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1. Introduction. The recent wide-spread interest in deterministic
and stochastic automata concentrates not only on their abstract theory
but also on practical purposes. It appeared that deterministic and sto-
chastic automata are convenient tools in investigations of many real
processes. Thus, deterministic automata have been used in reliable systems,
deterministic simulation and random processes, computer sequencing
and timing schemes, and communication, programming and economic
systems, ete. (see [3] and [11]). In the terms of stochastic automata one
can describe not only the working (running) some type of reliable deter-
ministic systems but also a great many processes of computing, stochastic
regulations, learning, stochastic optimalization, genetics and economics [14].

There are many kinds of deterministic and stochastic automata.
The well known are, among others, Turing machines [12], the automata
of Mealy [5], Moore [6] and Rabin-Scott [9]. A different model of a deter-
ministic automaton was introduced and investigated by Pawlak [7].

Let U be a finite non-empty set called the alphabet or the set of states
of the object M. Suppose that the object M is at some fixed state %, which
1s subjected to the acting a transition function f (a control function).
As the result of that acting we obtain a new state «, of M. The function f
acts again at w, if only u,eD;, and so on. The domain of D, is the proper
non-empty subset of U. An ordered pair M = (U, f) is a deterministic
automaton of Pawlak [7]. Such automata generate finite and infinite se-
quences g, Uy, ... With u,;,, = f(u;) for ¢ = 1,2, ... Each such sequence
is called the word or the computation of M.

The fundamental problems concerning deterministic automata are,
for example, the problems of synthesis analysis, computing, complexity,
simplification and minimizing (see [4], [6] and [11]).

Analogously to deterministic automata, one could divide stochastic
ones into several groups. Some of them include probabilistic automata
of Rabin [8], multistochastic anutomata [13], probabilistic Turing machines
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[10] and their generalizations. To the other groups we attest stochastic
sequential machines [4] and stochastic automata of Bartoszynski’s type [1].

It is worth noting that certain problems concerning deterministic
automata have not their counterparts in the group of stochastic automata.
The typical problems concerning stochastic automata are, for instance,
the problems of stability, generalization, reduction, approximation,
estimation, definability of the events, equivalence, shrinkage and exten-
sion (see [1], [2], [4] and [8]).

The last two problems are also dealt with in this note. ‘

The concept of Bartoszynski’s stochastic automaton is a generali-
zation of the concept of a deterministic automaton defined in [7]. Barto-
szyhski has considered problems of extension and shrinkage for a pair
of stochastic automata.

This paper concerns the two above-mentioned problems for a finite
number of stochastic automata. The obtained results are natural, never-
theless non-trivial, generalizations of the questions asked by Bartoszyn-
ski [1].

By Bartoszynski’s stochastic automaton (shortly, s.a.) we mean an
ordered triple M = (U, a, n), where U = (u,, s, ..., %,) is & finite non-
empty set called the alphabet of s.a. M, and a and = are functions such
that

a: U—>[0,1] and D a(u) =1,
i=1
n
n:UxU—>[0,1] and Zn(uj, w;) =1 for every j =1,2,...,n.
i1
On the set UY = Ux U x ... x U, where N >1, we define a prob-
ability measure (p.m.) by the following formula:

PN(’”/il, Uigy oo vy ’“iN) = a(u;)) 7w (w;), us,) 7w (o;,, Uig) oo (U “iN)~

In what follows we use the notations a(w;) = a; and n(u;, ;) =
= 7;(%;) = 7.
The sets L(N) and L such that

L(N) = {w = (), Usyy -+ U5, ) e UV : Py(w) > 0}
and .

L = {(wsy Usyy ---)e U 2 N Pyt Uiy onny t45,) >0}

g .
2 Nz=1

are called the set of N-words and the language of s.a. M, respectively.

