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1. Introduction. In a few papers, written so far on the time-optimal
control of plants with transfer functions containing zeros, the problem
does not seem to be ultimatively formulated and solved. Dealing with
such plants it is not enough to say that the problem of ‘time-optimal
control” is under consideration but, due to the discontinuity of trajecto-
ries in a phase-space Y, it has to be more precisely stated.

To determine the switch curves (which is necessary for a synthesis
of time-optimal systems) Chang and Sheldon [2] have introduced new
variables & such that in the new phase-space X the trajectories become
continuous. Without any justification it is then accepted that the “Bang-
Bang” control is the optimum one also in a case of plants whose transfer-
functions contain zeros. The problem is rather marginally treated and
devoid of precise statement.

Also in [3] the problem has not been precisely formulated. Applying
the same variables &, Dmowski tries to justify optimality of the ‘“Bang-
Bang” control for the considered case. Without a specification of the
initial point &, in a new phase-space X and with a wrong definition of
the terminal point &, the final conclusion has not been achieved.

The precise formulation of the problem has been given by Athans
and Falb in [1]. Discussing the problem from the viewpoint of the synt-
hesis of time-optimal systems, authors are mainly concerned with the
terminal point of the trajectory. They have shown that in the new phase-
space X the terminal point ®, belongs to a given set. There is, however,
no discussion on the determination of the initial point &, which is accepted
to be an arbitrary point of X.

The author is highly convinced that more attention has to be paid
to the initial point @, of a trajectory and that the problem has to be pre-
cisely formulated in the starting stage of the control. It occurs that (as
it will be shown in the sequel) without some additional information,
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or lacking the precise statement of the problem at the beginning of the
control, the starting point &, cannot be determined and so the problem
has no complete solution.

This will be shown on a simple example. Let us consider a plant
which can be described with the differential equation

(a) j+ay =
or — which is equivalent — with the transfer function

Y(s) s

(b) we - 20 =

Here w stands for an input (control) of the plant, y for an output, a
is a constant, and s is the differential operator. One has to find the control
w(t) which, while satisfying the restriction |w(t)] < 1, conducts the coordi-
nate y of the plant from a given value y, (which is attained just before
the initial moment ?, of starting the control, more exactly y(t, ) = ¥,)
in the shortest possible time to the required value y, = 0. Having reached
this value the coordinate y has to remain constant (y = y, = 0). Only
continuous controls w(t) are admitted or those having first order discon-
tinuity points, i.e. for each discontinuity point z there exist both the
left side limit w(v~) and the right side limit w(z*).

A plant with the given transfer function is shown in Fig. 1a. Quan-
tities w and y are the input voltage (forcing) and the output voltage,
respectively, of an electric system RC (for which a = 1/RC). From the
system RC (or studying solutions of the differential equation (a)) it can
be seen that the knowledge of a control w(t) for ¢ > {,, as well as the ini-
tial condition y(f;) = y,, is not sufficient for the determination of the
course of y(¢) for ¢t > ¢,. In addition one has to know the value of w(¢;)
which together with y(t,) = ¥, is necessary for the determination of the
initial condition #(¢,) = x, (voltage on the capacity C). The value of x
is namely the new continuous variable in a new space X.

Two problems may then be brought up:

PrOBLEM I. To find an optimal control w(t), having given the ini-
tial point y,, the terminal point y, = 0, and the value w(ly) = w,.

PrOBLEM 1I. To find an optimal control w(t), as well as the value
of w(ty ), having given only the initial point y, and the terminal point y, = 0.

Those two problems will be given the precise formulation in the
sequel and solved both in a case when restrictions are imposed upon
the signal w(t) itself and in the case when they are imposed upon the
k-th derivative of the signal (Appendix 2).
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As an example, in Fig. 1b the solution of Problem I is shown for
the above system and the selected values: a =1, y, =2, w(t;) =0
9y, =0; and in Fig. 1c the solution of Problem II for y, =2, y;, = 0. In
the latter case, for an optimal control w(¢) with a found value w(t;) =1,
the control time is equal to T =1t,—1%, =0,
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Fig. 1

a — a plant described by a differential equation (a); b — optimal runs in the sense of Probhlem I;
¢ — optimal runs in the sense of Problem II

The author wants to express here his sincere gratitude to Professor
Stefan Wegrzyn whose valuable remarks and directions were of much
help to make more precise the results presented in this paper. Finally, the
author takes this opportunity to express his thanks to Professor Czestaw
Olech for his precious comments concerning solutions ot the differential
equation of a plant.

