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MEAN-SQUARE-ERROR-ROBUSTNESS
OF LINEAR ESTIMATES IN THE EXPONENTIAL MODEL

1. Introduction and summary. Let us consider the statistical model
M, =(R{, ®}, {P.,, 2 > 0}), where R} is the real positive half-line, ; is
the family of Borel subsets of R} and P,, is the exponential distribution
With probability density function (pdf)

(1) fii(¥) = %exp(—x//l), x > 0.

As in Zielinski [13] (see also Bartoszewicz [3] and Zielinski and Zielinski
[14]) suppose that the exponential model is violated in such way that the

Tandom variable under consideration has the exponential power distribution
P, , with pdf

exp(—(x/2)?)
AC(1+1/p) ’

Tather than P, ., the shape parameter p being unknown. Formally we
Consider the exponential power extension M, .p, of M, defined as follows
B) M, 5, = (RY, B1, {Psp A>0, p < P < py})

Where 0 < P <1< p,<2l6.
Let X,, X,, ..., X, be a sample from the distribution P, , and * be
the following class of statistics

x>0,

(2) fup(¥) =

4 T*={T=Y ;X a;20,j=1,2,...,nE,, T=1},
j=1 '
Where X, X,.. ..., X,, are order statistics, a = (a,, a3, ..., a,)’ € R, and

1,1 T denotes the expected value of T under the distribution P, ;. Thus J +
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is the class of linear estimates of the scale parameter A which are unbiased in
the original model M,. On the basis of a general concept of robustness
presented in [12], Zielinski [13] has studied the bias-robustness of the
estimates of 4 from J* for the extension M,, ,, of M,. He has proved that
for each extension M, , of M, the estimate T® = nX,,, is the uniformly
most bias-robust estimate of 4 in the class 7, ie. b_o(4) < by (4) for each
A >0 and every Te 7+, where
br()) = sup (E;,T-A)— inf (E;,T-4)
P1SPS<py P1SPS<py

is the function of bias-robustness of the estimate T.

Bartoszewicz [3] has considered the gamma extension M
model M, defined as follows

) M; ., =(R{, B, {P%, 4>0, p <p<py))
where 0 < p; <1< p, <o and P}, is the gamma distribution with pdf

. o X" lexp(=x/2)
(6) fl,p(x) - Apr(p) ) X > 0

py.p, Of the

He has proved that for each extension M7 ., of M, the estimate
T* = X,/E1 1 X = Xp/(1+1/2+ ... +1/n) is the uniformly most bias-
robust estimate of A in the class J .

Zielinski and Zielifiski [14] have presented another approach to the
robustness of linear estimates of A in the extensions (3) and (4) of the model
M,. They have studied the so-called infinitesimal bias-robustness and the
infinitesimal mean-square-error-robustness as well.

In this paper we consider the problem of the mean-square-error-
robustness (v-robustness to be short, see [14]) of linear estimates of 4 in
some gamma and exponential power extensions of the model M,. Two
theorems concerning the existence of the uniformly most v-robust estimate
(UMVRE) of 4 are given. It is also proved that the sample mean X is ﬂ?‘
there the UMVRE of A. For the gamma extension the case n=2 15
completely solved.

2. Preliminaries. We present definitions and lemmas which are used 10
the sequel.

Let F and G be distribution functions. To avoid technical complications
in the statements of the results and in their proofs, we shall assume
throughout that F(0) = 0 = G(0), supp F = suppG = [0, o0) and that thgse
distributions have no atoms. Thus, these distributions have strictly increasing
and continuous inverses on the interval (0, 1). Also we assume that 2
expectations in consideration exist and are finite.

2.1. Dispersive ordering of distributions. Saunders and Moran [10] have
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introduced the notion of ordering in dispersion. We say that the distribution
dis|
G has a smaller dispersion than F (G < F) if G '(B)-G ()< F 1(B)-

—F~!(a) whenever 0 <« < f < 1. Shaked [11] has studied this notion in
detail. We recall some of his results in the following lemma.

Lemma 1 (Shaked [11]). (@) If G2 F, then G & F, ie. G(x) > F(x) for
each x > 0.

