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EXTREME POINTS OF A CONVEX POLYTOPE
AND EXTREME RAYS OF THE CORRESPONDING CONVEX CONE

1. Introduction. The method of finding all extreme points of a convex
polytope and extreme rays generating all edges of the corresponding
convex cone can be related to a linear programming problem with a para-
metric objective function. The general case of that problem, i.e. the case
with no assumptions concerning the vector of the objective function
cannot be solved without finding all extreme points and all extreme rays.

An efficient method for the case where all elements of that vector
are linear affine functions of one parameter was given by Saaty and
Gass [9]. This problem has also been studied by Wagner [12] and
Kelley, Jr. [7].

The case where all elements of that vector are linear affine functions
of two parameters was considered by Gass and Saaty [6]. Two methods
proposed by the authors solve that case but the adaptation of those
methods to a general case is rather doubtful.

Simons [11] considered the general case and proved that a set of
the so-called admissible vectors (i.e. such vectors that for any of them
the problem has an optimal solution) is a convex polytope.

The general case can be related to a variety of substantial problems.

One of them is the problem of finding all efficient points, posed by
Charnes and Cooper [2], p. 294-321.

Another, is a convex programming problem with linear constraints
whose function to be maximized is differentiable and concave. The problem
can be solved by the use of the Frank-Wolfe method (see [5]) as it is
Suggested in [1], p. 89-91. The essential part of each step of an approxi-
mation procedure is the solution of a linear programming problem whose
vector of the objective function is a gradient of f(x) at an examined point
Z,. Because of slow convergence of the sequence {f(x;)}, one has to ex-
amine many points in order to find a satisfactory solution. Thus, instead
of solving many linear programming problems it might be worthwhile
to find all extreme points and extreme rays of a set of feasible solutions.
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It should be pointed out that a linear programming problem with
the right-hand side vector treated parametrically can be solved by con-
sidering the corresponding dual problem.

The method is described by introducing a linear programming problem
which is, for convenience of description, considered as dual to another
linear programming problem. The latter problem is transformed in Section 2
by the Fourier-Motzkin elimination method (see [4] and [8]) into a problem
with one variable. As a by-product of this transformation, another proof
of the duality theorem, given in Section 3, is obtained. This proof plays
a crucial role in justification of the method given in Section 4. The method
is illustrated by examples in Section 5. In general, the method yields
also points which are neither extreme points nor extreme rays. These
points can be excluded by the use of properties stated in Sections 6 and 7.
One can stress that Corollary 11 states a necessary and sufficient condition
for a point to be an extreme ray of a specially defined convex cone and
that Propositions 13 and 14 allow to treat extreme points of a convex
polytope and extreme rays of a convex cone as extreme rays of another
convex cone.

Although the method seems to be now of limited computational
interest, future developments in constructing computers may make it
more applicable.

2. Treatment of linear programming problems by the Fourier - Motzkin
elimination method. Let us state the following two linear programming
problems:

ProBLEM P. Minimize

(2.1) Do

subject to

ProBLEM D. Maximize ) y;b; subject to

i=1

m

Zyiaij<0j7 1=1,...,mn,
i=1

Y; >0, 1=1,...,m.

Remark 1. In what follows we give a method of finding all extreme
points of a convex polytope defined by a system of constraints of Problem D
and all extreme rays of an associated convex cone.
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Since minimizing (2.1) is equivalent to minimizing x, , subject to

n
Tny1 = Z"ij’
i=1

Problem P can be rewritten as follows:
PrOBLEM P,. Minimize x,,, subject to d;z >d,, for ie I,, with

I, ={0,1,...,m+n}, mT=(w17w2;---’xn+1)T’
0 for ¢ =0,
diy =3b; for¢=1,...,m,

0 fore=m+1,...,m+mn,
(—e,1) =(—¢yy..., —€,,1) for ¢ =0,
(2.2) d; =1{(a;,0) = (a1, vy a5,, 0) for ¢+ =1,...,m,
(0i—m, 0) for i =m+1,..., m+mn,

where §, denotes the k-th n-dimensional unit vector.

Remark 2. An optimal solution a}, 3, ..., ., of P, satisfies

n
x *
Tpy1 = 2, Ci%; .
i

Let
1 .
——(d;, dy) it d;; # 0,
(2.3) (€55 €50) = |l
(di7 dio) if dil = 01

where d;, is the first element of d; = (d;;, ..., d;, ).
Problem P, is, obviously, equivalent to the following problem:

ProBLEM P,. Minimize x,,, subject to e;x > e, for ie I,.

Observe that the first elements of e; are equal to 0 or to 1 or to —1.
Let then
(2.4) I3 = {i | ey = 0}, I(;I-={7:|ei1=1}7 Iy ={i| e = —1}
and state the following problem:

ProBLEM P,. Minimize x,,, subject to e,x > e, for ie I},

(2.5) (6;+6,)x > e4+ey for (i,k)eIf x1I,.
Remark 3. Problem P, is obtained from Problem P, by replacing
(2.6) e;x > e, for ie I Ul

with (2.5).
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Since ¢;;, = 0 for e I§ and ¢;, +¢,, =1+ (—1) = 0 for (3, k)e Ij x I
(see (2.4)), z, does not appear in Problem P,.

The system of constraints of Problem P, can be written as d;z > d},
for ie I,, where (d}, d},) is equal to (e;, €;) or to (e;+ e, é;,+ €,). Intro-
ducing (compare with (2.3))

1 .
©.7) (&, el ]d—l (ds, dz!o) if dj, #0,
. iy €0) = ) 12
l(d:', dzl'o) if d%z =0,

we obtain the following problem which is, obviously, equivalent to P,.
ProBLEM P|. Minimize z,,, subject to e;xz > e}, for ieI,.
For convenience of description, we treat P, and P, as problems
with the variables x,,...,#,,, or as problems with the variables =,
Zgy ...y %,,,, Where x, appears with the coefficient zero.
PROPOSITION 1. Any feasible solution to P, is a feasible solution to P;.
Proof. Because of the obvious equivalence of P, and P, and of P,
and P|, it is enough to show that any feasible solution to P, is a feasible
solution to P,. But this is obvious since, by Remark 3, (2.6) implies (2.5).
LEMMA 1. If o3, ..., @, satisfy (2.5), then there exists an x; such that
XYy Tyyoeny Tyyy Salisfy (2.6).
Proof. If at least one of the sets IS, I; is empty, the lemma holds,
since the set of x,’s such that z,, «,, ..., x,,, satisfy (2.6) is unbounded.
Then assume that I # @ and I, # @. By the assumption of the lemma,
n+1
Z (€;+ €) B —€p—€o >0 for (3, k)e If x Iy
j=2

which is equivalent to

n+1 rn+l

min (Z €% — eko) > max ( — 2 e;%; + %)-
kel, 7=2 iel i=2
Hence, there exists an #; such that
n+1 n+1
: * * %k
min ( € T —eko) > x; > max ( — 2 €;;%; + eio)
keIo— j=2 icl: j=2

which can be rewritten as

n+1
* * . +
T, > — Z €;;% +e, for icly,
j=2
n+1
* * -
2 ek_,w] —eko > $1 fOI' kE Io
j=2
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or, in the equivalent form,

. %k . —
e;x" > e, for ie I}, ea" = e, for icI;.

