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ON CERTAIN IMPROPER INTEGRALS

0. Summary. The functions F and G determined by integrals (1)
and (2) are considered in the paper. Series expansions as well as asymptotic
formulae for these functions are derived.

Integrals (14) and (15) are approximately calculated and expressed
in terms of the functions ¥ and @. The error caused by the approximation
is evaluated. The application of the integrals considered is illustrated
by examples.

1. Fundamental equations. In the sequel, the integrals

(o)
6 "“ecosuy _ -

(1) F(z,y) =6[Wdu,

w -
e “ginu
.—y du,

@) ¢,y = [

will be considered with a = exp(in/4), real ¥y and # > 0. Integrals (1)
and (2) represent functions ¥ and G of real variables # and y.
The function F is even, whereas the function G is odd with respect
to y, i.e. F(x, —y) = F(x, y) and G(x, —y) = —G (v, y).
It is easy to show that the functions F and G satisfy the Laplace
equation ‘
U U —o
ox* = 0yr

2. Series expanmsions. Substitution of

1 .
cosuy = o (6" 4 =)

into (1) gives

1[F e du [ e du
3) F@,9) =—2_[f u+ta +f u+ta ]’
0 0
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where

(4) z=ux+iy =re’, 2*=z—iy =re’
and

(5) r=Voity, 6= a.r_ctg%.

The integrals which appear in (3) can be expressed in terms of the
exponential integral function, giving

1 s
(6) F(,y) =5 [— ¢ Bi(—az)— o™ Bi( — aa")],

according to the formula No. 3.352.4 in [1].

The exponential function as well as the exponential integral function
which appear in (6) are complex. These functions can be represented
in the form

¢ = A,+14,, —Ei(—az) = B,+1B,
with A4,, 4,, B,, B, determined later. Hence,
(7) —e”Ei(—az) = (4,4 14,)(B,+1B,).

Inserting z = r¢'° into the expression

k=0
we obtain
> a*r*cosk 6 > @ r*sinko
(8) A1=Z K’ A“:Z !
k=0 k=1

if Euler’s identity ¢*° — cosk0-4isink® is applied. Using a*** = —a¥,
equations (8) become
A, = 14 ac,+ a?c,+ a®c;+ aey,

A, = a3, + a8, a’s;+ats,,

(9)

where
had m+4k
. ! cos(m+4k) 6
Om = g; U oy
b m—+4k o3
_ ! sin (m+-4k) 0
Fm é‘: (O e 2o
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for m =1, 2, 3, 4. Substitution of

1 . :
a=—1+1), a =71,

V2
a3——1~(—1+i) at = —1
=V o=
into (9) gives
4, = ] l—cy+— ]/ (e,— ca)]"l‘@[cz‘*' Va2 (c1+ca)]

—

A, = _-s,—l— '/2 (8,— 83)]+z[sa+ ]/_ (sl+sa)]

The functions B,, B; associated with — Fi(—az) are derived in
a similar way if the series [5] '

Ei(z) = O+In(—2)+ )]

k=1

k-k!

is used, where C = 0,5772... is Euler’s constant. We obtain

[ / 1, .
B, = _—O—lnr+c4+ﬁ(cl_cs)]+@[ 'Z—cz+‘/—(01+cs)]
[ ’ 1 ! 14 . 1 ? !/
B, = _— 0+34+ﬁ(31—33)]+@[—32‘*‘_]/3‘(314‘33)],
where

- 1y ™ 4% cos(m -+ 4k) 0
Z -1 (m+ 4k)(m—+ 4k)! ’

. T sin (m+- 4k) 0
- 2 (=1) (m+ 4k) (m+ 4k)!

for m =1, 2, 3, 4.

The relationships for ¢*** and — Ei(— az*) are derived if 0 is replaced
by — 6, giving
(10) — e Bi(—az*) = (4,—i4,)(B,—iB,),

8ince 4, and B, are even, whereas A, and B, are odd with respect to 6.
Inserting (7) and (10) into (6), we obtain

F(z,y) = A,B,— A,B,.
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Now we consider the function G. Substitution of

: _i fuy __ —iuy
sinuy = % (e e~ ")
into (2) gives
1 .
(11) Q(x,y) = —ﬂ[e”Ei(—az)—e”Ei(—az*)].

Inserting (7) and (10) into (11), we have
G(z,y) = —(A,B,+ A4, B,).
For small r we obtain
F(z,y) = —0,577+111% +0(r),

G(z,y) = 60+ 0(r).

From the relationships derived the numerical values of the functions
F and @ can be computed using digital computers. The tables of these
functions are given in [2] and [3].

3. Asymptotic formulae. The asymptotic formulae of the functions 7
and G are obtained from the asymptotic formula for the integral expo-

nential function [5]:
, ¢ 2“ k!
¥ (Z) N—z" -z—k-.

k=0
We have
— 2 i ( — ~ — 1y —
¢ i (— az) g( D Lo
whence
I - Kl exp[—i(k+1) 6]
(12) — Ez(—az)Ng:(—l)" T
and
B ) 1, o Klexp[i(k+1) 0]
(13) Bi(—az*) kz_£< T

where r and 0 are taken from (5).
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Substitution of (12) and (13) into (6) and (11) gives

V2 cos 6 V2 cos30 6cos40 12V2 cosb 0
2r 13 + o rs R

F(w,y) ~[

) V2cos0 cos26 V2 cos30 12V2 cos50
+2| — + + +... 1y

2r ” rs ré

G(z,y) N[

V25in® V2sin30  6sind0 12V2sinb0
— 4 — +... |+
2r rs ré b

. V2 sin 0 8in20 V2 sin36 12V2 sin5 0
+1]| = + — + +..- |-
2r r? rs rs

4. Approximate evaluation of two integrals. Now we consider the
integrals

~ e " cosuy
14 I,=)]| —————du
(14) = g et
~ e~ “sinuy
15 I, = du
( ) 2 f ‘wu,-}-]/uz-[-i ’

A

where y is real, # > 0 and x > 0. It is possible to express these integrals
in terms of the function F or @ if x> 20 and u > 50.