(b) GEF if and only if the function x—G~! F(x) is nondecreasing in
x> 0.

(c) Assume that there exist densities f and g of the distributions F and G
respectively. Then G'ZF if and only if f(F W) <g(G™'(w) for each
ue(0, 1).

If the densities f and g exist, then ¢ = f/(1—F) and ¢ = g/(1 —G) are
the failure rate functions of the distributions F and G respectively. We can
State the following lemma.

LEMMA 2. If @p(x) < @g(x) for each x >0 and F or G is a decreasing
failure rate (DFR) distribution, then G ‘ZF.

Proof. If ¢p(x) < @g(x), then F(x) < G(x) for each x > 0. Therefore
(M G 'F(x)<x<F !'G(x), x>0.
Suppose now that F is a DFR distribution. Then from (7) we obtain

SF'6() _ ) _ 90
1-F(F'G(x) 1-F(x) S 1-G(x)’

Which gives f(F 'G(x))<g(x) for each x>0. Putting x =dG"‘(u),
ue(0, 1), we have f(F~'(u)) <g(G™'(w) for each ue(0, 1), ie. G'F by
Lemma 1 (c).

The proof is quite similar if G is assumed to be a DFR distribution.

Let X,,, X2 ..., X,,, and Yy, Y., ..., Y¥,,, be order statistics of
Samples of size n from the distributions F and G respectively. Let F;,(x)
=P(X;,<x) and Gj(x)=P(Y;,<x), j=1,2,...,n Since Fj(x)
= B;, F(x) and G,,(x) = B;,G(x), where B;, is the beta distribution function
With parameters j, n—j+1, then we obtain immediately from Lemma 1 (b)
the following result.

Lemma 3. If G2 F, then G, Fj, j=1,2,...,n.
2.2, Inequalities for moments of order statistics. Some lemmas concerning

fhe moments of the order statistics from the distributions F and G are used
I the next sections. Lemma 3 implies the following result.

x>0,

dis|
LeEmMma 4 (Bartoszewicz [4]). If G <F , then for all nondecreasing convex
Junction ¢ and n and each i,j=1,2,...,n

Cov [é (Xi:n)a r’(XJn)] = Cov [é(Yxn)’ ”(Y]u)]
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Lemma 5 (Barlow and Proschan [1]). If G 'F is convex, then
EX;./EY;, is decreasing in j=1,2,...,n.

Lemma 6. If F~'G is convex, then EX%,/EY,, is increasing in j
=1,2,...,n for each o > 1.

Proof. The proof is based on Lemma 3.5 of Barlow and Proschan [1]
and is quite similar to that of Theorem 3.6 ibidem. It is obvious that
Y., SG'F(X jm)- To prove this lemma we ought to show that for every
¢ > 0 the function h(x) = x*—cG~! F(x), x > 0, changes sign at most once
and from negative to positive values if at all. It is easy to notice that h
changes sign at the same points and in the same way as v(x) = F~! G(x*/c)—
—x, x > 0. Since x*/c is increasing convex for a > 1, then F~! G(x*/c) is also
increasing convex and v(0) = 0. Hence for arbitrary ¢ > 0 v(x) changes sign
at most once and from negative to positive values if at all.

2.3. Properties of the gamma distribution. Let us denote by F ¥, the
distribution function of the gamma distribution P}, with pdf (6). It is well
known that if p; < p,, then F} < F%,, for every 4 > 0. Moreover F% , is a
DFR distribution for pe(0,1] and an increasing failure rate (IFR)
distribution for p > 1, ie. F{ { F, , is concave for pe(0, 1] and convex for p
> 1 (see [2], Chapter 4). Saunders and Moran [10] (see also [11]) have
proved that if p; < p, then F, , @F 1.p,- Hence from Lemma 4 it follows
that the variances and covariances of all order statistics from the gamma
distribution Ff , are nondecreasing in p.

The following lemma is applied in the next sections.

Lemma 7. If X,, X,,..., X, are independent identically distributed
random variables with the gamma distribution function FY ,, then for each
i=1,2,...,nand every k=1, 2, ...