This completes the proof.

PrOPOSITION 2. If @7, ..., %, , is a feasible solution to P, then there
exists an x; such that x},a;, ..., z,,, is a feasible solution to P,.

Proof. The proposition follows from the equivalence of P, and P,,
Lemma 1, Remark 2 and the equivalence of P, and P,.

PROPOSITION 3. Any optimal solution to P, is an optimal solution to P;.

Proof. Suppose i}, «;, ..., z;,, is an optimal solution to P, but not
to P;. Then there exists a feasible solution ,,...,®,,, to P; such that
a,,, < . By Proposition 2, there exists an #; such that a;, z;, ...,
is a feasible solution to P,. This and =, < ., is contradictory to the
assumption.

PROPOSITION 4. If @}, ..., o, is an optimal solution to P}, then there
exists an ®; such that i, z;,...,x, , is an optimal solution to P,.

\

Proof. By Proposition 2, we can choose an #; such that 7, @}, ..., x} |
is a feasible solution to P,. If @}, 2}, ..., «,,, Were not an optimal solution
to P,, then there would exist ;, «;, ..., #,,, satisfying the constraints
of P, such that z,,, < 2, ,, which would mean, by Proposition 1, that
Ty, ..., T, Were not an optimal solution to Pj. This contradiction com-
pletes the proof.

Remark 4. At this stage we make several comments concerning P,.

1. Each (e}, ¢;,) is a non-negative linear combination of (d,, dy,),
(d1y A1)y -5 (Amins Fminyo) Since (di, dy) is equal either to (e, e;,) or to
(6; 4 €xy €10+ €x0), and (e;, €,) and (e, ¢j,) are found by (2.3) and (2.7),
respectively. Moreover, not all coefficients expressing (e;, €;,) as a linear
combination of those vectors are equal to zero.

2. The set I, is finite.

3. The first element of each vector e; is zero, and the second one
i3 either 0 or 1 or —1.

Now we can obtain Problem P, from P, by adding each inequality
with e}, =1 to each inequality with e}, = —1 and leaving each ine-
quality with e}, = 0 without change. By formulas similar to (2.3) and
(2.7), we can find vectors ¢?, and state Problem P,. By repeating the
Same procedure, we can obtain the following sequence of Problems:
PO’ P(',, p,, P;’ ) Pm P;z'

Remark 5. We state the following properties of P, :

1. Each (¢}, €},) is a non-negative linear combination of (d,, dy),
(dy, dy), ..., (@4 n,0)- Moreover, not all coefficients expressing (e7, ¢;,) as
8 linear combination of those vectors are equal to zero.
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2. The number of constraints of P, is finite, i.e. I, is a finite set,

3. For each iel,, ¢; = ¢;;, = ... = ¢, = 0 and ¢, ., is equal either
to 1 or to 0. '

Remark 5 can be deduced, by induction, from Remark 4. The last
statement of Remark 5 is justified additionally (see (2.2)) by 4, ,,., =1,
dipnyy =0 for 2 =1,...,m+n. Hence we cannot get a negative e7, ,
as a non-negative linear combination of d,, ,, @, 4 1y -eoy Dyipnir-

According to Remark 5, Problem P, can be written as follows:

PrOBLEM P,. Minimize z,,, subject to
(2.8) T, =6y for iell,
(2.9) 0>efy for iel).

COROLLARY 1. If oy, 2y, ..., %, ., i8 a feasible (an optimal) solution to
P,, then x,,, is a feasible (an optimal) solution to P, .

COROLLARY 2. If Tp.1 18 @ feaszble (an optimal) solution to P, then
there exist i, ..., x, such that af, ..., o, &y, 18 a feasible (an optimal)
solution to P,.

Corollary 1 follows, by induction, from Propositions 1 and 3, and
Corollary 2 — from Propositions 2 and 4.

Observe that, in P,, inequalities (2.9) are “responsible” for the
consistence of P,, and (2.8) — for the objective function to be bounded.
Thus, Corollaries 1 and 2, the equivalence of P, and P and Remark 1
imply the following corollaries:

COROLLARY 3. Problem P is consistent if and only if all elements of
the set {el, | ie I)} are mon-positive.

COROLLARY 4. If P is consistent, then the objective function of P 1is
bounded from below if and only if I7 + @. If P is consistent and its objective
function is bounded from below, then both P, and P have their optimal so-
lutions «,,, and xy, ..., x,, respectively. Moreover,

n
* *
Tpy = E C; ;.
i=1

Notice that an optimal solution z,, to P, is the maximum element
of the finite set {e? | ie I;}. Corresponding z,, z;_,, ..., Z; can be found
by solving constraints of P, _,, P, _,, ..., P,, respectively.

PROPOSITION 5. If yk, y%, ..., y& . are non-negative numbers satisfying

m+n

(210) ek76k0 = 2 Yi (dn dio
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then
m
(2.11) nyb,- =e, forkel,,
i
(2.12) nya;-jgoj for j =1,...,n and keI,
m
(2.13) Dyta; <0 for j=1,...,n and kel
i=

Proof. (2.11) follows from (2.2) and (2.10).
If ke I}, then e} = (0,1). Thus, by (2.2) and (2.10), we have

m
0= —?/130,-4-2?/{-‘%--{-?/51“, ] =1,...,m,
i=1

1 =yt
Since yk,; >0 for j =1,...,n (see Remark 5), the latter equalities
imply (2.12).
If keI, then €} = (0,0) and in the above-given equalities we have
Y& = 0 (instead of y*¥ = 1) which implies (2.13).

3. Duality theorem.

LEMMA 2. For any o,, Zsy ..., T, ond Yy, Y2, ..., Y, Which satisfy the
constraints of P and D, respectively, we have

Z

Proof. By utilizing the constraints of P and D, we get

jojw 22"/1 (7] ] Zytbt
j=1 i=1

i=1 j=

I bﬂs

THEOREM 1. If P and D are consistent, then the objective function of P
attains its minimum value Mp, and the objective function of D attains its
maximum value My . The objective function of P attains Myp if and only if
the objective function of D attains My. Moreover, in both cases, Mp = My.