Let M; =(U,a a®) (i =1,2,...,m m>2) be s.a We put
L;(N)and L; (+ =1,2,...,m, m>2) for the set of N-words and the
language of s.a. M,, respectively.
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We deal with the following two problems:
(a) The existence of s.a. M = (U, a, n) such that, for every N > 1

(1.1) L(N) = O\ L,(N

=1

(1.2) AV A Pyw) =sQPR(w)

1<i<m s%) >0 weL(N)

(b) The existence of s.a. M = (U, a, =) such that, for every N > 1
(1.3) L(N) o U L;,(N

(1.4) AV A Pyw) = PPw

1<i<m >0 we L)

2. Definitions and lemmas. Let P,,P,,..., P, for m >2 be p.m.
on X. The set C; = {weX P;(x) >0} fori =1, 2 ., m is called a carrier
of pm. P;for¢ =1, 2,

Definition 1. Proba.bility measures P,, P,, ..., P, for m > 2 are
said to be concordant if there exist positive consta.nts C1y €2y ..y Cp SUCHh
that

m
/\ OI.PI(.’U) == 02P2($) = eee — Gum(m), Whel‘e C == n 01:'
zeC =1
If, moreover, C # @, then p.m. P,, P,, ..., P,, are said to be truly
concordant.
Without loss of generality we can'put ¢, = 1.
Definition 2. Probability measures P,, P,, ..., P, for m > 2 are

said to be concordant (truly concordant) in pairs if every pair P;, P; for
2, =1,2,...,m, m > 2, is concordant (truly concordant).

The coefficient of concordance of the pair P;, P; will be denoted
by ¢} (for every xeC;n0;, we have P;(z) = ¢} P;(x)).

Definition 3. A probability measure P with the carrier

is said to be a shrinkage of p.m. P,, P,, ..., P,, for m > 2 if there ex1st
positive constants s,, s,, ..., 8, such that

N\ P(x) = 8, P1(x) = 8, Py(®) = ... = 8, Pp (7).

zeC
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Definition 4. A probability measure P is said to be an extension
of pom. P,, P,, ..., P, if there exist positive constants e, e,, ..., ¢,
such that

A A P(») = e;Pi(a).
1ism xeCj

LeMMA 1. Let P,y Pyy ..., P, for m =2 be p.m. on X. A shrinkage
P of pm. P\, P,, ..., P, exists if and only if P, P,, ..., P, are truly
concordant.

Proof. The necessity follows immediately from Definitions 1 and 3.

Sufficiency. Let us assume that p.m. P{, P,,..., P, for m > 2
are truly concordant with coefficients ¢, = 1, ¢,, ..., ¢,, and let us define
p.m. P by the formula

vIP(®) = v ey Py() = ... = v e, P,(x) for zeC,

P(x) =
for x¢C,

where

v =Py(0) = D Py(a).

zeC

It is easy to see that P is the shrinkage of p.m. P,, P,, ..., P, (m = 2)
with coefficients s, = v™' and s; = v '¢; for ¢ =2,3,..., m.

LeMmwMmA 2. Let Py, P,, ..., P, for m > 2 be p.m. on X. An extension P
of pom. Py, P,, ..., P, exists if and only if P,, P,, ..., P, are concordant
in pairs and if, for m > 3, the following condition is satisfied:

@21) A A (A N Cy = 9) A

3t<m (iy,-.,9)<(,..., m)  (Fp.dg.dz)=(iy,---,ip) I=1

A (C’ilﬂCit +#* ﬂ)/\( /\ C,-l('\(],-

1<i<i—1

# O) A

1+1

A= HA 2 < k-1 <t—2)=(0;,NC,) = 9)]

= (¢} = :;czg |
The extension P is unique if and only if
(2.2) LJI C'i == X,
j—1
(2.3) V A Cyn(UC) #9.
(tys--ip)e(l,...,m) 2<j<m =1

Proof. The necessity of the existence of P. Let P be an exten-
sion of p.m. P,, P,,...,P,. The concordance of the pairs P;, P; for
(¢,J) = (1,2,...,m) follows immediately from Definition 4.
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Now, let m >3 and let (¢y,%5,...,%) = (1,2,...,m) for 3<t<m
satisfy the premise of implication (2.1). Without restriction of the generality
of our considerations we can put ¢, =lforl =1,2,...,1.