2. Formulation of the problem. We shall discuss here the control
of linear plants with a single input w and a single output ¥ which may
be described: either by a differential equation of the form/(!)

1) y™4ay™V+.. +ay = by g™ +b,_p W™V bw,

() 9 stand here for the i-th derivatives of the function y = y(f) and w®) for
the j.th derivatives of w = w(?).
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where m<n; a;,b (1=1,2,...,n;) =n—m,n—m+1,...,n) are
constant coefficients and b,_,, # 0, or (wich is equivalent) by a transfer
function of the form

Y($) byt b8+ D,
W(s) "+a,8" '+...+a, )

We assume that the input control w(f) is a piecewise continuous
function having at most finite number of first order discontinuity points
in any limited interval of time. This means that for each discontinuity
point ¢ = 7 there exist both limits

(2) K(s) =

(3) w(r™) =limw() and w(rt) = limw(?)
[ e

¢
and the Rieman integral [w (9)d? is a continuous function of ¢ at the point .
0

We assume also that the derivatives «w\W(t) (j =1,2,...,m—1)
of the function w(t) may be discontinuous or even not existing at a finite
number of points in the interval of time in question. At each of these
points, however, there exist both the left side limits w?(z~) and the
right side limits (7).

Furthermore we assume that the values of w () have to belong to the
interval
(4) asw() < B,
where a and f are given arbitrary constants.

The value of w(t) at a discontinuity point ¢ = t is of no importance
for the further discussion. To avoid ambiguity we assume the left side
continuity of w(t), i.e. w(r) = w(r~). The control w(¢) satisfying all above
assumptions in the sequel will be called the admissible control.

~ For an admissible control w(t) its derivatives w')(¢) occuring in
equation (1), if understood in the ordinary sense, are also piecewise conti-
nuous functions not determined(2) at the discontinuity points of w(t).
The solution of equation (1), in an interval where its right-hand side is
a continuous function, may be easily found. For the unique determina-
tion of the solution y(¢) in an arbitrary time interval

(5) ty<t<t
it is necessary to know the initial conditions at the points belonging to

any of the continuity intervals of the right side of equation (1) which
make up together the interval (5).

(2) In the sequel we shall understand the derivative in a sense of a distributional
operator, so that w()(¢) and y()(t) will be distributions (see [4]).
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To make unique. the determination of the -solution y(¢) by initial
conditions we will give the following definition of the solution of equation (1).

The solution vy (t) of equation (1) is a function for which the distribution
of the left hand side of equation (1) is equal to the distribution of the right
hand side of that equation.

Now we shall show that the so defined solution y(¢) of equation (1)
is uniquely determined by the initial conditions given at an arbitrary
continuity point ¢, of the vector-function ()

w(t) = (w(t), wP @), ..., w" ().
If we introduce the notation
Ay (z) =y (zt)—y9(z7),

(6) Aw® (7) = wt .(‘1"+) —wP(z7),

then, as it is proved in Appendix 1, for the solution y(#) the following
relations hold

(7)  AyD(z) = yo 4w () + y, AWV (7) + ...+ y; dw(7),
t1=1,2,...,n,

where the constants y; are defined by a recurrent formula

Yo = bgy

Vi Ebi— 1y =@y o — o =y =100, 0,

(8)

Since coefficients b;,,7 =0,1,...,n—m—1, in equation (1) are
equal to zero, then

(9) by =0 and y,=0 fori=0,1,...,2—m—1.

Formulae (7) and (8) enable us to determine the initial conditions
y9(z*), i =0,1,...,n—1, in the next continuity interval of the deri-
vatives y'(t), if we know the values of ¥ (7-) (from the preceding inter-
val of continuity) and the quantities 4w?(z), j = 0,1,..., m—1 (those
are known if the function w(?) is known in the interval (5)). Hence the
initial conditions y®(4,), ¢ = 0,1,...,n—1, given at a point ¢, from an
arbitrary interval of continuity of the vector-function #o(¢), determine
uniquely the solution y(f) of equation (1) in the whole interval - (5) (if
only function w(¢) is known in this interval). h

(®) t is a continuity point of the vector-function w (¢) if it is a continuity point of
all its components w)(t), j = 1,2, ..., m. Of cource, the knowledge of the function
w(?) allows for an easy construction of the veetor-function 2o (¢).
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From (7)-(9) it follows that in the case m < n the derivatives y®(ty
(¢ =0,1,...,n—m—1) are continuous (*) and only the derivatives
of higher order (i =n—m,n—m+41,...,n) have discontinuity points
at which their values do not exist.

