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1. Introduction. In the last twenty years one can observe intensive
investigations of the so-called coupled fields in the theory of deformable
media. Such new sections of continuum mechanics as thermoelasticity, pi-
€zoelectricity and magnetoelasticity have been developed recently. Many
authors dealt with this subject and approached it by various methods in
various directions (see, e.g., [3], [7], [9], [10]).

In this paper a uniform formalism generating mathematical models of
interactions of coupled fields in deformable media is presented. The advan-
tage of the presented method lies in the fact that it can be used regardless of
the physical interpretation of the considered coupled fields. The formulation
Proposed here has its origin in the paper [1], where a method of describing
burely mechanical interactions for the statical problem of a deformable
Cosserat continuum is given.

In this paper, interactions of coupled mechanics and electromagnetic
fields in deformable media embedded in a four-dimensional space-time Tx E3
are described with the aid of some linear differential operators [4]. The
Maxwell macroscopic equations have been written in the invariant form. The
non-homogeneous Maxwell equations are interpreted as the equations of
®quilibrium for the electromagnetic stress tensor. The homogeneous ones
have been conveyed to the form of the so-called compatibility equations. In
order to interpret the boundary conditions obtained on the ground of the
presented method some generalization of the classical stress-principle of
Euler-Cauchy has been here admitted for the case of local electromagnetic
and mechanic interactions in a deformable continuum embedded in space-
time. The special cases of piezoelectricity and magnetoelasticity are discussed.

2. Coupled fields in a deformable continuum. Basic assumptions of a
formalism. Assume that interactions in a material deformable continuum are
described by two four-vectors u,(a) and A4,(a) defined on some region .# of
the space-time Tx E? and on its boundary 0.4, respectively. Here, the region
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# is given by the Cartesian product T'x £, where the bounded region Q2
denotes a region of variability of the so-called Lagrange coordinates of a
material continuum. The vector u,(a) denotes the four-vector of displace-
ments of a deformable medium [47, however the four-vector A4, (a) describes
some non-mechanical phenomena (electromagnetical phenomena).

Physical properties of the material continuum in a space-time are
defined by the linear differential operator A* which assigns to each of the
vector fields u,(a) and A,(a) defined in the region .# and on the boundary
0.4, respectively, a scalar-valued function

@(a) = A*(u,(a), 4,(a))
belonging to a unitary space L?(.# x d.#) with a given inner product ¢, - >.
Next we assume that the differential operator A4* is of the form
A (u,, A, = A4 (u,)+A5(A4,),

where the operator Af(u,) is given by the formula

Au(u)_{f"uu+F’"’V‘,uu+..., ae.H,
14y —

() Yru,+ .., aco.#,

and the operator A5(4,) is of the following form:

) FAA+ TV A+ ..., ae M
2 Aﬂ A — B votu ’ ]
@ 2(4,) {i"A,‘-f..., acd. .

The Greek indices range from 0 to 3 and the Latin ones from 1 to 3. In
formulae (1) and (2) the quantities F¥, F**, ..., f*, ... and F*, F*, ... j*, ...
are tensor-valued functions given in the region .# and on its boundary 9.4,
respectively, and F,(...) denotes the covariant derivative in. .#.

The inner product <-, - in the space L?(.# x 0.#) is defined as follows:

() o, ¥>= [@-Ydv+ [ ¢ ydo.

M oM

Let us define the formally adjoint operator *A* with respect to the inner
product (3) in the following form:

ARG = ALY ALY,
where

At U = Cuy, *A4YD, (A A, U = <A, *A44).

Next we assume (see ['1] and [4]) that the equilibrium equations of
deformable continuum result from the following postulate: to say that the
deformable continuum represented by the operator A* is in equilibrium
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(motion is understood as an equilibrium in space-time) means that
4) *Ay =0 if Yy = const.
Condition (4) is equivalent to the system of equations
*Aty =0 if Y =const,
*A5¢y =0 if y = const,
which represent the stress equations for the unknown generalized stresses
Fro Fov f% ... and F*, F*, j*, ...