Proof. Since P and D are consistent, by Lemma 2, the objective
function of P is bounded. Hence, by Corollary 4, there exist the optimal
solutions i, «3, ..., 2) and z,., to P and P,, respectively. Moreover,

n
(3.1) Ty, = Z ¢; ;.

=1
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The finite system (2.8) yields lower bounds for z,,, in P,,. Since z},,
is a minimum value of x,_ , and I, is finite, there exists a ke I;} such that

% _ n __ ,n
(3.2) Ly, = MAX €y = €5y
del b

On the other hand, by Remark 5, the vector (e, €},) is a non-negative
linear combination of (d,, dy), (d1, @10)y -y (piny @mino)- In other
words, there exist non-negative y&,y%,...,yk ., satisfying (2.10) and,
by Proposition 5, (2.11) and (2.12). This means that y¥, ..., y% is a feasible
solution to D which, by (3.1), (3.2) and (2.11), satisfies

n
* —
j=1

Hence, by Lemma 2, ¥*, ..., % is an optimal solution to D. This
and the above-given equality proves the first part of the theorem.

Suppose that My is attained at the point z), z}, ..., ;. Then, by
Corollary 4, Problem P, has an optimal solution satisfying (3.1). By the
above reasoning, we can prove that M, = M. The proof is completed
since D can be rewritten in a form of P and vice versa.

It should be pointed out that the proof of Theorem 1 does not involve
the Farkas-Minkowski lemma. This lemma can be easily proved as a corol-
lary to Theorem 1.

?/?bi'

D\

\

4. Extreme points and extreme rays. Let U denote a convex polytope
defined by

(4.1) im1

(4.2)

The aim of this section is to show that the procedure of Section 2

produces all extreme points of U and the extreme rays generating all
edges of U°.

PROPOSITION 6. If y¥, %, ..., 4% . are non-negative numbers satisfying

(2.10), then (y5, ..., y%) is an element of U or U°® whenever ke I} or ke I%,
respectively.
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The proof follows by (2.12) and (2.13).
The system (4.1) can be rewritten as

(4.3) yp;<q, Jj=1,...,n+m,

where p; denotes the j-th column of the matrix P = (4, —1I,,), g; — the
j-th element of the (» + m)-dimensional vector ¢ = (¢, 0), and y — the row
vector (Yqiy ..oy Um)-

Let H; ={y |yp;< ¢} and B; ={y |yp; = ¢;} for j =1,...,n+m.
Then ’

n+m

j=1
LEMMA 3. If y* = (¥}, ..., Yn) is an extreme point of U, then there
exist a scalar b, and a vector b such that y*b = by, and yb < b, for ye U — {y*}.

Proof. Suppose that s of the planes E,, K,,..., E, ,,,i.e.E,, H,,..., E,,
pass through y*. Since y* is an extreme point of U (see [1], p. 57), we have

(4.4) _:ﬂlEf = {¥"}.

Since
n+m 8

U= H;=<NHy,
i= j=1

1

ye U implies yp; < g;for j =1,...,s. By (4.4), y'p; =¢q;for j =1,...,s
and there exists a te{l,...,s} such that yp, < g, for any ye U—{y*}.
To complete the proof, take

1 v 1 v
b=;2pj and bo:;ij.
i=1 i=1

THEOREM 2. If y* = (¥, ..., Ym) 18 an extreme point of U (defined
by (4.1)), then there ewists a ke I, such that y* = (y%, ..., y%) is equal to y*,
where y&, y¥, ..., yk ., denote coefficients satisfying

m+n

no__ k
€k —2 Yidg,
i=0

obtained by the procedure tramsforming P, into P,.

Proof. Problem D with the vector b given in Lemma 3 has a unique
optimal solution y*, and the maximum value of the objective function
is b, (defined also by Lemma 3). Then, by Theorem 1, the corresponding
Problem P has the optimal solution «I,...,2 and

n m
%* *
Zcf‘”ﬁ = Zyibi = b,.
i=1 =
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Thus, by the reasoning of Section 2 (Corollary 4), the corresponding
Problem P, has the optimal solution a,, = b,. Since the procedure
transforming P, into P, does not depend on b, there exists a ke I} such
that ef, = @, = b, and

m+n

€ = 2 y:'cdn where yk = (yllc7 ) yfn)f
izo

_is the optimal solution to D. Problem D, however, has a unique optimal
solution y*. Thus y* = y*.

COROLLARY 5. For a convex polytope U to be non-empty it is necessary
and sufficient that I} be mon-empty.

Proof. The sufficiency is obvious since, by Remark 5, for each ke I},
there exist non-negative numbers y¥, y¥, ..., %  satisfying (2.10) and
thus (¥%,...,9%)e U.

To prove the necessity assume that I} =@ and U # @. Then the
system

m
Z?/z‘a'ij‘l"ymﬂzcj’ j=1,...,n,
t=1

has a non-negative solution. Hence (see [10], p. 376) it has a basic non-
-negative solution ¥}, ¥y, ..., Ym.n a0nd, consequently, (¥7, ¥y, ..., Yn) i8
an extreme point of U. By Theorem 2, I, # @ which is contradictory to
I+ = @. This completes the proof.

LeEMMA 4. Let (3%, 9%, ..., y%) denote a subvector of (y¥,y%, ..., 9% ),
where yr,y%, ..., y% ., denote coefficients satisfying

m+n

e = Z yid;
i=0

and obtained by the procedure transforming P into P,.

If keI,, then (y%, 9%, ..., 4E) is a non-zero vector.

Proof. Suppose y¥* = 0,4 = 0, 1, ..., m. By the proof of Proposition 5,
y¥ = 0 implies ke I°. Then, by (2.2),

m-+n m+n
€y = 2 y?di = 2 yi'c(ai—m7 0).
t=m+1 t=m+1

However, e} is a zero vector which implies y* = 0 for ¢ = m+1, ...
...,m-+n and, consequently, y¥* =0 for ¢ =0,..., m+n. This is con-
tradictory to Remark 5.

For any vector y’, we write D ={y |y = Ay’, A > 0}.

A vector y is said to be an extreme ray of a convex cone if D} is an
edge of that cone.
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In what follows we often use the following proposition (see f10],
p. 400):

PROPOSITION 7. A wvector y is an extreme ray of a convex cone if and
only if it cannot be represented as a positive linear combination of two non-
-collinear (i.e. linearly independent) vectors of that cone.