In an n-dimensional phase-space Y, with coordinates y, 4V, ..., y®,
the point corresponding to the solution of equation (1) (for a given piece-
wise continuous function w(t)) sweeps over a phase trajectory which is
also a piecewise continuous line. For the discontinuity points ¢ = t;
of w(t) the corresponding points of the phase trajectory do not exist.
Phase trajectories in space Y are determined by a system of values y(t),
yO (), ..., y® () and therefore the vector y(&) = (y(t), y®(?),...
vory Y70 (3)) will be called the solution of equation (1). To a solution y(t)
there corresponds in space Y a phase trajectory which will be called the
trajectory y(t).

Consider now two points y, and y, in space Y. We shall say that
the admissible control w(t) conducts a point in the phase space from the
position y, to the position y, in the length of time 7' = ¢, —1%, > 0 if the
solution y(¢) (corresponding to the control w(?)) of equation (1) with
the initial condition y(¢,) = y, satisfies also the relation y(t}) = y, ().

From (7) it follows that if ¢, is a discontinuity point(¢) of the vector-
function w(t) then the initial conditions y(#) in a time interval ¢, < t < ¢,
(for a solution y(t) satisfying y({,;) = y,) depend also on the value of
w(t; ), i.e. on the terminal value (in the interval of time ¢ < ¢,) of the control
w(t) which has conducted the point in space Y to the position ¥y, (y(¢,)
= y,). Therefore, if we know the function w(#) for ¢ > ¢, and the initial
condition y(t, ) = y, but the value of w(¢; ) remains unknown, we cannot
find the solution y(¢) of equation (1) for the time interval ¢ > ¢,, satisfying
the condition y(f;) = y,.

Bearing in mind what is written above, the problems which will
be discussed in the sequel may be formulated as follows:

PrROBLEM 1. There are given two points Yo = (Yo, ¥, ..., y" V) and
Y, = (¥1,0,...,0) in the phase-space Y and a vector w(ly) = w,. To
find an admissible control w(t), t > t,, which in the shortest possible time
T =t,—1t, conducts a point in space Y from position y, to position y,.

(4) Since y)(z—) = y@(z+) for i = 0,1,...,n—m—1, and at the point 7
we may assume y()(z) = y()(z—) as for the function w (¢).

(*) Conditione y(t;) =y, and y(i;') =y, have the following meaning: just
before the moment ¢, of starting the control the point in space Y tends to position y,
and just after the moment ¢, it “reaches” the position y,. One of the moments ¢, and ¢,
may be given in advance.

(*) 7 i8 a discontinuity point of the vector-function w(¢) if it is a discontinuity
point of one or more of its components w(9 (), § = 0, 1,..., m—1.
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Having reached the terminal position the point has to remain there (y(t) = y,
for t>1,).

PrROBLEM II. The only difference from the former one is that the vector
w(t; ) no longer is given in advance. It is also to be found out. Now the cont-
rol w(t) has to be admissible for t > t,— ¢ where ¢ is a sufficiently small
positive number.

It follows from equation (1) that the relation y(¢) = y, (that is
y(t) = y,) is fulfilled for ¢ > ¢, if and only if the right side of equation
(1) is equal to a,y, for ¢t > ¢,. Therefore, if we introduce new variables
y* =y—vy, and w* = w—w,, where w; = a,¥,/b,,(?), then the equation
(1) for the new variables remains the same. Instead of condition (4) now
we get

(10) & =a—w, < <<p—w, = p*,

which is of the same form (only the values of «* and g* are different from
those without asterisk). To the point ¥, = (¥, 0, ..., 0) from the space Y
there corresponds the point y; = (0,0, ...,0) in a new space ¥* (with
the coordinates y*, y*®, ..., y*®~V),

We may then assume, without any loss in generality, that in both
problems y, = 0 (all its coordinates are equal to zero).

The control w(t), which is to be found in Problem I (or Problem II),
will be called the optimal control, and the trajectory y(t) (determined by
a solution of equation (1) with w(t) = w(¢) and such that y(f;) = y,) —
the optimal trajectory in space Y.