The fields u, and A, which describe interactions in a deformable
continuum are called stress coupled fields if there exist some relationships
between the generalized stresses F*, F*', ... and #*, #*°, ... The form of
these relations results from physical and geometrical considerations.

Later we give an example of mechanical and electromagnetical coupled
fields where the relations among the stresses are of the form

F* = f(F*, 7).

As it was shown in [6], for the Cosserat continuum we have some contrary
relations, ie.,

)

F* = f(F*, F*),

We assume here also that the derivatives V,u, and V, A, of the fields u,
and A,, respectively, define some measure of deformations. We call them
here generalized deformations and use the following notation:

Euv = Vu Uys gnv = Vu A,.

Note that fields which are not stress coupled may still be coupled by the
So-called constitutive equations if there exist appropriate coupled material
constants. We return to this point later and give an example of fields which
are coupled only by constitutive equations of the form

P& = [, 4), = f(e", 9
for questions of piezoelectricity.

3. Material continuum in an exterior electromagnetic field. Let us con-
sider first the case of non-deformable continuum in an exterior electromag-
netic field. The electric field is described by the vector fields E; and D' which
are called a vector of electrical field intensity and a vector of electrical
induction (electric displacement), respectively. The magnetic field in a material
is described by vector fields B; and H', which are called here magnetic field
intensity and a magnetic induction vector, respectively. Note that triaditionally
the vector fields B; and H' are called inversely. Here we point out an analogy
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between the vectors E; and B; and also between D' and H'. For this reason
the above notation is assumed. The electric and magnetic inductions D' and
H' represent a reaction of a material continuum on the acting vectors of
electric and magnetic intensity E; and B;, respectively. Functional relation-
ships between the fields D¢, H' and E;, B,, called equations of polarization, are
constitutive equations which characterize the material continuum.

For materials called dielectrics, in the case of a small exterior electric field
E;, the relations of polarization are linear:

(6) D' =ciE,,

where the material constants ¢/ denote the tensor of electrical permittivity.
In a similar way, for materials called diamagnetics, in the case of a small
magnetic field B;, the polarization equations take the linear form

(7) H' = kV B,,

where the material constants k* denote the tensor of magnetical permittivity.

For the so-called ferroelectrics and ferromagnetics constitutive relation-
ships take a more complicated functional form because of the existence of
electric or magnetic hysteresis.

The electromagnetic field in a material continuum is described by
Maxwell equations, which hold in the region .# = TxQ of space-time, and
in the rationalized MKSA system of physical units they can be written in the
form (see [2])

@®)
) PxE+dB/aa=0, P-B=0,

‘D=g, WVxH—-Djox=1,

i

where the operator F;(...) denotes the three-vector of derivative with respect
to space variables, ¢ and I are sources of the electrical field £ and of the
magnetical field B, respectively, ie., ¢ denotes a charge density per a unit
volume element, and I denotes an electric current density.

To equations (8) and (9) we must still add constitutive relations (polar-
ization laws)

as well as boundary conditions on the boundary J.# of a region 4.
Now we write (8) and (9) in a convenient four-tensor form. With the aid
of the electric field intensity E; and the magnetic field intensity B; one can
build .an antisymmetric four-tensor %,s which.is called here a deformation
tensor of the electromagnetic field and is defined in the following matrix
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form:

0 E, E, E,
(10) ga — _El 0 "Bg Bz

_E2 B3 0 —Bl

_E3 '-Bz Bl 0

. In a similar way, with the aid of three-vectors of electrical and magnet-
ical inductions D' and H', one can build an antisymmetric four-tensor #*

Calied a stress rensor of the electromagnetic field and defined in the following
matrix form: '

0 -D' —D? -D3
' D' 0 -—-H* H?
(11 .
) # D* H? 0 -H!
3 _ HZ Hl 0

It should be remarked that %, and F* are four-tensors under Lorentz
transformations in space-time. The 'assumption that the velocities are small
leads to Galilean transformations in space-time and to the Galilean approxi-
Mation of the electromagnetic field theory. As it is well known, the Galilean
tl‘apsfc'rmations are commonly used in mechanic of a deformable continuum.
This subject has been discussed in [5] and [10]. Here we shall not elaborate
that subject but only indicate these appearing problems.