If p.m. P is an extension of P,, P,, ..., P,, then P is an extension
of P,, P,, ..., P,for 3 <t < m. This fact and Definition 4 imply

C/\ CP1($) = G:Pt(.’b‘), where G% = et/eu
xeC )Ny
and
/\t o'/\c Pi(x) = ¢ Py (®), where ¢;,, =e;.,/e;.
I<i<t—-1 zeCynCiy g

Therefore,
1 _ -1 -2 2 1
Ci€, =€ =C '€, =...=0 '¢_}...C06,

which implies ¢} = ¢j¢2... i7",
The sufficiency of the existence of P. First, let us observe
that if p.m. P is an extension of P,, P,, ..., P,, then p.m. P’ defined by

the formula

_P T m
() for we |J C;,
P,($) — 1,;1
0 for z¢ U C,,
i=1
where
m
v = P(U Ci)’
i=1
is also an extension of P,, P,, ..., P, with the carrier
0’ == U Oi‘

1=1

Therefore, it is enough to prove the existence of the extension P’.

Let P; and P; be any pair of Py, P,, ..., P,. Without loss of gen-
erality we can put i, =1 and i, = 2. By the assumption of Lemma 2,
p.m. P, and P, are concordant. Hence, by Lemma 1 of [1], there exists
p.m. @, with the carrier ' = (¢, U(, which is an extension of P, and P,,
l.e.

(2.4) Q.(x) = eiP;(3) for zeC;, i =1,2.
Now, let P; , P, and P; be any triple of Py, P,,..., P,. As pre-

viously, we put ¢, = 1, i, = 2 and ¢; = 3. To prove the existence of an
extension of P,, P, and P, we need only consider the following five rela-
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tions between the carriers C,, C, and C; of P, P, and P,, respectively:

(a) C;NnCy =9,

(b) C,nC3 =0,

() C;nCy £BAC,NC; #BAC,NC0, =0,

(d) C,NnC,NC, £,

() 0;NC3 #OAC,NC; #BAC,NCy, #BAC,N0,NC, =O.

Let ¢, denote an extension of P, and P, in cases (a) and (b). Then
we have

elP,(x) = exciPy(w) for #¢Cy,NC; (in case (a)),

Q:(z) = 1

"~ |elP(w) = e'elPy(x) for eC,NC, (in case (b)),

which proves the concordance of ¢, and P,. The last fact and Lemma 1
[1] imply the existence of an extension of ¢, and P, and, at the same time,
P,, P, and P,. '

Now, in case (c), let @, denote an extension of P, and P,. Then we have

Q.(z) = e3Py(x) = e;6:Py(w) for weCynCy,

which proves, similarly as previously, the existence of an extension of
P,, P, and P,.

In case (d) there exists an extension @, of P, and P,. Thus, in view
of (2.4) and the concordance in pairs, we have

(2.5) A Qi(x) = elP;(x) = elciP;(x) for i =1,2

zeCyNCy
and
A\ Q. (2) = e1P\(®) = 6,63P3(x) = 6, P, (%) = e;63.P;(x).
2eC1NCyNCy

Hence there exists the constant ¢, = eje; = e;¢5 such that @, (=)
= ¢, P3(x) for xzeC'Nn(C,, i.e. Q, and P, are concordant and, therefore,
there exists an extension of P,, P, and P,.

Now we can see that, for ¢, being an extension of P, and P, in case (e),
condition (2.5) holds. By (2.4) and (2.1), we have ¢; = ej¢; and ¢;é2 = ¢;
which together with (2.5) imply the existence of the constant ¢, = ejc}ca
such that @,(x) = ¢,P;(x) for x¢C'nC,. Therefore, there exists an exten-
sion of P,, P, and P,.