12 T(p+k) K2 T(p) .‘
8) E Xk —-Y Xk} = E, Xt +- Y — — ki,
( ) l,p( l.nnjgl j) I—.(p) [ 1,p x_n+nj;0 F(p+ 1 +j) El_pXI.'l

In particular
_ 1 _ 1
Ei p(XinX) =E,, X, P+; =E; , Xin El,pX+;1 )
ie.
1
Covy (X X) = ;El,pxi:n'
Proof. Let us denote by y(p, z) the incomplete gamma function, ie.

y(p, 2) = [tP~ e "dt,
0
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Then F Tp(2) =7(p, 2)/T (p). It is easy to verify, integrating by parts, that

© Y22 _ylptkz) S
" To To+h "¢ ETeri)’

z>0,p>0,k=1,2, ...

Denoting for brevity F¥ = Ff,, E,X =E, ,X and S(m,r) = ¥ X* we have

-

j=m

i:n*p

(10 ~E,(XE,S(1, m) = E, (X5, E,[S(L, mIX..])

1
= ;Ep {X:‘n Ep [S(l, i— l)lXxn] +X12fx+X{‘n Ep [S(l+ 1’ n)IXi:n]}'

It is easy to see that for j <i the conditional distribution of X jm glven
X, =z is the same as the distribution of the order statistic Viicy of a
Sample of size i—1 from the right-truncated gamma distribution with the
distribution function J(p, V)/7(p, 2), 0 <v <z Similarly, if j > i, then the
Conditional distribution of X;,, given X, = z is the same as the distribution
of the order statistic W,_;n-i of a sample of size n—i from the left-truncated
8amma distribution with the distribution function

[y(p, w—y(p, DULT (P)—7(p, D], z<w<o0.
It is easy to verify that
| k)
Bp[S(L, i= )| Xpy =2] = (=)= =%
and

I'(p+k)—y(p+k,
E, [S(i+1, n)| X, =2]=(n—9 (ijL(p;—;Ez z) Z)'

Hence after some complicated calculations we obtain

1) E,[x%,5(1,i—1)]+E,[X%,S(+1, n)]

e o}

_TI'(p+k) . y(p, 2) y(ptk, 2)]
T %("_“E"X“"*C”Np) re+h |”

0

x {(n—) F () [1=Fp(]" "' =

. Zp+k—l
=D F @M =F, @1 ) e”dz},

Where C = n1/[(i—1)!(n—i)!]. Let us denote by I(p) the integral in (11).
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Using (9) we have

ao

. , k, 7 . .
[el s s

1(p)
0

r'(pp TI(p+k

N k[zp—le—z zp+k—le—-z:|}d
4 - 4

Fpp  I(p+k)
_kS T ] F®)_ ¢ g

E, X} +=E, X}, —
ZF(p+1+]) Pt e TP Ccr(p+k) ?

|t @n-per e |22t O]
0

Putting this in (10) we obtain (8).

2.4. Properties of the exponential power distribution. Let us denote by
F,, , the distribution function of the exponential power distribution P; , with
pdf (2). It is easy to prove, that if a random variable X has the gamma
distribution P%¥,,, then the random variable Z = X!/7 has the exponential
power distribution P, ,. Therefore the vector of order statistics
(Zyms Zyps -- -5 Z,,) from the distribution P, , has the same distribution that
the vector (X!/p Xxir . . X7 where X;,, Xzp ..., Xpn are order
statistics from the dlstrlbutlon P¥ /- Zielinski [13] has shown that if 0 < p:
<p2 <216 then F,,, éF“, for every A > 0. Moreover F, , is a DFR
distribution for pe(O0, l] and an IFR distribution for p> 1 (see [3]).

We prove the following lemma.