LeMMA 5. Let y* = (y%, ..., yl) denote a subvector of (y&, y%, ..., vk, ),
where Y&, y¥, ..., yE . are coefficients satisfying

m+n
n k
r = 2 Y: s,
i=o

obtained by the procedure transforming P, into P,'z. Let U be a convex hull of
{D;,,D;z, cory D%}, where W1k =1,...,p} ={¥*| ke I’}

If there does mot exwist ke I% such that y* belong to an edge D}, of U°,
then y*¢ U.

Proof. If I =@, then U =@ and the lemma is obvious.

Assume that I # @ and suppose, to the contrary, that y*eT.
Since U is a closed convex cone generated by y', ..., y” (see [1], p. 58-60),
there exist non-negative numbers 4,, ..., 4, such that

V4
v =Y "
k=1

Moreover, since y* is a non-zero vector (because D\ is an edge of U°),
at least one of A’s is positive. Hence there exists a ¢ (1 < ¢ < p) such that

q
yzzlkyk a:nd. lk>0, k=1’...’q.
k=1

We show that, without loss of generality, we can assume that any
two of the vectors y’,...,y? are mnon-collinear. Suppose, for instance,
Y2 = uyl. Since {1,2} < {1,2,...,p} =1I;, it follows, by the proof of
Proposition 5, that y; = ¥ = 0 and, by Lemma 4, yl, y2 are non-zero
vectors. Moreover, by Remark 5, y?, y? are non-negative. Hence u > 0
and we can write

q
v =+ D
k=3

where 4 = A;+ ul, > 0 (since 1,, 4, and u are positive).
Suppose ¢ = 1. Then y* = 1,4 and, since 1, > 0, we have y'e DL,
which is contradictory to the assumption. Hence q > 2.

q

Suppose 4,4 and ) A,4* are collinear. Then, since
pp ly
k=2

q
(4.5) y* = 11?/1‘{‘ Zlkyka
k=2
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both these vectors are collinear with y*. In particular, y' is collinear
with y* which implies that y'e DS, a contradiction to the assumption.

Finally, if 1,%' and Zlky are non-collinear, then y* can be repre-
k=2
sented, by (4.5), as a positive linear combination of these two non-collinear

vectors which both belong to U° (since, by Proposition 6, {y', ..., y?} = U°).
Hence, by Proposition 7, ¥* is not an extreme ray of U° and, consequently,
D/ is not an edge of U°. This contradiction completes the proof.

THEOREM 3. If a convexr polytope U (defined by (4.1)) is not empty
and if y* = (y},...,¥s) is an extreme ray of U°® (defined by (4.2)), then
there exists a ke I% such that y* = (y5, ..., y%) belongs to an edge D, where
yE b, .. vk, denote coefficients satisfying

m+n

= Z y?dn
=0

obtained by the procedure transforming P, into P,.

Proof. First, notice that the assumption U # O yields, by Corollary 5,
I} #0.

Now assume, to the contrary, that k satisfying the hypothesis does
not exist and consider two cases: IS =@ and I} # @.

In the case I} = @, Corollary 3 yields that, for any vector b, Problem P
is consistent. Furthermore, Corollary 4 implies that it has an optimal
solution since I, # @. Hence, by Theorem 1, Problem D has an optimal
solution for any vector b.

On the other hand, y + Ay*« U whenever ye U and i > 0. Moreover,
since y* as an extreme ray is a non-zero vector, we have

lim 2?/,+/1y,)y, + o0

A>+00 i=

which means that, for b = y*, the objective function of Problem D is
unbounded from above. This is contradictory to the statement that
Problem D has an optimal solution for any vector b.

In the case I} #@, we have y*¢ U, where U denotes the closed
convex cone defined in Lemma 5. By the Second Separation- Theorem
(see [1], p. 55), there exists a vector b = (b,, ..., b,) such that, for any
VeCtor Y = (¥, ..., Ym)e U,

(4.6) Zm’y;"b,- > Zm:?/ibi-
i=1 ’ i=1

In particular, since 0e U, therefore

m
(4.7) Nyrs>o0.
i=1
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Consequently, for any ye U,

m
(4.8) Z Yib; <0
=

since, if for some y’« U we had

Zy;‘bi >0,
i=1

then there would exist a positive 2’ such that 1’y «U and

m m
Zy:bi < Zl'yibn
iz o
which is contradictory to (4.6). In particular, since y*< U for ke I, (4.8)
implies

Zy{-‘b,- <0 for kell.

=1

This and (2.11) yield, by Corollary 3, that Problem P with b as the
right-hand side vector is consistent. Furthermore, Corollary 4 implies
that it has an optimal solution and, by Theorem 1, Problem D with b
as a vector of the objective function has an optimal solution.

On the other hand, y + Ay*¢ U whenever ye U and 4 > 0. Moreover,
by (4.7),

i D, = 0o
AEng;(yHr Yi)b = +

which means that the objective function of Problem D is unbounded.

In both cases, I = @ and I # @, we have obtained contradictions.
Hence the proof is completed.

Remark 6. The hypothesis of Theorem 3 can be proved also in the
case U = 0.

COROLLARY 6. For a non-empty convex polytope U to be unbounded
W is mecessary and sufficient that IS be non-empty.

Proof. By Lemma 4, (y%,...,%%) is a non-zero vector whenever
keI,. Since, by the proof of Proposition 5, y¥ = 0 for ke I, therefore
ke I' implies that 4* = (y%, ..., 9%) £ 0. Thus, if IS =@, we have

Y+ |yeU,A>0}< U and limly+2iy*| = +oo

A—+00

Which means that U is unbounded.

3 — Zastosow. Matem. 14.3
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Assume I¢ = @. A convex cone U° is equal to the convex hull of
the union of its edges (see [1], p. 60). If U’ had at least one edge, say D},
then, by Theorem 3, I? would not be empty. Hence I} = @ implies that
U’ = {0}. This (see [10], Theorem B.7) implies that the convex polytope U
is equal to the convex hull of a finite number of points. Hence U is bounded
which completes the proof.

To summarize, we denote by Y+ and Y° finite sets of (¢%,...,y%)
from the expressions

m-+n

n L
Ck =2, Yi d;
i=0

corresponding to {e} | ke I'} and {e} | ke I)}, respectively, and consider
the following three cases:

Case 1. I} = @. By Corollary 5, the convex polytope U is empty.

Case 2. I} # @ and I) = @. By Corollary 5, the convex polytope U
is non-empty and, by Corollary 6, it is bounded. In other words, U is
a convex polyhedron. By Theorem 2, a set of extreme points of U is
a subset of Y.

Case 3. I} #0 and I} #@. By Corollaries 5 and 6, the convex
polytope U is non-empty and unbounded. By Theorem 2, a set of extreme
points of U is a subset of Y. By Theorem 3, a set of edges of U°is a subset
of {D} | yeY.