Thus we have proved that there exists an extension of P,, P, and P4,
say @,, with the carrier C* = ("UC; = C,VC,U(;. The coefficients
of the extension @, are ¢3 = e'e;, ¢; = e'e; and €3, where ¢! is the coeffi-
cient of the extension @, of the measure @Q,.

Now, let P;,P;, ..., Py, Py, for 3<k<m—-1 be any (k+41)-
tuple of P,, P,, ..., P,. Without loss of generality we can put ¢, =1,
bg =2,...,0 =k 4, =Fk+1.
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Let Q,_, with the carrier-
k
Ck‘—l = U Cl
1=1
denote an extension of P,, P,, ..., P,. At first we take into account the
pair Q,_,,P;,,. Obviously,

k
C* N Chyy = lL_Jl CinGCy.,y.

If at most one of the sets O;nC,, for 1 =1,2, ..., k is non-empty,
then it is easy to see that the pair @,_,, P, is concordant.

Now let us assume that there exist indices j,,jsy...,j,, Where
(Jisday --sdr) ©(1,2,..., k) and 2 <7<k, such that \

Ck+ln(lq OJ‘Z) #0.

As previously, we can put j, =1 for 1 =1,2,...,r. Since p.m.
P,, P,,..., P, are truly concordant in pairs, we have

Q-1 (®) = 3;‘_1P_l(m) = e;c_lciﬂpkﬂ(m)

k—1,01—11
=616 CppPra(®) = ...

k—1,1 2 I—1 1
=€ €C...¢ ¢, Pr () for 2eC, ;00,1 =1,2,...,r.

Since
,
0k+1m(lﬂ C) #9@,
=1
we obtain
1 1,2 1,2 r—1 _r
0k+1:020k+1="' =0203...cr 0]('+1'

Thus there exists a constant ¢,_, = ¢f~'¢;,, such that
(2.6) Qi_1(®) = ¢, Prii(®) for 2eC* N0y, -

Thus the pair @,_,, P,., is concordant.

Moreover, let us assume that there exist indices 4,, 45, ..., i;, Where
(B2 Ggy ereyi) = (1,2,...,k) and 2<s<k, such that the sequence
11y Tgy -y Igy K+ 1 satisfies the premise of implication (2.1). As above
we can put ¢, =1 for I =1,2,...,s. We can observe that in this case

k—1
C ﬂ0k+1 =01f\0k+1U03ﬂ0k+1.
Hence

Q_1(2) = 3§—1Pi(af) = i 0ty 1Prpa(®)  for eCinCiyy,y @ =1, s,
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We want to prove that e~'e, , = ¢ ¢} ,. By the concordance
in pairs of P,, P,, ..., P,, the equality

el =i leyd ... !
holds. That fact and assumption (2.1) imply the equality ef 'c;,, = ef "¢} ;.
Therefore, there exists a constant ¢,_, = ¢/~'¢;., such that (2.6) holds,
and this proves that the pair @,_,, P,., is concordant.
At last let us assume that there exist two sets of indices 4,, t,, ..., i,
and j;,Ja2y--9J)s (r+8<<k-+1) such that

CrprD (l_nlo,.l) #0

and that the sequence j,, js, ..., s, ¥+ 1 satisfies the premise of implica-
tion (2.1) and, moreover, there exist! (1 <<!<r)such that i;e(j;, Jay ---5 Js)-
Without loss of generality we can put i#; = j,. The above-given facts
imply

cz;ozz ;:“«:;’H =¢l, =6\, = cgcg e GG
Therefore, the pair @,_,, P,,, is concordant.
Finally, the above-given considerations allow us to observe that any
system of carriers of P; ,P;,...,P;  can be investigated in the same
way as one of the considered four cases.