LemMma 8. If 0 < p, < p, <1, then Fl,pzdiEDFl,pl.
Proof. The failure rate function of the distribution P, , is of the form

f1 p(X) JRE Y
1 p( ) /j du

Let xe(0, 1] be fixed. Since for 0 < p, < p, < 1 the inequalities

@p(x) =

1 1 1 1
< , <
ra+1i/py) r@+1/p,) 1=Fy, (x) 1-Fy,,(x)

and , )
_.n _P2
e * <e”*

hold, we have ¢, (x) < @,,(x), x(0, 1].
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Now let x > 1 be fixed. Then

.0 , - ' "
mgna’(pp(x) = sign e"‘p“ uPe " log udu—x? log xJ e‘“pduJ> 0,

since u”log u is increasing in u > 1. Hence ¢, (x) is nondecreasing in pe(0, 1]
for each x > 0. Now from Lemma 2 it follows that F, , d?Fl,pl for 0 < p,
<p, <1

From Lemmas 3, 4 and 8 it follows that the variances and covariances
of all order statistics from the exponential power distribution F 1,p are
Nonincreasing for 0 < p < 1.

3. v-robustness for the gamma extension. Let us consider the exponential
model M, and its gamma extension Mf , , 1 < po < 00, defined by (5) and
(6). Let X,, X,, ..., X, be a sample from a distribution P¥,, 1 < p < p,. We
Study the problem of the existence of the uniformly most v-robust estimate
(UMVRE) of 2 for the model M, with respect to the extension Mt ,, in
the class 7 * of estimators defined by (4). Following the general concept
Presented in [12] the estimate ToeJ * is called the UMVRE of 1 if
U74(4) < v;(1) for each 2 >0 and every Te 7 *, where

(12) op() = sup E,,(T-A)*— inf E,,(T—2)7>

1<p<py 1spspg

1 the p-robustness function of the estimate T.

We can state the following theorem.

THEOREM 1. In the class T+ there exists the UMV RE of 1 with respect
10 the extension M t.po Of the model M, 1 < py < o0, provided that the matrix
A(Po) = |IE, (X1 Xj)—E1,1 (Xi X;ll is positive definite.

Proof. Let Tes ™, ie. T=) & Xiw @20, i=1,2,...,n and

i=1
tEha.x T = J. Since E, ,(T—4)? = 22E, ,(T— 1), we have vr(4) = 2207 (1) and
€ problem of seeking T, which minimizes vr(4) uniformly in 2 in the class

o~ + . .
;1 reduces to minimizing v (1) with respect to Te J *. It is easy to notice
at

(13) Ex.p(i a; X;— 1)
i=1

= jgl a} Var, , Xjnt Z Zai a;Covy,p (X, Xj:n)'*'[El,p( Z a; Xj:n)_ 1]2'

i#j j=1
r o, . .
°M  Preliminaries it follows that the expectations, variances and

Covar; . . e e
riances of order statistics from the gamma distribution P}, are

Zastosowania Mat. 18/4
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increasing in p and hence for Te 7 * the expected value (13) is increasing in
p = 1. Therefore we have

(14)  or() = Z Z [El,po(Xi:an:n)—El-,l(Xi:an:n)]aiaj‘
i=1 j=1
-2 Z (Ey,po Xjim—E1,1 Xjma;, Te Tr.
i=1

Now our problem is a problem of quadratic programming: seeking the
minimum of quadratic function (14) with respect to a = (a,, a,, ..., a,)’ under
conditions:

Y ¢,E;; X;,=1 and a
j=1
The theorem follows from the well-known result of the theory of quadratic
programming (see [5] or [7]).
It seems difficult to find a solution of the problem in a general form. In
the sequel we consider the particular case n =2, but first we prove the
following theorem.

_ 1 ) . ..
Tueorem 2. The statistic X =~ ). X;,, ie. the uniformly minimum
n <
j=1
variance unbiased estimate of A in the model M, is not the UMVRE of A with
respect to any extension MY, of the model M,, 1 < p, < o0, in the class T *.

Proof. Let us consider a problem of quadratic programming:
minimizing the function ¥(a) = @' Ca+ ¢ a under conditions ¢'-a=1 and
a > 0, where C is a known quadratic symetric matrix, ¢ and ¢ are known
column-vectors. One can give the necessary conditions for a solution of this
problem, the so-called Kuhn-Tucker differential conditions (see [5] or [7)):

q+2Ca+xc> 0,
(15) (g+2Ca+xc)y:-a=0,
ca=1, a=0,

where x is Lagrange’s multiplier. In our v-robustness probleffl

we have C=A(p), q=—2(E;,oX1m—E11 X1 ..o, By pg—Ei1 Xon)

c=(Ey1 Xim "'91;:'1,an:;:)" .
Suppose that X is the UMVRE of 4 with respect to an extension MT,po’