. The raising and lowering of tensorial indices go on the following metrix
ensor:

1 0 0 0
0 -1 0 0
d96=Y0 0 -1 0
0 0 0 -1

_Indthis way the space-time is treated here as a pseudo-Euclidean one with the
Index 3,

Let us introduce the four-vector of current
12 I" = (g, I,

Where, as it was defined above, the scalar field g is a volume density of

Charge, and ' denotes the .three-vector of volume density of the electric
Current,

Using the deformation tensor %, defined by (10) and the stress-tensor
defined by (11), we can write the Maxwell equations in the media (8)

o .
Zas:osowania Mat. 20.1
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and (9) in the form
(13) -V, FE =1,
(14) ey, 45 =0,

where ¢ denotes the usual four-dimensional permutation symbol.
Using the introduced deformation and stress tensor of the electromag-
netic field, we can write (6) and (7) in a uniform way as follows:

B — o216
FH =G

Now let us concern ourselves with the interpretation of equations (13)
and (14). It is easy to notice an analogy between equation (13) for the
electromagnetic stress #* and the equations of equilibrium of a deformable
material continuum in space-time [4]. There are however also differences.
The electromagnetic stress tensor % is antisymmetric while the stress four-
tensor of a material medium is traditionally assumed to be symmetric.

Let us have another look at the homogeneous Maxwell equations (14)
which can be written in an equivalent form as follows:

(15) , Ve %5+ Vy Gsa+ V5 %, =0,

where «, 7, 6 denote any three indices from the set 0, i, 2, 3.
Increasing the order of equations (15) (making use of the identities

Vap(--) = Vpe(..), and 9,5, = — %), we can write them in the following
form: |
(16) Vep {(IJY'S_'— Vys fgﬁa— Yo {{’/Bé— Vi {qyu = 0.

In this way it is easy to notice that equations (14) for the electromagnet-
ic deformation tensor %,; have the same form as the so-called compatibility
relations for the deformation tensor of a material deformable continuum in
the case of infinitesimal deformations.

As it is well known, the compatibility equations for a deformation tensor
of a continuum material result immediately from the assumption that an
embedding space is flat. This fact seems to open a new geometrical interpre--
tation of the homogeneous Maxwell equations.

It is easy to see that if the electromagnetic deformation tensor G5 18
built up from the derivatives of the four-vector of the electromagnetic
potential A, as

then %, satisfies equations identical to (14), and therefore also equations
(16). For this reason, if we take the tensor %, in the form (17), we may

u_nderstand the non-homogeneous equations (13) only as the Maxwell equa-
tions in a medium.
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The relations between the components of the deformable tensor ¥,, and
the components of the four-potential A, = (¢, A;) are of the form

B=VxA, E=—-V¢+odfja.

Let us now return to the description of interactions in a deformable
Material with the aid of the linear differential operator A* presented in’
Section 2.

 Assume that the electromagnetic field in a medium is described by the
differentjal operator A* which assigns to each four-vector 4, of the electro-
Magnetic potential a scalar-valued function ¢(a) = A4*(A4,(a)) as follows:

PA—~-F*V, A, e.H,
iy [P A
A, acd.#,
Where the current vector I* is given by (12), the stress tensor #*¥ is defined
by (11), and the electromagnetic deformations %,; determined by (10) are of
the form (17).
The four-vector j* defined on the boundary 0.4 of the region .# is

13 J = 1

Where ¢ denotes the surface density of charge and j* denotes the surface
density of electric current.
The assumed condition *A*y = 0 if ¥ = const, defining the continuum
®quilibrium, leads us now to the non-homogeneous Maxwell equations (13).
Quations (14) are satisfied, for we assume here condition (17).
The boundary conditions obtained on the ground of the presented
Method are discussed in the next section.