We have asserted that the pair @,_,, P,,, is, under the conditions
of Lemma 2, concordant in each case. Therefore, by Lemma 1 of [1],
there exists p.m. @, with the carrier 0¥ = C*~'uU(,,, being an extension
of p.n. @,_, and P, , with coefficients ¢*~' and ef_,, respectively. It
is obvious that p.m. @,.is also an extension of p.m. P,, P,, ..., P, with
coefficients

ef = e elel, of = eF1eF 2L éel,
k k—1 k-2 2,2 k k—1 _k—1 k
6326 € ---603’...,81‘::6 Gk ,8k+1,
respectively.

Thus there exists p.m. P being an extension of p.m. P,, P,, ..., P,,.

The necessity of the uniqueness of P. Let us assume that (2.2)
does not holds and let @ be p.m. with the carrier ~

i=1
Then, for an arbitrary b (0 < b < 1), p.m. R(2) = bP(x)+ (1 —b)Q(x)

is also an extension of P,, P,, ..., P,,. Thus p.m. P is not a unique exten-
sion of P,, P,, ..., P,.
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Now, let us assume that condition (2.3) is not satisfied. Then, for
each subset (iy,%s,...,1%,) < (1,2,...,m), there exists a j (2<j<m)
such that

j—1
0,0 (U ¢Cy) =9
k=1

This implies that, for any subset (¢, 4y, ...,1%,) < (1,2,...,m),
there exist a number k¥ (1 < k < m) and sets

k
=U C; and = U Cy;
i=1

i=k+1

such that C'nC* = @.

Let P and P® be two extensions of p.m. P;,P,,...,P; and
Py Piys ooy P,y respectively. Then P(z) = P, (w) +(1— b)P‘z’(w)
where 0 < b < 1, is also an extension of P,, P,, ..., P,, and that proves
the necessity of (2.3).

The sufficiency of the uniqueness of P. Without loss of gen-
erality we can assume that (2.3) is satisfied by the sequence (1, 2, ..., m).

Let us take the notation h = z{j By the assumptions of Lemma 2
and the proof of its first part for every j (1<j<m), there exist k;
(1<k;<j) and a subsequence (i, 1], ...,i}‘j) <(1,2,...,j—1) such
that, for every l; (1 <I; <k;), we have '

C;n0, #0,
P(z) = ¢, P (%) = ¢;P;(2) = eho;'Pj(m) for weC;NCy,
¢ = cre,.

Hence, we obtain the system of independent equations
g _
(2.7) ey = 36y, ¢ =o;f1e§1 Jj=3,4,...,m),
where C,;NC, # O and C,-r\Ci; #=0 () =3,4,...,m).

To determine uniquely m unknown coetficients e,, ¢, ..., ¢, we must
get one equation more. For this purpose let us define the following sets:

D, =0, and D~O\(UD (i =2,3,...,m).

J——-l
We can see that

X=UD; and DD, =0 for (i,j) = (1,2,...,m), i #J,
i=1
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and
m m
(2.8) 1=P(X) =) DP= )¢ ) P
i=1 zeDj i=1 xeDy
= €+ Vg€ + ... +Vpby,
where
v; = P,‘(.’E) (i=2737 7m)
xeD;
The system (2.7) together with (2.8) gives
ey +v,6, + V565 + + Ve, =1,
(2.9) 6 = Gz61,

)
é; =0;16i{ (j=3,4,...,m).
One can observe that the system of equations (2.9) has the unique
solution. This statement completes the proof of Lemma 2.

Let P,, P,, ..., P, be probability. measures satisfying (2.3) and let P*
denote the class of all their extensions. For P eP*, let e, = ip, €5, €35 ..., €,
be the proportionality constants for P,, P,, ..., P,, respectively.

Now we prove the following

LEMMA 3. A function tp altains its maximum for the extension P eP*
with the carrier

CP = U Ci'
=1

Moreover, if

a = max tP a/nd CP #X,
PeP*

then, for every B (0 < < a), there exists at least one measure Py eP* with
tp, = B

Proof. Let P;,P;,...,P, be a permutation of Py, P,,..., P,
(m > 2) satistying (2.3) and let ¢;_, be an extension of P;,P;,..., P,-j..
Without loss of generality we can put 4, =1 (I =1, 2, ..., m).