In order to evaluate the last integrals, we neglect the term %? involved
in the root. Then the error resulting becomes

lf cosuy du—1I,
pu+a

where a = exp(in/4). Hence,

0

(16 < ule~"
) ’ ofI(lm+a)(pu+l/u’+z)(l/u2+z+a)|

From

ljpu+a] = | pu+ — +14 ]/(/m)z—}-l/Z,uu—{—l

-

Wwe obtain
[putal =V (pu)+1
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if > 0. Similarly, from

4 2 . -
l/u“+i _ l/l/u -|—21+u —|-1I]/l/u4+21 u®

],uu—H/uH—z | l/(pu)’+1

if >0 and ll/u2+i+a,l > 1 for each w. Therefore the expression (16)
becomes

we obtain

o0 2 oo

u“e " 1
e<f——du<-— e “du,

whence

e ey .
For u> 50 and x> 20 we obtain ¢ < 2-1075
Thus we have

~ e *“cosuy
I =f————— d
(17) 1 pita U,

approximately. It is easy to show that the result derived is also valid
for the integral I,. Therefore we obtain

> e~ “sinuy
I =f —_—d
(18) 2 wita U,

approximately, with the same error. The error resulting in the both cases
is less than 2:10~°.

Introducing a new variable v = uyu into (17) and (18), we derive
the approximate relationships

f COS%?/ du —-—F’(ﬁyl)f
yu-l—l/u’-l—z v L

(19)

x® P
f sinuy du——G(w y)
pu—+Vu+i po\pp

5. Applications. The integrals considered occur in problems concerning
the electromagnetic field in a semi-infinite ferromagnetic body due to
alternating currents in parallel conductors which are placed in a non-
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-conducting medium above the boundary surface of the body, if its per-
meability is assumed to be constant ([2], [3], [4], [6]). The examples
which illustrate the application of the integrals are:

1. The unit-length external impedance of the conductor ! placed
above the boundary surface of a ferromagnetic body is given by

7 Ty [ j‘o e~ gy, 1 1 2h,]
= — ,U: —_— _—
el . ,u,u—l— r—uz )

whereas the unit-length mutual impedance of the conductors ! and m is

iop [ [ e Pt oskay, 1 (h+ b )+ 0l
™ J  uautVuitd 2 (hy— h)*+ Gy,

in accordance with [2]. The notation accepted in the last equations is:
w — angular frequency, u, — relative permeability of ferromagnetic
medium, A — distance from conduector ! to boundary surface, r, — radius
of conductor !, a;,, — horizontal distance between conductors ! and m,

k =Vouu,y, 1, — permeability of vacuum, y — conductivity of ferro-
magnetic medium.
The external and mutual impedances become

) 2k 2h
Zg = il [F (— hy )+ In l]
11 By n

’ ) h’+h’m2+ m
z,m=°“;"°l [—-(h,+hm>, az,n]+ ln]/‘ ;+: l

approximately, if (19) is used. The external and mutual impedances
occur in relationships for eddy-current loss in the ferromagnetic body [2].
The last equations are valid for u,> 50 and 2hk > 20, where % is the
minimum value of %; and &,,.

2. The electric intensity at the boundary surface of the ferromagnetic
body is [2]

Zlm =

Mk oo kyu

E = —

tougu, 1 f e
T U+ Vuz +1
where I is the complex current in the conductor ! and y is the horizontal

distance from the conductor ! to the point under consideration. Using
(19), the electric intensity becomes

Loy k k
E——_—'—zwﬂo F(_hu_?/)’
T My My

approximately.
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An approximate relationship for the tangential component of the
magnetic intensity at the boundary surface takes the form (cf. [2])

kIe™! k k
Ty My Yy

From the last expressions, the density of complex power on the
boundary surface can be determined; as result we obtain

wu k| I k k
a 2 F|\— My — '.‘/)
T iy My Moy

3. The function @ appears in relationships for the electric and ma-
gnetic intensities when the current flows along a ribbon conductor which
is placed in the non-conducting medium parallel to the boundary surface

(cf. [3]).

H=—

II =

¢
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M. KRAKOWSKI (L6DZ)

O PEWNYCH CALKACH NIEWLASCIWYCH

STRESZCZENIE

W pracy rozpatrzono funkcje F i G okreflone przy pomocy calek (1) i (2) oraz
wyznaczono szeregi i wzory asymptotyczne dla tych funkeji. _

Obliczono w sposéb przyblizony calki (14) i (15), wyrazajac je w zaleZnoéei od
funkeji F' i G. Oszacowano blad popelniony w wyniku przyjetych przyblizen. Zasto-
sowanie rozpatrywanych ecalek zilustrowano przykladami.