5. Numerical examples. We precede numerical examples by the
following remark:

Remark 7. Let (#, Y) be a matrix obtained from a matrix (D, 1)
by the use of elementary transformations. Let

(€xs ?/k) = (€x1y -9 Crrvy y’fi ) ?/g:t)7 where £ =1, ..., K,
denote the %-th row of the matrix (E, Y) and let
(diy 6;) = (dyyy ooy Bingy Oiy oevy Ogpr), Where ¢ =1,..., M,

denote the ¢-th row of the matrix (D, I). Then

M
6 = Zi’l?di

t=1
since, clearly,
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Example 1. Consider the following problem:
ProBLEM D. Maximize by, +b,y, subject to

2y, +9y. <1, y,+2y,<1, 9,>0, Y2 =0,

where b, and b, are unknown constants.
The dual problem to D is of the following form:

ProBLEM P. Minimize x,+ 2, subject to
2¢, 42 > b,y, x,+22,>b,, 2,20, 2,>0.

This problem is equivalent to the following

ProBLEM P,. Minimize x; subject to
—$1—$1—|—$3>0, 2$1+(D2>b1,
2, +2x,>b,, 2,20, x,>0.

We transform Problem P, into the equivalent Problem P, by ele-
mentary transformations of the following matrix:

-1 -1 1 0 0 0 O
2 1 01 0 0 O
1 2 0 01 0 O
1 0 0 0 01O
0 1 0 0 0 01

The first three columns of this matrix form the left-hand side matrix
of the constraints of Problem P,. The right-hand side vector is omitted.
Notice that the above-given matrix has the form of the matrix (D, I)
from Remark 7.

Adding the first row to the second row divided by 2, to the third
row, to the fourth row and leaving the fifth row without any change,
we get

0 -3 1 -3 0 0 0
0 11 0100
0 -1 1 001 0
0 10 00 01

This matrix corresponds to Problem P,.

Multiplying the first row by 2 and adding it and the third row to
the second and the fourth rows, we obtain the following matrix corres-
bonding to Problem P,:

coo o
cooc o
N R
-
S H O M
=)
O O
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Finally, dividing the jucecessive rows of this matrix by 3, 2, 2 and 1,
respectively, we get the matrix corresponding to P,:

0 01 3} 100
0 01 3 00 }
0010 3% % of
0010011

Observe that I} contains 4 elements and I? is empty. Hence, the
convex polytope U, defined by the system of constraints of Problem D,
is a non-empty convex polyhedron. The set of extreme points of U is
a subset of {(}, %), (4, 0), (0, %), (0, 0)}. It can be easily shown, however,
that each of the four above-mentioned points is an extreme point of U.

For instance, the second row of the above-given matrix reads, by
Remark 7,

(0,0) =1(—1, —1)+$(2,1)+0(1, 2)+0(1, 0) + £(0, 1)
or, equivalently,
3(2,1)+0(1,2)+0(1,0)+%(0,1) = (1, 1).

This means that (4, 0)e U. Since (2,1) and (0, 1) are linearly inde-
pendent vectors, (1, 0) is an extreme point of U.
Example 2. We consider the following problem:

ProBLEM D. Maximize b,y,+ b,y, subject to
Y1—Y.>1, y—9%.>2, ¥, >0, y,>0.

One can easily state that the matrix of the corresponding Problem P,
is of the form

-1 -2 1 0 0 0 0
1 1 01 0 0 O

-1 —-1 0 0 1 0 0
1 0 0 0 01 0
0 1 0 0 0 0 1

The transformed matrix corresponding to Problem P; is of the form

0 011 0 0 1
0 01 0 0 1 2
0O 0 0110 O
0 0 0 01 11

Observe that both I and I contain 2 elements. Hence, the convex
polytope U, defined by the system of constraints of Problem D, is non-
-empty and unbounded. The set of extreme points of U is a subset of
{(1, 0), (0, 0)} (it can be easily shown that both points are extreme).
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By Theorem 3, the convex cone U’ associated with U has at most
two edges. It can be shown, however, that both ¥ = (1, 1) and y2 = (0, 1)
are extreme rays. Thus, Dl‘; and D;; are the only edges of U°.

Example 3. Now we consider the following problem:
ProBLEM D. Maximize b,y,+ b,y, subject to

\%

oy, +y, < —1, 9, >0, y,>0.

We transform the following matrix corresponding to Problems P,
and P,:

e O
S o o=
(===
S H OO
o o O

Since I, defined by (2.4) is empty, the matrix corresponding to
Problem P, (and P;) reduces to

© 0 1 0 0).

Observe that I} is empty which, by Corollary 6, means that the
convex polytope U, defined by the system of constraints of Problem D,
is empty. The set I? contains one element. The corresponding (vy,, y,)
= (1, 0) generates the only edge of the convex cone U’ defined by 0y, +
+9.<0, ¥y, >0 and y, > 0.

6. Some properties of the polyhedral convex come. The described
method can be used for linear programming problems with a parametric
objective function. The way of using the method in such problems does
not have to be explained. However, since the method produces all extreme
points and all edges, it can be handled only in ‘““moderately large” problems.
On the other hand, it is evident that a problem with no assumptions
concerning the vector of the objective function cannot be solved without
Producing all extreme points and all edges. Clearly, if some extreme
point, say y*, is not produced, then, by Lemma 3, for some vector b of
the objective function, the unique optimal solution y* cannot be found.
Similarly, if some edge, say Dj:, is not produced, then (see the proof of
Theorem 3) we can find, for some b, the optimal solution to the problem,
despite the fact that the objective function is unbounded.

It should be pointed out, in general, that the method produces also
elements of the convex polytope which are not its extreme points and
elements of the corresponding convex cone which are not its extreme
rays. A very simple procedure which excludes all ‘“redundant’® points
is given at the end of this section.
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Now we give some properties of the convex cone

M
(61) € ={Wo)¥sr--r¥ar) | D ki =0, 9, >0 for i =0, ..., M},
=0

where hg, ..., h;, are n-dimensional vectors.

Write sgny = (8gn¥q, ..., SENY ).

PROPOSITION 8. If y and y' are non-collinear, non-zero vectors belonging
to C such that

(6.2) sgny —sgny’' >0,

then y is not an extreme ray of C.

Proof. Since ¥y # 0, at least-one of its elements is positive. We can
assume, without loss of generality, that

(6.3) >0, +=0,...,p,
(6.4) Y, =0, 1=p+1,..., M.
By (6.2) and (6.4), we have
(6.5) Yy, =0, i=p+1,...,M.
Since y' is a non-zero vector, it follows from (6.5) that at least one
of ygy...,¥, is positive. Moreover, y'e C implies y; >0, i =0,..., p.
Hence, there exists a positive 4 such that
(6.6) y;—M; >0, i=0,...,M,
and ‘at least one of y,—Ay,, ..., Yy, — Ay, is equal zero. Let
(6.7) Yo— Ay, = 0.
Obviously,
(6.8) y=3y+4)+iy—4).

