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1. Introduction. In papers [2]-[5] Seely and Zyskind have proved
a number of theorems on unbiased estimation when the choice of esti-
mators is restricted to a finite-dimensional linear space. They also presen-
ted exemplification of the developed theory to the class of linear estimators
a'y in fixed linear models and to the class of quadratic estimators y' Ay
in random and mixed linear models. In this paper we show that the theory
of Seely and Zyskind may be applied to mixed linear models when the
choice of estimators is restricted to the class I' of linear plus quadratic
estimators y' Ay + a'y. For providing an inner product representation for
such estimators we introduce a vector space .« consisting of all (2n x 2n)-
-matrices {4, a} of form (1), where A is a symmetric (n X n)-matrix, while
D(a) is a diagonal (n X n)-matrix, with the inner product trAB-a'd
for all {4, a}, {B, b} € &. For the considered observable random vector ¥
we form a random element {yy’, y} € & and discuss, in this setup, ques-
tions of estimability and provide the covariance operator of {yy’, y}
under normality. The main results are Theorems 2 and 3. Both these
theorems give necessary and sufficient conditions (NASC) for every esti-
mable function to have a uniformly minimum variance unbiased estima--

tor in I.

2. Preliminaries. First, in this section we recall, for the sake-of com-
pleteness, a number of definitions and results given by Seely [2] and by
Seely and Zyskind [5].

Let & be a Euclidean vector space endowed with an inner product:
denoted by (-, -). Let {P,}, where 6 € w, be a family of probability measures.
associated with a measurable space {#, ¥} and, moreover, let ¥ be a ran-
dom vector from # into <. Assume that the expected value of (4,Y)
exists for every A € & and every 6 € w. Under the above assumptions,
for every 0 € w there exists an element p, € &, called the expected vector:
of Y, such that BE(A4,Y) = (A4, p,) for every 6 € w and A € . Let

& = sp{me: 0 € w}.
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Occasionally, u, is denoted by u or by EY.

Every function g from o into the real line, say R', for which there
exists an element 4 € o such that E(A4,Y) = g, i8 called /-estimable
{or, shortly, estimable) and (A,Y) is called its linear unbiased estimator.

If cov{(4,Y), (B,Y)} exists for every A, B e o, for every e w
there exists a linear operator X, from .« into ., called the covariance
-operator, such that

Cov{(4,Y),(B,Y)} = (4, 5,B) for every 4,Be .

The operator X, is determined uniquely. It is symmetric and positive-
-semidefinite. Let

S =sp{Z: 0€w}.

An element 4 e o is called an S-min element for an estimable function ¢
if E(A,Y) =g and if the inequality

Vary,(A,Y) < Vary(B,Y)

holds for every B such that E(B,Y) = ¢g. An element 4 € & is called an
S-min element if it is an S-min element for E(A4, Y).
The following theorem, which is due to Lehmann and Scheffé, is
fundamental in the theory of linear estimation in Euclidean vector spaces.
THEOREM (E. Lehmann and H. Scheffé). A € o is an S-min element
if and only if
(Ay ZBAO) =0

for every A, € &+ and every 0 € w, where & is the orthogonal complement of &.

If g is an estimable function and if there exists an S-min element for g,
say A, then the estimator (A4, Y) is called «/-best for g or the best estimator
forg. Here of = {(A,Y): Ae «}. Thefollowing corollary is easily deduced
from the above theorem.

COROLLARY 1. If S contains the identity operator, then for each f-
-estimable function there exists an oZ-best estimator if and only if & is an
invariant subspace of each element in S.

Finally, we need the notion of a quadratic subspace of a vector space
of matrices of dimensions, say, n x n introduced by Seely in [3].

A subspace o, of & such that 4 € o/, implies 4* € &, is called a quad-
ratic sdbspace of «.

In Section 6 we frequently use the following property of a quadratic
subspace:

LeMMA 1. Let o, be a subspace of of and let # be an arbitrary spanning
set for sof,. Then A, is a quadratic subspace if and only if R,8,T e #
implies RST + TSR € «,.
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3. The problem. Let y be an n-vector of random variables with a linear

structure,
Yy =Xp+U, 6+ ... + U,

where X is a given (n X p)-matrix, § is a p-vector of unknown parameters,
U;fori =1,...,k is a given (n X ¢;)-matrix, and &, is a ¢,-vector of nor-
mally distributed random variables with zero mean values and covariance
. matrix ¢}I. Further, £ and &; are uncorrelated for ¢ - j. In this setup,

k
n() =Xp and V(o) = Zaf.vi
i=1

are the vector of means and the covariance matrix of y, respectively, § € R?,
while 0 = (¢?,...,0)) e Q c R¥and V, = U,;U; for i =1,...,k.
Finally, we assume that

¥ =8p{Viy..., Vi} =sp{V(o): e 2 c R and Iev,

Where I is the identity matrix.

