex in D. A set D, is a minimum
dominating set of G if |Dy| < |D| for any dominating set D of G.

A maximum independent edge set of G is called a marimum matching
of @.

The terminology and notations concerning functions of bivalent
variables used in this paper follow those of Hammer and Rudeanu in [4].

3. BIVALENT PROGRAMMING SCHEMES

Let N ={1,2,...,n} be a given set, and S a subset of N. With
each subset § of N we associate the characteristic vector (2., ...,2,),
where 2; =1 if 4¢ 8, and 2; = 0 if ¢¢ S for each ¢+ =1, ..., n. Thus the
problem is to determine the characteristic vector of the set under interest.

By M = [m;] we denote the vertex-edge incidence matrix of the
given graph G.

3.1. Minimum covering set and maximum independent set. Let |V| = p
and let (,,...,x,) be the characteristic vector of a set K < V. K is a
minimum covering set of @ if its characteristic vector is an absolutely
minimizing point of the function

(1) f(@yy .oy @) = +2+... +2,

with subject to the conditions

(2) Zmijwi >1

for any value of j, j = 1,..., 7, i.e. [E| = r. Indeed, the conditions in (2)

ensure that for any edge j of G at least one of its end points belongs to K,
and thus K is a covering set.

A set K is a covering set if and only if its complement K in V is an
independent set of G. Moreover, if K, is a minimum covering set and I,
a maximum independent set of G, then K, + |I, = p (see, e.g., [7],
Theorem 13.3.4). Hence, K, is a maximum independent set, and thus (1)
and (2) offer a linear bivalent programming scheme for determining all
sets I, of G.

3.2. Maximum matching and minimum covering edge family. Ac-
cording to the definition of independence, an edge set C < E is a matching
of G if and only if no two edges of ¢ have a common end point in G. This
condition is obviously equivalent to the linear pseudo-Boolean expressions
in (4). Thus, a set C < E is a maximum matching of @ if its characteristic
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vector (¥,,...,¥,) is an absolutely maximizing point of the function

(3) S ooy ¥) = Y1 +92+... +9,
with subject to the conditions
i

for any value of ¢, 1+ =1, ..., p.
Let D(¢;) be an edge set of @. If, for any vertex z; of G,

Zmijyj >1
7

is valid for the edges of D(e,), there is at least one edge of D(¢;) incident
at each vertex of G, i.e. D(e) is a covering edge family of G. Thus, a set
D(e) = E is a minimum covering edge family of G if its characteristic
vector (¥,,...,%,) is an absolutely minimizing point of the function (3)
with subject to the conditions

(5) Zmz'j?/j >1
j

for any value of ¢, ¢ =1,...,p.

As shown by Norman and Rabin {6] (or see Berge [2], p. 124), the
maximum matchings of G determine the minimum covering edge families
of G and conversely, and whence only one of schemes (3), (4) and (3), (5)
is necessary to solve in oder to obtain the sets C, and D,(e,).

3.3. Minimum dominating set. Let G be a given graph. Add a loop
at each vertex of @ and denote by A = [a;] the vertex incidence (ad-
jacency) matrix of the garaph G° thus obtained.

According to the definition of a dominating set, D is a dominating
set of @ if D = V and any vertex of G° is connected by an edge to at least
one of the vertices of D. This condition is equivalent to the set of expres-
sions in (6). Thus, a set D < V is a minimum dominating set of G if its
characteristic vector (x,, ..., #;) is an absolutely minimizing point of the
function (1) with subject to the conditions (see [4], p. 220)

(6) Zaisxi >1

for any value of s, s = 1, ..., p. Note that, in 4, a;; = 1 for each value of 1.

4. SOME REMARKS

The remarks of this section concern the case of undirected graphs
and some well-known problems to which the above-given schemes apply.
The definition of D remains valid in case of directed graphs. Hence,
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schemes (1) and (6) give also the minimum dominating sets of a directed
graph.

Let & be a given directed graph, and G the corresponding undirected
graph obtained from G by omitting the directions of the edges. If I, is

a maximum independent set of @, it obviously is an independent set of .

as well, If I, is a maximum independent set of (_f such that |I,| > |I,|,
then in G at least two vertices of I, are adjacent according to the maxi-

mality of I,, from which it follows that I, is not an independent set of G
Thus the maximum independent sets of G are obtained by determining

those of G and, analogously, the maximum matching of @ are given by
those of @.

As shown in the monography of Hammer and Rudeanu (see [4],
Pp. 252-254, and also [5]), the solution of a system of distinct representa-
tives leads to the maximum matching, and whence this problem can be
handled by the linear schemes (1) and (4). A Boolean way (which is more
efficient than the integer linear programming methods) of solving this
problem is recently proposed by Syslo [8].

The separating set of a graph G (see [4], p. 242) is equivalent to the
covering set of G. In [4] (p. 248-252), the most repeated step of the trans-
portation problem is reduced to the determination of a separating set
minimizing a given function. According to (1) and (2), this step can be
linearized.

Finally, the assignement problem with profit weights on the edges
of the graph G describing the problem has, as its solution, a mateching
of G with the maximum total profit. Thus the solution is obtained by
maximizing the edge function

(7) FWiy ooy ¥) = 1Y+ CYs+... 0.y,

with subject to the conditions in (4). The coefficients ¢; are the profit
weights of the edges y; of G.
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ZAGADNIENIE SKOJARZENIA I INNE PROBLEMY EKSTREMALNE TEORII
GRAFOW JAKO ZAGADNIENIA LINIOWEGO PROGRAMOWANIA
PSEUDOBOOLO WSKIEGO

STRESZCZENIE

W pracy przedstawiono liniowe programy zero-jedynkowe dla nastepujacych
zagadnienn teorii graféw: wyznaczanie maksymalnego skojarzenia, maksymalnego
zbioru elementéw niezaleznych, minimalnego zbioru elementéw dominujacych oraz
minimalnego pokrycia wierzchotkéw i tukéw grafu.