It follows from yeC, y'«C, A >0 and (6.6) that y+Ay'’eC and
y—Ay'«e 0. We show that y+ Ay’ and y — Ay’ are non-collinear.
Consider then

(6.9) a(y+24y") ta(y—2y') = 0.

Since y, >0, y, >0 and 1> 0, therefore y,+ Ay, > 0. This, (6.7)
and (6.9) imply ‘@, = 0. Furthermore, since ¥ and y’ are non-collinear,
y—Ay' # 0. This and ay(y —Ay’) = 0 imply a;, = 0. Thus (6.9) implies
a; = ay = 0. Hence y+ Ay’ and y — Ay’ are non-collinear. Then y which
can be represented, by (6.8), as a positive linear combination of two
non-collinear elements of C is not an extreme ray of C (see Proposition 7).
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. COROLLARY 7. If y and y' are non-collinear, non-zero vectors belonging
to C such that sgny —sgny’ = 0, then neither y nor y' is an extreme ray of C.

+ Proof. The hypothesis follows from Proposition 8, since sgny —
—sgny’ >0 and sgny’ —sgny > 0.

COROLLARY 8. If y and y' are non-zero vectors belonging to C such that
sgny —sgny' is a non-negative, non-zero vector, then y is not an extreme
ray of C.

Proof. The assumption concerning sgny —sgny’ yields the existence
of p and ¢ such that y, >0, ¥, >0, y,> 0 and y, = 0. Thus y and y'
are non-collinear. Proposition 8 completes the proof.

COROLLARY 9. Any ye C with at least n+2 of its positive elements
18 not an extreme ray of C.

Proof. Suppose y; >0, ¢ =0, ..., p, where p > n. Then

»
(6.10) DYk = —yoho, ¥;>0,i=1,...,p.
1=1

Since hy, ..., h,,, are n-dimensional vectors and p > n, it follows
that y,, ..., ¥, is a non-basic solution of (6.10). Hence (see [10], p. 376)
there exists a basic non-negative solution ¥, ..., ¥,, where at least p —n
of Y1y .oy Ypy SAY Yny1y ---5 Yp, are equal to 0. Obviously, (yo, ¥y, ..., Ym,
0,...,0)¢C. Since y, >0, y, > 0 and y, =0, we can apply Corollary 8
(taking (Yo, Yyy -++y Yns 0y ..., 0) as y’) to state that y is not an extreme
ray of C.

Assume now that C defined by (6.1) is generated by {y* | ke K}, ie.

(6.11) C = {y |y = Y ¥, 4 >0 for keK}.
keK

ProrosiTION 9. If 4" is a mon-zero vector belonging to {y* | ke K} such
that, for any ke K —{r}, sgny”—sgny” is not a non-negative vector, then y"
t8 an extreme ray of C.

Proof. By Proposition 7, it is enough to show that the conditions
Y =ay +ay’y Y'eC,y'eC, a;>0, 0,>0,

imply that ¥’ and y’’ are collinear.
It follows from y’'e C and y'’ e C that

g =D hyt, = YR

keK keK

where

(6.12) >0, 2/ >0 for keK.

V
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Hence
(6.13) v =D kb
keK
where
(6.14) A = ay A+ agldy > 0.

Since y*e C for ke K, from (6.1) and (6.11) we have
(6.15) y*>0 for ke K.

Let k be any element of K —{r}. It follows from the assumption
concerning sgny” —sgny® and (6.15) that there exists an 4, such that
Y, = 0 and yi-‘k>0. This, (6.13), (6.14) and (6.15) imply A, = 0 for
ke K —{r}. Then, by a, > 0, a, > 0, (6.12) and (6.14), we get 1, = 4, = 0
for ke K —{r} which means that y" = 4,9 and ¥ = 1,'y,. Hence vy’
and y" are collinear. This completes the proof.

COROLLARY 10. Assume

M
C = {y ‘Zy,-h,- =0, y;,>0 fori=0,1,..., M}
=0

= {y ly = Zlk?/,% M >0 for kGK}’
keK
where any two vectors from the set {y* | ke K} are mon-collinear. Then, for
y e {y* | ke K} to be an extreme ray of C, it is necessary and sufficient that,
for any ke K —{r}, sgny” —sgny”® be not a non-negative vector.

Proof. This corollary is an immediate consequence of Propositions 8
and 9.

Remark 8. It has been assumed in Corollary 10 that C is a convex
cone in RM*!, One can easily observe that the same proof can be con-
ducted under the assumption that C is a convex cone in a generalized
finite-sequence space as defined by Charnes, Cooper and Kortanek [3].

We illustrate the above-given properties by the following example:

Example 4. Let M =4, n = 2 and consider the convex cone C
of form (6.1) which is generated by the following vectors:

y' =(1,1,0,0,0), % =(1,0,1,0,0), % =(3,1,2,0,0),
y* = (0,2, 6, 4,0), 9 =(0,3,9,6,0), y*=(0,1,0,2,3),
¥y =1(2,4,6,4,0), 9y =(1,2,74,0), o =/(0,3,86,4,3).
The vectors y7, ¥ and y° can be excluded by Corollary 9 (y" and ¥°

can be excluded also by Corollary 7). The vector y® can be excluded by
Corollary 8, since sgny®—sgny! is a non-negative, non-zero vector. Since
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sgny*—sgny® = 0, and y* and »° are collinear, only one of them, say %°,
can be excluded. None of the remaining vectors, i.e. ', * and %% can
be excluded. All these vectors are extreme rays of C by Proposition 9.

Assume now that {y* |k = 1,..., p} generates the convex cone
defined by (6.1). The procedure of selecting the smallest subset L of
{1,...,p} such that {y*| ke L} generates C can be conducted in the
following p steps:

Step r(r =1,...,p). Given K,_, < {1, ..., p} such that {y* | ke K,_,},
where y* # 0 for ke K,_,, generates C. If there exists an se K, _,—{r}
such that
(6.16) sgny” —sgny® >0,
take K, = K,_, — {r}. Otherwise, take K, = K,_,.

In step 1 we take K, = {1, ..., p}. One can take as K, any subset
extracted from {1, ..., p} by the use of Corollary 9.

Obviously, if (6.16) holds, then either y" is collinear with ¥° or y"
is not an extreme ray (see Proposition 8). In both cases y" can be repre-
sented as a non-negative linear combination of vectors {y* | ke K,_, — {r}}.
Hence y" can be excluded since cones C and O’ generated by {y* | ke K _1}
and {y* | ke K,_, — {r}}, respectively, are equal.