Now, let I be the set of all estimators of the form y’Ay+a’y and
let ¥ be the entire collection of I'-estimable functions, i.e. g € ¢ if and
only if there exist a matrix A and a vector a such that

E(y'Ay+a'y) =g.

The problem is to find necessary and sufficient conditions for every
function in ¢ to have a uniformly minimum variance unbiased estimator
in r.

4. The setup. In order to bring the problem into the general frame-
work in which the theory presented in Section 2 is applicable, we let .«
to be the space of all (2n X 2n)-matrices of the form

(1) 40

0 D(a)
?Vhere A is a symmetric (» X n)-matrix, while D(a), a = (a,, ..., a,)’ € R",
18 a diagonal matrix with diagonal elements a,, ..., a,. Throughout the

Paper, matrix (1) is denoted by {4, a} or, shortly, by A. Clearly, with the
usual definition of addition and multiplication by a scalar, < is a linear
Vector space and

(A,B) =trAB+a'd

defines an inner product.
Next, let
(2) Y = {yy', v},

Where y is the random vector defined in Section 3.
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Note that, in this setup, a parametric function g, i.e. a function from
into R', according to definition is «/-estimable if there exists an element
A € o such that E(A,Y) = g. In other words, g is estimable if there
exists an unbiased estimator for g of the form y'Ay 4+ a'y.

THEOREM 1. Suppose that y is a mormally distributed n-vector with
mean value n and covariance mairixz V. Then

(3) EY = {mm'+V,n}
and X maps {A, a} into the element {B, b}, where

(4) B =2(VAV+VAg' +q' AV)+Vay' +na’V, b =2VAn+ Va.

Proof. The first assertion is easily verified by noting that Eyy' =
= nn'+ V. In order to verify the second assertion, we have to show that,
for every A and B in &,

Cov{(A4,Y),(B,Y)} =(A,2ZB) and (ZA,B)=(4,2Z2B).
By the assumption that y is normally distributed, we easily obtain
Cov{(A,Y),(B,Y)} =2trAVBV 4+4n'BVAn+29n'BVa+29AVb+b'Va.
On the other hand, using (4) we see that
(ZA,B) = 2trAVBV +49'BVAn+29'BVa+29'AVb+b'Va.
Then, by symmetry,
(A, ZB) = 2trBVAV +49y'AVBny+29'AVa+29'BVa+a’' Vb.
These results imply that the second assertion follows immediately
by noting that trRS = trRS’ if R = R'.

The next lemma describes the structure of the subspace & in the

congidered case.
Let z,, ..., 2, be the columns of the (n X p)-matrix X, let

B, = z;x; for 1<i<p,
By = z@;+xw;  for 1<i<j<p
and, moreover, write
V,;={V;,0} for 1<i<p,
B; = {B;,0} for 1<i<j<p,
x, ={0,z} for1<i<p

LeEMMA 2. If y is the random vector defined in Section 3 and Y 8 defined
by (2), then
=8p{Vyy ...y, Vpy Byy ooy By @15 ooy 3}
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This lemma follows immediately from (3) and the assumption that g
I8 ranging over R?.

9. «/-estimable functions. Noting that

E(A,Y) = Zo tr(AV,)+ B X AXp+a X8,

where A = {4, a}, it is easily established that an o/-estimable function g
can be presented in the form

g=cot+dy+ep,
where

¢=1(6,...,0) eR, d=(dy,...,d,,) € RP@I2

Yy = (/3%7 BBy ey ﬂp—lﬂp’ ﬂ;)’ € Rp(p_l)lzy e = (e, ..., 3p)' € R”.
Now, applying Theorem 3 of Seely [3] we obtain
LeEMMA 3. The function ¢’'c+d'y+e'f is of-estimable if and only if

ecR(X'X) and (¢, ..., Cyy dyyy -y dyp)' € R(W),

where
trV,Vy, ..., txV,V,, trV,B,,..., txV, B,
V., V..., &V, V,, txrV,.By,,..., trV;B,,
trB,V,,...,tr B, V,, trB,; By, ..., trB;; B,
trB,,V,,...,tvrB,,V,, trB,, B, .. t.erpop

It may be interesting that ¢'oc+d'y + e’ is o/-estimable if and only
if both ¢'c+d’y and ¢'f are estimable. This is a consequence of the fact

that ®, V; = ®,B; = 0 for 1 <i<j<p. From Lemma 3 it follows that
the parametric function ¢’c is «/-estimable if and only if

¢ € R(tx((V;—PV,P)(V,—PV,;P))) for i,j=1,...,k,

where P is the orthogonal projection on E(X) with respect to the usual
inner product.