Now, putting #o =e; and fo, =¢ ' (i =2,3,...,m—1), we can
see, by Lemma 2 of [1], that 3, and i, (¢ =2,3,..., m—1) attain their
maxima for extensions @, and Q; with the carriers ¢! = C,u(C, and C*
=(0"'u0;y,, (1 =2;3,...,m—1), respectively. In view of the proof
of Lemma 2 we have

_ _ m—2_m—3 1,1
tP =€, = ¢ e ees €66 = tQm—thm—z"‘ th.

Hence ip attains its maximum together with all coefficients ¢,
(?: == 1, 2, ceey m_].)’ i.e. if CP - 01U02U cen UCm.
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Let Qf and Q; (i = 2,3, ..., m—1) be the classes of all extensions
of pairs P,, P, and Q,_,,P;,, (¢+ =2,3,..., m—1), respectively. More-
over, let '

a; =maxiy and f;e(0,a;) fori=1,2,...,m.
QeQ;

By Lemma 2 of [1] for ¢ =1,2,..., m—1 there exists a @, cQf

such that #; = ;. We can see that

a = 0a;Qy...Q, and tP = tQm_thm_z cae tol.

Hence, for any B = f;8:...Pm_1 (0< B < a), there exists p.m.
P;eP* such that tp, = B, and this completes the proof of Lemma 3.

3. Shrinkage of stochastic automata. Let M; = (U, a?”, a) for
t=1,2,...,m, m=>2, be s.a., and let Cp, C; for ¢ =1,2,...,m,
j=1,2,...,n be carriers of p.m. o, a{’, respectively.

Definition 5. Stochastic automata M,, M,,..., M, (m>2) are
said to be concordant (truly comcordamt) if p.m. o, d®, ..., d™ and
P 2D, ., a™ (j =1,2,...,n) are concordant (truly concordant).

We denote by s, (é,) and s; (e;), where ¢ =1, 2, ..., m, and
j=1,2,...,n, the coefficients, of shrinkages (extensions) o and =;
of pm. d¥, d¥, ..., a™ and =, 2P, ..., al™, respectively.

THEOREM 1. If s.a. M; = (U, a% a%) for i =1,2,...,m, m>2,
are truly concordant and

(3.1) 81 =8 =...=8;, fori=1,2,...,m,

then there exists s.a. M = (U, a, n) such that

(3.2) L(N) = (Ly(N) for N=>1,
i=1
(3.3) Py is a shrinkage of p.m. PR, PQ), ..., P for N > 1.

Proof. By Lemma 1 there exist p.m. a« and =; (j =1,2,...,n)

with carriers
Co=1Cyp and C; =0y
t=1 =1

being shrinkages of a®, o®, ..., o™ and 2V, 2, ..., 2™ (j=1, 2, ..., n),
respectively. P.m. eand #; (j = 1, 2, ..., n) defines.a. M = (U, a, ®).

First we prove that s.a. M = (U, a, n) satisfies (3.2).

For every N-word

m
(i) Uiy +ery u,-N)e N L. ()

r=1
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we have

(3.4)  {(aqy sy - O Ny}

{n of) >0 and nn"> >0 for j =1,2,---,N—1}

Y41

¢{u,leﬂ C,, and u,, Heﬂ C,; for j =1,2,..., N—1}

< {a;, >0 and Tigiz e, > 0 for j =1,2,..., N—-1}
< (P ()5 Uiy o ony Uyy) > OF{(0, gy .oy U;,.)e L(N)}.

Hence we get (3.2).

Now we are going to establish (3.3). Obviously, the carriers of Py
and P (i =1,2,...,m) are the séts L(N) and L,(N) (i =1,2, ..., m),
respectively.