3. Introduction of new variables. Let us introduce new variables
xt, 2% ..., 2" which (as in [1], [2] and [3]) are defined by

at =Y,
wz — y(l)’
wn-—m _ y(n—m—l)’
(11) gl = y(n—m)_ Ya-mW,

phmte y(”‘m'“) — ’}’n—mw(l) —Vn-m1 W,

(*) Here we assume that b, # O.

4 — Zastosowania Matematyki XII. 3
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In the new system of coordinates the equation (1) may be written
in a form of the system of equations

! = 2,
',i)n—m—l — w'n—'m’
(12) gm =gt + Vr-m®,

ooooooooooooooooo

There are no derivatives of w(t) in the system of differential equations
(12). Comparing the relations (7) and (11) we may reach the conclusion
that, for an admissible control w(t), relations (11) transform the so far
considered solutions of equation (1) into the continuous solutions z*(t)
(¢=1,2,...,n) of the system of equations (12). Thus, in the sequel
we will study the continuous solutions of the system of equations (12)
and we will write them as a vector ® () = (ml (t), 2%(t), ..., "(?)). Therefore,
in space X with the coordinates «',x2,...,2" the phase trajectories,
corresponding to solutions & (t) of equations (12) for an arbitrary admissible
control w(¢), are the continuous lines.

Let us consider now two points &, and @, in space X. To find an
optimal control w(t), which in the shortest time 7 = ¢,—f, conducts
the point ® in the space X from the position x, to the position a, (in
a case when the movement is described by equations (12)) may be applied
the Maximum Principle of Pontryagin (8).

It follows from the application of this principle that the optimal
control in this case is a piecewise constant function which alternates
taking the two extreme values ¢ and f. In the relevant interval of time
t, < t < 1, the function w(f) has a finite number of the first order discon-
tinuity points (the so called swiching points).

If we define an m-dimmensional space W with the coordinates
w,w?, ..., w™ D then equations (11) may be looked upon as relations
which transform the pair of points y and w from spaces ¥ and W into
a point @ in space X. We shall say that the point x corresponds, according
to relations (11), to a pair of points y and w. Similarly, to a pair of points &

(®) See [5], p. 133-136.
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and w from spaces X and W there corresponds, aceording to (11), a point y
in space Y (9).

If we put into relations (11) the definite functions of time: solution
x(t) of the system of equations (12); solution of equation (1) and vector
funection w(t) corresponding to the control w(t), and afterwards if the
relations are fulfilled in a certain interval of time, then in this interval
relations (11) assign e.g. to y(¢) and w(?) a unique solution &(t) of the
system of equations (12). In this case we say that in the definite interval
of time the solution a(t) (or the trajectory x(t)) corresponds, according to
relations (11), to the solution y(t) (or the trajectory y(t)) and to the function
w(t). For instance, to the optimal trajectory (f) in space Y and to the
optimal control e (t) there corresponds, according to (11), a trajectory
&(t) in space X which will be called the optimal trajectory in space X.
From (11) it is also easy to see that for a given control w(t) (then the vee-
tor w(t) is also given) relations (11) determine a one-to-one correspondence
between the trajectories y(t) in space Y and the trajectories x(t) in space X.

Let us denote by @, the point in space X corresponding, according
to (11), to the points y, and w, specified in Problem I. If with an arbitrary
admissible control w(t), for which w(¢{;) = w,, we consider the solution
Y(t) of equation (1), for which y(#, ) = y,, then the solution a(f) corres-
ponding, according to (11), to y(?) and w(¢) fulfils the relation x(t;) = a,.
Due to the continuity of solutions x(¢) (trajectories x(¢) in space X) we
have x(t;) = «(t}) = 2(t,) and so point x, is the point passed through
by trajectory ®(t) at the moment ¢, (x(t,) = x,)-

Thus we have proved the following

LEMMA 1. Let w(t) be an arbitrary admaissible control with the given
vector w(ty) = w, and x(t) be a trajectory in space X which corresponds,
according to (11), to the solution y(t) of equation (1), for which y(ty) = ¥,,
and to the function 1w (t) (determined by the control w(t)). The trajectory x(t)
Dasses through the point x, (x(t,) = ®,) which corresponds, according to
(11), to the pair of points y, and w,.

It is necessary to remember that the point , is uniquely determmed
if and only if there is given the vector w(fy) = w,.

4. The control w(t) for ¢ >1,. Let us consider now those of the admis-
sible controls w(t) which are determined for # > ¢, and such that there
exists a solution y(t) of equation (1) satisfying the condition

(13) . y(t) =y, =0 for t>1,.