In the other case, Proposition 9 implies that y" is an extreme ray
of the convex cone generated by {y* | ke K,_,} and it is non-collinear
with any y°, se K,_, — {r}. Hence y" ¢ C’ and, since y"< 0, C # C'. Therefore,
y" cannot be excluded. Clearly, L = K, is the required set.

7. Extreme points and extreme rays as extreme rays of some poly-
hedral convex come. Take in (6.1) M = m-+n and
—C=(—0Cp5..0y —C)y, =0,

(7.1) hy = a; = (@1 05 Qi) i=1,...,m,

6i—m7
where §, denotes the k-th n-dimensional unit vector.
In this section it will be understood that C is a convex cone defined
by (6.1) and (7.1). We establish some connexions between C, U defined
by (4.1), U° defined by (4.2) and U defined by

U= {(yo, ...,ym)| —yoc+;yiai<0, Yy, >0 for 1 =0, ,m}

The following propositions are obvious:

PROPOSITION 10. (Yoy ..., Yp)e U if and only if (Yoy ..., Ymin)e Oy
where

m
(7.2) Ymtj =yocj_2yiaij9 i=1,...,n.
i=1
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PROPOSITION 11. (0, Yy, ..., Ym)e U if and only if (Y1, ..., Ym)e U°
PROPOSITION 12. (1, Yy, .eey Yp)e U if and only if (yyy...,4Yn)e U.
The following proposition follows from Propositions 10 and 11:

PROPOSITION 13. (Y1, ...y Yn) 8 an extreme ray of U° if and only if
(0y Y1y - - vy Ymayn) i an extreme ray of C where Y, 1y ...y Ypin are defined by
(7.2) and y, = 0.

PROPOSITION 14. (¥4, ...y Y,n) 18 an extreme point of U if and only if
(L, Y1y +ovs Yman) 8 an extreme ray of C where Y, 1y ...y Ypin are defined
by (7.2) and y, = 1.

Proof. If (y,, ..., ¥,) is not an extreme point of U, then it can be
represented as

(7.3) Y1y ++os Ym) = Z-(y;y ceey "J;n)'{"(l_l)(yi’a cey y‘:ill)’

where 0 < A< 1, and (v, ..., ¥,,) and (y;, ..., ¥.) are two distinct points
of U. We can assume, without loss of generality, that y, # v, .

Take y, = ¥, = ¥, = 1 and define, by (7.2), Y1 js Ym+; a0d ¥,,,; for
j =1, ..., n. By Propositions 12 and 10, (1, Y1, -+ Ymin)y (1; Y15+« Ymin)
and (1,9, ..., Ymin) belong to C. It follows from (7.3) that

(T4)  (Ly Yayeees Yman) = 2Ly Uiy oees Yonim) F (L= AL, Uy oovy Yomrn)-

Sincey, = y, = landy, # vy, ,it follows from (7.4) that (1, y,, ..., ¥,,)
can be represented as a positive linear combination of two non-collinear
vectors of C. Hence, by Proposition 7, (1, y,, ..., ¥,,,,) iS not an extreme
ray of C.

If (1, %1y --+) Ymsn) i DOt an extreme ray of C, then
(7.8) (s Y15 ey Ymin) = 11(2(’), 2y oens z;n+n) +}~2(z(’;’7 2y ens z;’z+n)7
where 4, > 0, 4, > 0, and (2, ..+, Zpmyy) 30A (%, - -+ 2p,,) are non-collinear
elements of C. Clearly, 2, >0 and z, > 0. Since 1 = 1,2, +4,2,, at least
one of z, and z, is p0s1t1ve

If both z, and 2, are positive, then introducing

, 1 ’ 1 i
Y =—, Y =— fori=0,...,m+n,
2o %o
(7.6) . ,
A= A2y,

we get (7.4), where 0 < A< 1, and (1, ¥y, -y Ymrn) 04 (L, %)y .ovy Ymin)
are two elements of C. This implies (7.3), where, by Proposition 10 and 12,
(Y1 ++y Yman) a0A (¥), ..., Ym,,) are two elements of U. If those were
('!/’117 cevy ?/,75;) = (¥1s -+, Ym), then, by (7.2) and (7.6), (29 - ;n-l-n) and
(%gy +++3 %yy) would be collinear, a contradiction to the assumption.
Hence (y1, ..., ¥n) # (¥, ..., ¥.). This and (7.3) imply that (¥,, ..., ¥m)
is not an extreme point.
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Assume 2z, = 0. It follows from (0, 2y, ..., 2,,,,) € C that

m+n

2,a;+ Z 2;0;_m = 0.

T=m-+1

[\4 3

?

I
—

Let I' = {i | 2; > 0} and let {A; | i< I} be the corresponding subset
of the set

{Biy ooy hpin} = {@15 ooy Oy 01y ony O}

. ’ ’ 1”7 ’” 7 .
’ Slnc? (0,2, ..., sz,r,,) and {#),2;y .., “m +ny are mnon-collinear,
(R1y +evy Zmyn) #0 and I' 5= . Then we can write

Zz;h, =0,

tel’
‘where
(7.7) z;>0 for icl.

Since 4, > 0, 4, > 0 and vectors appearing in (7.5) are non-negative,
z; > 0 implies y; > 0. In other words, I' < I = {i | ¥;> 0,1 < i< m+n},

Taking

z; for ie I',
(7'8) a; = . ’
0 foriel—1TI,

we have then

D agh; =0,

tel

where, by (7.8), (7.7) and I' # @, not all a being equal zero. This means
that vectors h; corresponding to positive y, are linearly dependent. Hence
(Y15 -++y Ymyn) I8 nOt an extreme point of the set

m-+n
{(?/1’ cors Ymin) Z Yyih;y =¢, y; >0 for e =1, ..., ’m,+'n,}
i=1
and, consequently, (¥, -..; ¥n) 1S Dot an extreme point of U.
The proof is completed.

By the procedure transforming Problem P, into Problem P, conducted
. in the way shown in Section 5, we obtain the finite set of vectors generating
the convex cone C defined by (6.1) and (7.1). By the procedure given
at the end of Section 6, we can extract the smallest subset {y* | ke L}
of that set which also generates C. For any element y* = (y&, 4%, ..., y* n)y
there are only two possible cases: either ¥* =1 or y¥ = 0. Let

L, ={k|k€L,yg=1} and LO:‘{klkGL,y(’f:O}
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Then, by Proposition 14, {(¢%, ..., y%) | ke L,} is the set of all extreme
points of U and, by Proposition 13, {(¥%, ..., 9%) | ke Ly} is the smallest
set of vectors generating U°.