11 1Y .
Thus the vector a, = (_’ PERRLY Z) satisfies (15). Substituting a, in (15) W¢
n
obtain the system of n inequalities:
(16) Eipo(XinX)—E; (Xi:nX)_El,po XintE; 1 Xin(14+%) 20,
i-_— 1, 2, vecy n,
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and
(A7) ¥ [E1,po(Xin X)—Ey1,1 (Xiw X)—Ej p Xim+Ey,1 Xi(1+%)] = 0.
i=1

Since the left-hand side of (17) is the sum of the nonnegative left-hand sides
of the inequalities (16), it follows that in (16) there must be equalities.
Dividing the ith equality in (16) by E,  X;., and taking into account Lemma
7 we obtain :
E1.pg Xi = I/n—x forevery i=1,2,...,n, po>1,
Ei1Xin p+lim-1
which contradicts Lemma 5. Thus the statistic X is not the UMVRE of A
with respect to any extension Mt .5 Po> 1, in the class 7 *.

ExampLE. Let us consider the case n=2. It is easy to calculate that

1
E =P 2 = ’ E X2. = —_
ez =P g, Ty E”XizzpiB@,um Lo Xi2 =p(+1)
\_2p+l 2 P+
B(p, 1/2)’ EipX22 P(p+1)+B(p’ 1/2)’ 1,0(X1:2 X5.0) = p?,  where
. r'(p)r(1/2
I'(p+1/2)

In particular we have E, ; X,, =1/2, E; , X,, =3/2, E, ; X}, =1/2,
E, X3,=7/2 E;(X;2X;3,) = 1. Thus

p+1 1

———— f— 2_

P 56,122 e
Ap) = , )
- P+ Dt g 1) 2

This matrix is positive definite for p > 1, because of the monotonicity of
E,, X2, and the fact that

_ 2p+1 2p+1 (.3 2 g)
det A(p)_B(p, 1/2)[3—8(1,, 1/2)] (p +2p 4p+4

I8 a convex function with the minimum equal to zero at p = 1. We show that
@=(0, 1/E, , X,.,) satisfies the Kuhn-Tucker conditions and thus the
Statistic X,4/E1 X35 = X,5.,/(1+1/2) is the UMVRE of 1 with respect to
®ach extension M%,, p > 1, of the model M, in the class 7. In this case
the Kuhn-Tucker conditions are as follows

(18) El.p(Xi:z X2.2)—E; 1 (Xi2X3.0)
E1;1 Xz:z

—(Ey pXi2—E; 1 Xi0) = —%E; ; X;.5,

i=1,2,
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and

(19) El,pX%:Z—El.l X%:Z_El.pXZ:Z_El.l X2:2 = —
(El.l X2:2)2 El.l X2:2

It is easy to notice that (18) and (19) are equivalent to the inequality

El,p(Xl:Z XZ:Z)—EI,I (XI:Z X2:2) _ El.p X1:2

El.l Xl:ZEl,l X2:2 El.l XI:Z
> El.p X%:Z_El,l X%:Z _El,pXZ:Z
(EI.IX'Z:Z)2 El,l XI:Z
which after substituting suitable values takes the form
11 5-2
(20) W(p) = 2p* — p——+ P_>o.

8 4B(p, 1/2)

d

It is not difficult to prove that W (1) =0 and o W(p) = 0 for p>1 and thus
p

the inequality (20) holds.

Some numerical results. Using the tables of moments of order statistic$
from the gamma distribution [6], [8], [9] we have computed the matrix A(p)
forn=3,4,5and p=1.5, 2, 3, 4. For all these parameters the matrix A(If)
is positive definite. Next we have applied Wolfe’s algorithm of quadratiC
programming (see [7]) for solving the problem. In all considered cases the
solution is T* = X,,:,,/El‘l Xnon-

The values of vg(1) and vr-(1) for considered n and some extensions
Mt are given in Table 1. For comparison the variances of X and T* in the
model M, are also given there.