. 4. Deformable continuum in an exterior electromagnetic field. We now
discuss the problem of describing the interactions of mechanical and electro-
Magnetical fields in a deformable medium embedded in space-time. Let us
a8sume that those interactions are described by two differential operators A%
and A4 defined on the four-vector u, of the continuum displacement [4] and
On the four-potential A, of the electromagnetic field, respectively. According
to the assumptions which have been adopted in Section 2 we write

(19 A4ty Ag) = A () + A5 (4,).
Mechanical interactions are described by the operator of the form

'f(u)={Fuuu'_FMVvuw ae.#,
# *u,, aco.d.

The stress four-tensor F* appearing in (20) is symmetrical, i.e., F*' = F",
he four-vector f* defined on the boundary 0.# is of the form

D 1=,

(20)
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where the scalar field f denotes the surface density of thermal power and f*
denotes the surface density of mechanical forces.
Electromagnetical interactions are described by the operator

"A,—~F"V, A, acMl
u —_ 1’ vitus ’
(22) 434 {j“A acdM.

ne

The stress four-tensor %*’ of electromagnetical field in formula (22) is
antisymmetrical: #*' = — ™. The four-vector j* acting on the boundary
0.# is of the form (18).

Here the mechanical and electromagnetical fields are coupled by the
relation

(24) - F* = Fr 4 o

€-m?

where F* denotes the four-vector of volume density of mechanical mass-
forces, and F%,_ denotes the volume density of the so-called Lorentz force, ie.,
the force with which the electromagnetic field acts on a material medium and
defined by :

(25) Ft =D, oD+ x H)

with the notation as in formulae (11) and (12).
Note that relations (24) and (25) can be written in the general form

Fr = [+, ),

which is an example of the stress coupled relation in the sense of the
definition adopted in Section 2.

According to the postulates admitted in Section 2 the equations of
equilibrium of a deformable continuum can be written in the general form

260  *A, Y =0if ¢y =const, *A,¥ =0 if ¥ = const.

If the operators A4 and A% take the form (20) and (22), respectively, then
conditions (26) lead us to the following coupled equations of a deformable
continuum in the exterior electromagnetic field:

27 v, F =0,
(28) v, F* = F*+F)_(#", D),

where the Lorentz force is defined by (25) and the stress tensor of the
-electromagnetic field #*' is of the matrix form (11).

Note that equations (27) are non-homogeneous Maxwell equations. The
homogeneous ones are satisfied, for we assumed here that condition (17)
holds. Formulae (28) are equations of the continuum equilibrium in space-
time [4]. They are coupled with equations (27) with the aid of (25) which
defines the Lorentz force FZ_.. In the case where the Lorentz force vanishes,
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®quations (27) and (28) are no more coupled in the stresses #** and F** (the
System of equations is separated).

Note also that equation (28) which one can obtain for the case u = 0 is
tht} first principle of thermodynamics as it has been shown in [4]. Here this
Principle has added the term F2, =I-D, which describes the variation of
Clectromagnetic field energy in time.

Equations (27) and (28) which are valid in the region .# of space-time
are supplemented by the corresponding boundary conditions resulting from
the assumed form of the operator A* on the boundary J.#. We get

(29) ft=n,F*¥ =0, aedA,
(30) j“-—nv F* =0, a e@./l,

Wher.e n, denotes the four-vector normal to the boundary 0.# and directed
Outside of #.