By (3.4), for every N-word (Uiyy Ugyy - ooy u,-N)eL(N), we have

Pty gy ooy Uip) = g Ty i, g+ iy iy

— (" ) (r) (r) (r)
er a 8 ﬂ’lllz 87'12 nlz‘la M Sr‘iN_ 1 n'iN_ liN

= s(’)P(')(u1 y Uiy +nvy Uy

o) forr=1,2,...,m.

Taking into account (3.1) it can be seen that the coefficients s&
(r =1,2,...,m) are independent of N-word from L(XN), and that com-
pletes the proof of Theorem 1.

4. Extension of stochastic automata. Let A4,,, A,,, B;, and B,,
(k =2,3,...,m) be subsets of a set U defined as follows: )

A, = [u,-e U: there exists a subsequence (il; Toy ooy iy) =*(1,2,...,m)

r—1
such that C"rfn(l_UlCizf) #0 for r =2,..., k},
A2k = U\Alk7

By, = {u;e U: there exists a subsequence (i, 45, ..., %) < (1,2, ...,m)

such that U C;; = U},

‘ll]
By, = UN\By;.
We can see that

14.12344133... :’Alm alnd 312CB13C... CBl'm'

Let cfy and ¢ for (k,1) = (1,2,...,m), j =1,2,...,n, be the co-
efficients of concordance of the pairs a®, a® and af¥, =, respectively.
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THEOREM 2. If s.a. M; = (U, a" a%) for ¢ =1,2,...,m, m>2,
are such that p.m. a, a®, ..., o™ and 2§, #f), ..., 2™ for j =1,2,...,m
satisfy the assumptions of Lemma 2 concerning the existence of extension
of p.m. and either A,, = U or

(4.1) N\ A [(CynCy #B)=(ci = ¢f)],
1<k, I<m 1<j<n
(4.2) N AyxnB,; =9,
2<<I<m
(4.3) N V N [(wjed ;N By) ~

2<I<m €564, >0 1<j<n
= (€55 = €5} 64,5 = €5 - oy €55 = €3)],

(4.4) A N [(uedynBy) = (15 = €1}y €1y5 == €55 - -5 €452 €3) ],

2<I<sm 1<j<n

where e; , €, ..., ¢; are constants of (4.3), then there exists s.a. M =
= (U, a, ) such that

m
(4.5) L(N) > ULyN) for N>1
i=1
and
(4.6) Py is an extension of p.m. PY, PY, ..., P®™ for N >1.

Proof. By the assumptions and Lemma 2, there exist p.m. a and
m; (j =1,2,...,n) being extensions of o, a®, ..., o™ and =, zf?, ...
v, ™ (j =1,2,...,n), respectively. P.m. a and #; (j =1,2,...,n)
define s.a. M = (U, a, n).

First we prove that s.a. M = (U, a, n) satisfies (4.5).

For every N-word
m

(i) Wigy ovvy Uiy) € U L. (N),

r=1
we have

(4.7) {(“ip Uigy <o vy “z‘N)€ };)1 Lr(N)}

m
¢{ZP(1’\'7)(%&17 Uigy oo vy 'u'iN) >0}
r=1

m m
»{Zla§?>0 and Zlagz.m>0 for j = 1,2,...,N—1}
r= r=

m m

¢>{ui1€U 0,0 and u,-j_f_leUC,.i’. fOI'j =1,2,...,N'—1}
r=1 r=1

=>{a; >0 and #;;, >0 for j =1,2,..., N—1}

41
g {PN(uily Ugyy oovy Uiy) > 0} < {(ui17 WUigy oeey u,-N)eL(N)}-

4 — Zastosow. Matem. 14.4
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Hence we get (4.5).
Now we are going to establish (4.6).

By (4.7), for every N-word (u;, %y, ..., 4;,)eL(N), we have
(4.8)  Py(usy thyyy ooy Uiy) = @4 T4, Tigis ++ Tin_1in
— (r) (r) r)
= €y ail eﬁl n’iliz see 6fiN_1n$Ar_1’iN

= 6,.06,.,-1 6"'2 oo GHN—IP(IQ(u"I’ ’M/,iz, ceey ’u,;N)
= GS?P(JQ(uil’ Ugyy ovvy Ugy)

for r =1,2,...,m.