The following remarks might be useful in conducting the procedure
transforming P, into P, :

Remark 9. Given the matrix (E? Y?) corresponding to Problem P,
(obtained in the way shown in Section 5). The I-th row (e, y7) can be
excluded whenever y§ has at least n+ 2 positive elements.

To justify this remark consider any row, say (eF, y*), of the matrix
(E", Y") corresponding to Problem P,. By analogy to Remark 5, e} is
a non-negative linear combination of {e] | e I,} which can be written as

no_ g
€x —Zziew

'iqu

where 2’s are non-negative. Consequently,

(7.9) v =D, uyl.

iqu

Suppose that y§ has at least » 4+ 2 positive elements. Since numbers 2
are non-negative and y{ are non-negative vectors (by analogy to Remark 5),
by (7.9), obviously, any vector y* such that z, > 0 has at least n 4- 2 positive
elements. Hence the row (e}, ¥*) can be excluded by the use of Corollary 9.

Remark 10. Let n,y, n,, n_, denote the numbers of elements of the
sets Ig, IS, I, defined by (2.4). Since the variables #,, ..., #, can be re-
ordered during transforming P, into P,, it can be recommended that
such a variable #, (! < ») which has the smallest ny+n,n_, be considered
as x,.

This remark is justified by the fact that Problem P, has ny+n,n_,
constraints. Clearly, Remark 10 can be applied at any step, i.e. during
the transformation of any Problem P; into Problem P;. However, it
cannot be proved that the use of Remark 10 leads to the smallest set of
constraints in Problem P,.

8. Some other forms of Problem D. In the above-given reasoning
we have assumed that all constraints of Problem D are inequalities and
that all y’s are restricted to non-negative values. Obviously, any linear
programming problem can easily be rewritten as a problem of that form.
However, a more reasonable procedure of treating the problem can be

recommended. The idea of that procedure will be clear from the following
two cases:

Case 1. Suppose that the n-th constraint of Problem D has the
form of an equation with a,,, # 0. In this case y,, can be obtained from
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the n-th constraint as a linear affine function of y,,...,¥,_,. By sub-
stituting that expression into the other constraints, we obtain an equi-
valent problem.

Case 2. Suppose that v, is not restricted to non-negative values
and that a,, # 0. Then, in Problem P (which is dual to D), the m-th
constraint has the form of an equation in which x, appears. In this case
Problem P, can be transformed into Problem P, by obtaining x, from the
m-th constraint as a linear affine function of x,, ..., z, and substituting
that expression into the other constraints.

The procedure of selecting the set of all extreme points of U and
the smallest set of extreme rays of U° can be conducted in the fol-
lowing way.

In Case 1, two above-mentioned sets corresponding to the reduced
problem can be found by using the procedure given in Section 7. Then,
for any (¥:y..., ¥,_,) belonging to one of those sets, y,, can be found
from the expression representing v, as a linear affine function of y,, ..., y,,_,.
This gives the required sets corresponding to the initial problem.

In Case 2, it can happen that y,, < 0 for some r. However, y,, could
be written as ¥,, = ¥,, — ¥, Where y,, and ¥y, were both non-negative
and at least one of them was zero. Hence we can substitute y* by* y*

and v, ¥, where

(1) ¥ = Y —ynty

(ii) ¥¥ >0 and y,* >0,

(i) at least one of y,X and y,* is zero.

Then the procedure of Section 7 can be applied by considering
(yllcy cery Ymo1y Yy Yn') instead of @Yy .o Ym—1 Ym)-

Remark 11. In Problem P,, the constraint corresponding to ¢ = 0
can, obviously, be replaced by the equation

n
— Zc,-wj—{—a;nH = 0.
i=1

References

[1]1 C. Berge and A. Ghouila-Houri, Programming, games and transportation
networks, Wiley, New York 1965.

[2] A. Charnes and W. W. Cooper, Management models and industrial applications
of linear programming, Wiley, New York 1961.

[3] — and K. Kortanek, Duality in semiinfinite programs and son.e works of Haar
and Caratheodory, Manag. Seci. 9 (1963), p. 209-228.

[4] J. B. J. Fourier, Solution d’une question particuliére du calcul des inégalités.
1826, and extracts from Histoire de I’ Académie — 1823, 1824, Oeuvres II1, p.
317-328.



402 W. Grabowski

[6] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res.
Logist. Quart. 3 (1956), p. 95-110.

[6] S. I. Gass and T. L. Saaty, Parametric objective function (Part 2) — Generali-
zation, Opns. Res. 3 (1955), p. 395-401.

[7] J. E. Kelley, Jr., Parametric programming and the primal-dual algorithm, ibidem 7
(1959), p. 327-334,

[8] T. S. Motzkin, Beitrige zur Theorie der linearen Ungleichungen, Jerusalem 1936
(Doctoral Thesis, University of Zurich).

(9] T. L. Saaty and S. I. Gass, Parametric objective function (Part 1), Opns. Res. 2
(1954), p. 316-319.

[10] M. Simmonard, Linear programming, Prentice-Hall, Englewood Cliffs 1966.

[11] E. Simons, A note on parametric linear programming, Manag. Sci. 8 (1963),
p. 355-358. ,

[12] H. M. Wagner, Parametric programming and the primal-dual algorithm, Opns.
-Res. 7 (1959), p. 327-334.

CENTRAL SCHOOL OF PLANNING AND STATISTICS
02-554 WARSZAWA

Received on 27. 10. 1973

W. GRABOWSKI1 (Warszsawa)

PUNKTY EKSTREMALNE WIELOSCIENNEGO ZBIORU WYPUKLEGO
I PROMIENIE EKSTREMALNE ODPOWIEDNIEGO STOZKA WYPUKLEGO

STRESZCZENIE

W pracy podano metode znalezienia wszystkich punktéw ekstremalnych wielo-
Sciennego zbioru wypuklego i promieni ekstremalnych, generujacych wszystkie kra-
wedzie stozka wypuklego odpowiadajacego temu zbiorowi.

Metoda jest oparta na przeksztalceniach probleméw programowania liniowego,
opisanych w rozdziale 2. Za pomoca tych przeksztalecen uzyskuje sie inny dowdd
twierdzenia o dualnoéci. Dowéd tego twierdzenia uzasadnia metode i jest podany
w rozdziale 3. '

Metoda pozwala na rozwigzanie problemu programowania liniowego z para-
metryczng funkejg celu i moze byé zastosowana praktycznie do rozwigzywania ,,nie-
wielkich” probleméw programowania wypuklego z liniowymi warunkami ogranicza-
jacymi.