_ The physical and geometrical interpretation of conditions (29) has been
discussed in [4]. For small velocity motions, equations (29) take the form

(31) : fi—=n;Fi=0, aeS,

(32) f-ng =0, acs,

Where 0.4 = § Sow S, and the conditions on S, are the initial conditions.
From- (31) and (32) we obtain immediately the interpretation of the

'ensors Fi/ and ¢’ as the stress tensor in a material deformable continuum

and the heat flux vector, respectively, since f' and f denote the given surface

,e‘;sity of mechanical forces and surface density of thermal power, respect-
ively,

Substituting (11) and (18) into (30) we get the following boundary
Conditions for the electromagnetic field:

(33)
(34)

- oD —(AxHF =0, aceSs,
c—nD'=0, aeS.

The form of the boundary conditions on § is the same as that in [8],
Where those conditions have been obtained in a different way.

For the case of electrostatic fields (H = 0) and under the assumption
that the continuum velocity ¢ vanishes, conditions (33) and (34) take the form

(35) "e—nD'=0, aeSs.
For the case of magnetostatics (D = 0) we get
jk_(ﬁxﬁ)kzo, aES.

; F Tom (35) and (36) we obtain immediately the interpretation of the fields
and H' as the vectors of electric and magnetic induction since the fields o

(36)
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and j* given on the boundary S are the surface density of the charge and
electric current, respectively.

Let us choose inside the region .# < TxE? any region .¢/ with bound-
ary 0./ having a unit normal vector n, directed outside .«/. We assume here
that the material outside .o/ acts partly inside of through the four-vector
fields f* = (f, f)) and j* = (o, j') (see (21) and (23)) on the oriented surface
element ds of the boundary 0.¢/.

Note that in this way we adopt here a generalized stress principle of
Euler—Cauchy.

Equations (27) and (28) should be obviously completed with the consti-
tutive relations connecting the mechanical stresses F** and electromagnetical
stresses "’ to the suitable deformations ¢,, = V,u,, and %, =V, A,.
These topics will be discussed in a separate paper. This problem in the
case of a traditional three-dimensional approach is widely described in the
literature. Here we indicate only that the advantage of the presented formal-
ism lies also in that it shows evidently the deformations corresponding to
the generalized stresses F*' and #*". In the theories of deformable media the
definitions of the deformations have an element of arbitrariness.

Let us take now into consideration two simple peculiar cases of electro-
magnetic and mechanic interactions in a deformable medium, namely the
case of piezoelectricity and magnetoelasticity.

The piezoelectricity is understood here as the interactions of the me-
chanical and electrostatical fields (H = 0). The stress tensor .#** takes now
the simple form

D3

In this case one takes into consideration [9] non-conductive material media
(e =0, I =0). As it results from (25) we have, consequently, F£ =0, and so
the equations of equilibrium (27) and (28) are no more coupled.

The fields u, and A, are coupled in this case by constitutive relations
which have been assumed in the linear form (see [9])

FJ = c”"’sk,—eij" Ek’ Di = eikl 8k1+dik Eka

where ¢*, ¢ g% denote the tensors of material constants.
.Magnetoelasticity is understood here as a connection of mechanical
statics and magnetostatics (D = 0). We have then

0 0 0 0
gw_[0 0 -B A

0 H? 0 ~ H!

0 —-H* H! 0
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In this case conductive materials have been considered, so the Lorentz
force (25) equals

Ft,=(0,IxH),

and does not vanish. Therefore, equations (27) and (28) are stress coupled.
Constitutive relations in this case have been admitted in the separable form

(see [97)
Hi = ki'i Bja Fij = Cijmakla

Where k' and ¢*' denote the tensors of material constants.

Magnetoelasticity in the case of dynamical problems of a deformable
medium is understood as follows [9]: the conductive continuum is found in
4 strong exterior magnetic field. For small velocity continuum motions, the
Induced electromagnetic field can be described by a small fluctuation of the
electric and magnetic fields. Such an approach permits us to separate the
Maxwell equations in the electric field E and in the magnetic field B, and
allows us to assume the linearization of magnetoelasticity relations.
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