6. Main results. To formulate the NASC for every function in ¢
to have a uniformly minimum variance unbiased estimator in I' we need
some additional notation.

Let # = sp{B;,..., B,,} and let € = ¥ +#. Note that {4,a} e &
if and only if a € R(X) and 4 € %.

THEOREM 2. For each of-estimable function there ewists an sf-best
estimator if and only if P commutes with each V € v~ and € is a quadratic
subspace of the space o#° of all (n X n) symmetric matrices.
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Proof. First note that if X is a covariance operator which maps {4, a}
into {B, b}, where B and b are defined by (4), then & is an invariant space
of X if and only if

(3) acR(X) and Ae¥
implies
(6) beR(X) and Be¢%.

Note also that from the assumption that I € ¥ it follows that the
identity operator belongs to

S =sp{Z;,: BeR?,0e 2 c R¥}.

Thus, in view of Corollary 1, it is enough to show that (5) implies (6)
for every X €S if and only if

(7) P commutes with each V; for ¢ =1,...,k,
and
(8) ¢ is a quadratic subspace of «°.

Suppose that (5) implies (6). Let {4, a} = {I,0} € &. From (4) it
follows that, for every V € ¥ and every 7 € R(X),

(9) Vn e R(X)
and
(10) VV+Vn'+9n'Ved.

Clearly, (9) implies (7). Next, from (10) we conclude that, for
i,) =1,...,k,

V1VJ+ VJV,‘E% and Vi?]'r]'—l-?m'Vi €¥.

These relations and the fact that # is a quadratic subspace imply
that ¢ is a quadratic subspace.

Now,let a € R(X) and let A € €. From (7) we conclude that Va € R(X).
Using the decomposition 4 = PAP +MA M we easily find that

VAn = V(PAP+MAM)y = VPAPy = PVAPy, where M =I1—P.
Hence it follows immediately that VA#ne R(X). By (4) we have
b =2VAn+Vae R(X).

On the other hand, from (7) and (8) it follows that, for V € ¥ and
for » e R(X),

VAV VA +9mm'AVe€¢ and Vay'+na'Ved.
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Hence
B =2(VAV+VAny'+n9m'AV)+ Van' +na'V €€,

which completes the proof of Theorem 2.

Another set of NASC for every «/-estimable function to have an -
-best estimator provides the following theorem:

THEOREM 3. For every sf-estimable function there ewists an o/-best
estimator if and only if P commutes with every V € ¥, and

%, =sp{V,—-PV,P,...,V,—PV, P}

18 a quadratic subspace.
Proof. If P commutes with every V ;for¢ =1, ..., k, then

Z, =sp{MV,,..., MV,}.

Now observe that AB = 0if A € # and B € &,, and that % is a direct
sum of # and &%,, i.e. ¥ = #P Z,. However, this shows that if € or &,
i8 a quadratic subspace, then both of them are quadratic subspaces.

It is interesting that NASC identical as in Theorem 3 appear in

a theorem of Kleffe and Pincus [1] for the existence of an «/-best estimator
for every .«/-estimable function of the form ¢’o.
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S. GNOT, W. KLONECKI i R. ZMYSLONY (Wroclaw)

NAJLEPSZA LINIOWA I KWADRATOWA ESTYMACJA PARAMETROW
W MIESZANYCH MODELACH LINIOWYCH

STRESZCZENIE

W pracach [2]-[5] Seely i Zyskind rozwineli teo;iq nieobcigzonej estymacji,
gdy klasa rozwazanych estymatoréw « jest skorczenie wymiarowa przestrzenia
liniowa. Twierdzenia dotyczace estymacji liniowej dla stalych modeli liniowych oraz
estymacji kwadratowej dla losowych i mieszanych modeli liniowych otrzymuje sie
woéwezas, jako wnioski, przez wyspecjalizowanie przestrzeni «/. W tej pracy pokazuje
8ig, ze przez odpowiednie wyspecjalizowanie przestrzeni liniowej & otrzymuje sig
réwniez twierdzenia dotyczace estymacji funkcjami postaci y’' Ay + a’y, gdzie 4 jest
macierzg symetryczna. Gl6wne wyniki zawarte s w twierdzeniach 2 i 3, gdzie okreélone
89 (przy zalozeniu, Ze rozklad wektora y jest normalny) warunki konieczne i dosta-
teczne na to, aby dla kazdej funkeji, majacej nieobciazony estymator postaci y’Ay +
+ a’y, istnial najlepszy mieobciqsony estymator w klasie estymatoréw y’Ay+ a’y (tzn.
-estymator nieobciazony o jednostajnie najmniejszej wariancji).