TABLE 1
vr(l)
Po n=2 n=3 n=4 n=>5 n=oo

X T | X T™ | X T* X T* D' ™

1.1 0.060 | 0.052 § 0.043 0.035 0.030 0.010
1.2 0.140 | 0.109 | 0.107 0.090 0.080 0.040
1.5 0.500 | 0.397 { 0.417 | 0.284 | 0.375 { 0.231 | 0.350 | 0.198 { 0.250
20 1.500 | 1.112( 1.333 | 0.827 { 1.250 | 0.684 | 1.200 | 0.599 | 1.000
3.0 5.000 [ 3.44214.667 | 2.605 [ 4.500 | 2.178 | 4.400 | 1.914 | 4.000
4.0 10.506.915 1 10.00 | 5.238 | 9.750 | 4.385 | 9.600 | 3.857 {9.000

Var, , 0.500 | 0.556 | 0.333 | 0.405 | 0.250 | 0.328 | 0.200 | 0.281 | 0.000 | 0.000
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From Table 1 we can conclude that the v-robustness of the estimates T*
and X is decreasing in n. Moreover even for small values of n the v-
robustness of T* is considerably less than the asymptotical v-robustness of X.

4. v-robustness for the exponential power extension. Consider the
¢xponential model M, and its exponential power extension M Pou1>
0 < py < 1, defined by (2) and (3). Let now X, X,, ..., X, be a sample from
a dlStI‘lbuthIl P, po < p <1 We study the problem of the existence of the
UMVRE of 4 for the model M, with respect to the extension M, in the
class 7 * of estimators defined by (4). In that case the v-robustness function
of T is of the form

vr()) = sup E, (T—A)*— inf E,, (T—1)>
pospsl posSp<1
Where now E 1p X denotes the expectation of X having the distribution P, ,.
We can state-the following theorem, the analogue of Theorem 1.

THEOREM 3. In the class T * there exists the UMVRE of 1 with respect
to the extension M porl of the model M, 0 < py < 1, provided that the matrix

B(po) = ”El,po (Xin Xj:n)_El,l (Xin Xj:n)”

is positive definite.

The proof of Theorem 3 is quite similar to the proof of Theorem 1. One
uses the monotonicity of the expectations, variances and covariances of order .
Statistics from the exponential power distribution which are given in
Preliminaries.
¢ We can also formulate the analogue of Theorem 2, but in a less general
orm.

THEOREM 4. The statistic X is not the UMVRE of A with respect to any
®Xtension M,, , of the model My, k =2,3, ..., in the class T .

Proof. Suppose that X is the UMVRE of 1 with respect to an

. 11 y .
®Xtension M, .1, 1-€. the vector ag = (;, prRTR ;) satisfies the Kuhn-Tucker

®nditions  (15) with C=B(1/k), q=—2E11xXim—E11X1m -
o Ak Xpy—E; | X)) and ¢ =(E;; X1 ---» E1,1 Xpw). Thus we have the
ollowmg system of n inequalities

@) B, u(Xiw X)—Ey s (Xin X)—Ey, l,kX.n+(1+x)Eu >0,
=1,2

9 s oy

and

Z [El.l/k(Xi:n X)—Em (X.':nX)—El,l/k Xint(1 +%)E1,1 Xin] =0

=1

w . _ )
here 1s Lagrange’s multiplier. For the same reason as in the proof
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of Theorem 2 the inequalities (21) are equalities. From Preliminaries it
follows that E,,, X;,=E,, Y% and E,,(X;,X)=E,, (YY", where
Yim Youms ..., Yo, are order statistics from the gamma distribution P¥},.
Therefore from Lemma 7 it follows that

. I'(2k) k¥l (k) .
inX) = —— 4y 1 E 14k |
(22) Ey 14 (Xin X) 0] [El,llkxl.n+nj=or(k+l+j) 1,1/k Xin
Dividing (21) by E, , X;., and taking into account (22) we obtain

k)

n

+- =—-—X

Ei 1 Xin niiT'k+1+)) E;; X, n
for every i=1,2,...,n and k> 1.

From Lemma 5 it follows that the left-hand side of (23) is strongly increasing
ini=1,2, ..., n The contradiction proves the theorem.
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