To prove that P is an extension of P, PY,...,P{" we must
show that

(4.9) b =€y =... =26, forr=1,2,...,m,

i.e. that a coefficient ¢§) is independent of N-word from L.(N) for r =
=1,2,...,m.
First let us consider the case where 4,, = U. Then p.m.

my(u) = ey () + e 7P () + ... + ey ™ (u),

m
where Ze‘f =1, j=1,2,..,n,
i=1

is an extension of =V, 2, ..., a{™. Obviously, we can choose coeffi-
cients ¢; for ¢ =1,2,...,m and j =1, 2, ..., n such that

m

€1 =€ = ... =€, =¢ fori=1,2,...,m and Zei =1,

i=1
which proves equality (4.9) in the case where 4,, = U.

Now let us consider the case where A,, # U. We take into account
the pair oV, 72®. For i = 1,2 the equalities ¢; = €5 = ... = €, = ¢
hold by the proof of Theorem 2 in [1].

Considering the triple a®, a®), 7, we need first observe that U
can be divided into four disjoint subsets: A;3NB,y3, 43N Bygy AysNByy
and A,;NB,;. By assumption (4.2) we have A,;NB,; = O.

If u;e Ay3N By, for je(1, 2, ..., n), then, by (4.3), there exists a con-
stant e; such that e;; —e¢;. By (4.1), (4.3), (4.4) and Lemma 3, for
je(1,2,...,m) such that u;ed,;3NB,;, we have ey = o6, = 6ie; = 5.
Now, let u;eAd,3n B,y for some je(1, 2, ..., n). If there exists an t¢(1, 2)
such that C;N 0y # O, then, by (4.1), (4.3) and (4.4), we have ey = ;¢
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=cle; =e5. If CynCy; =G for ¢ =1, 2, then the proof of Lemma 2
allows us to choose eg; such that e;; = ¢;. Hence,

by =6 = ... =6, =¢; fori=1,2,3.
Now let us assume that, for p.m. z0, 2®, ... 2® 2 <k<m—1),
€1 =€ = ... =€, =¢ fori=1,2,...,k.

We prove that ¢,,,; = ¢,4, for j =1,2,...,n For this purpose
let us divide U into four disjoint subsets: A4, ;. ;N B 4415 Ay py1N By gy
A 1N By gy, and A,y N B, 4. By assumption (4.2), we then obtain
Az,k+1nB1,k+1 =0.

If wjed; ;1N Ay g, for je(1,2,...,n), then, by (4.3), there exists
a constant e¢,,, such that e,,,; = ¢,,,. Moreover, by (4.1), (4.3), (4.4)
and Lemma 3, for je(1,2,...,n) such that u;ed,;, ,NB,;,,, we have

k1, k1,
€r+1,5 = Cy 6y = cftle, = Crt1-

Now let u;ed;; 1NB,y ., for some je(1,2,...,n). If there exists
an ie¢(1,2,...,k) such that CynCy,,; # 9, then, by (4.1), (4.3) and
(4.4), we get 64,15 = €4y If OynCy,,; =0 for j =1,2,...,k then
the proof of Lemma 2 allows us to choose ¢, ; such that e, ; = ¢,,.
Hence

€ =€y =...=¢, =6 fori=1,2,...,k+1,

which completes the proof of Theorem 2.
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S. JANICKI i D. SZYNAL (Lublin)

UWAGI 0 ROZSZERZANIU SKONCZONEGO ZBIORU
MASZYN STOCHASTYCZNYCH

STRESZCZENIE

W pracy zajmujemy si¢ problemem zawezania i rozszerzania zbioru maszyn
stochastycznych. Otrzymane twierdzenia sg uogélnieniem wynikéw Bartoszyn-
skiego [1].