(°) Also to a pair of points @ and y from spaces X and Y (but only to such
Points which are equal in the first n —m coordinates) there corresponds a point
in space W. This follows from (11) and from the relation (19) whlch will be proved
in the next paragraph.
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Therefrom and from equation (1) it follows that such control has
to be chosen among the admissible controls which satisfy the equation

(14) by @™ by W™V 4D w = 0.

Let Z} be the set of all points @, in space W such that the solution
w(t) of equation (14) with the initial condition w, at the moment ¢, (w(?,)
= w(t]) = w,) secure the fulfilment of (4) for ¢ > ¢, (¥°).

The construction of set Z;} is a separate problem. For a given case its
determination usually is possible although the numerical task increases
rapidly with the increasement of the order of equation (14). An example
of a set Z}; is shown in Fig. 2a for the case of equation (14) of second order
while the corresponding characteristic equation has complex roots with
negative real parts. The boundary of the set Z} in this case consists of
the two arcs of phase-trajectories 1 and 2 which are tangent to the straight
lines w = a and w = f and of the two segments on those lines.

7, (P
77

N\

Fig. 2. Examples of the set Z}

a — the case of complex roots of the characteristic equation (15) with negative real parts; b — the case
of real roots of equation (15) — one of them is positive (s1) and another negative (s5)

Another example is shown in Fig. 2b. Here the set Z; is found for
the case of the second order of equation (14) with real roots s; > 0 and
8, < 0 of the corresponding characteristic equation. Now the set Z
consists of the points in an interval cut of the straight line #w = s,w by
the sector a < w < f.

(1) Solutions of equation (14) are the continuous functions of time.
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It can be noted that if all the roots of characteristic equation
(15) bpm8™+ by 8™ . b, =0

have positive real part, then Z} contains only one point w, = 0.

Also it can be seen that if none of the roots of equation (15) equals
zero and the values o and g are of the same sign, then Z} is empty. In
this case the problem has no solution since among the admissible controls
w(t) does not exist one satisfying the requiurement y(t) = 0 for ¢ > ¢,.

We have to add that Z; is always a closed set (e.g. in Fig. 2a points
on the boundary of Z} belong to this set).

From the definition of Z} it follows that the point of a phase-trajectory
in space Y can stay in position y, = 0 for ¢ > ¢, under an admissible con-
trol w(t) only if the control w(t) for ¢ > ¢, is a solution of equation (14)
with the initial conditions w (¢ )eZ; .

Let us consider now the set Z} of all such points x, in space X which
correspond, according to (11), to all pairs of points y, = 0 and w,<Z}.
Thus, the coordinates of points &, in Z} may be obtained from the formulae

@ =0,
™ =0,
— 1
(16) wil = — Vn-mWi)
- 2
" = — oy W1~ VoWl
1 m—1
.’D? = —yn—lwl_yn—2w£)_"'_yn—mw(l )7
where w,, w{", ..., w{™ ) are the coordinates of the corresponding

point w,eZ};. The last m equations in (16) determine a one-to-one trans-
formation of the space W into an m-dimensional subspace X (of the space X)

with the coordinates z"~ ™!, g"~™+% . 2" For, this transformation
may be written in the form
(16a) 1, = —TI'w,,
where
(17) w; = (w,, w(ll)y ceey w(lm_l))’
¥, = (e~ 27T, L, A,

and

Vn—m O ¢ O
(18) I = Yo—-m+1 Yn-m + -+ ¢ 0

Yn—1 Yn—2 <+« « Vp-m
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By x, we denote here a m-dimensional vector with the coordinates
equal to the last m coordinates of the vector x,. From (16) it follows
that if a vector @, belongs to Z} then its first n — m coordinates are equal
to zero. Thus, if &,¢Z} then those coordinates which do not occur in x,
are all zeros (!). Let us notice that

(19) detl" = Vﬁn—m = b:’:—m #0

since, according to previous assumption, b,_,, # 0. Thus, to any point
of Z} there corresponds a unique point of Z} and vice versa.
Now we may formulate the following

LEMMA 2. For an arbitrary admaissible control w(t), for which there
exists a solution y(t) of equation (1) satisfying the relation y(t) =y, = 0
for t > t,, the phase-trajectory x(t) in space X which corresponds, according
to (11), to the solution y(t) and to the function w/(t) passes at the moment
t = t, through one of the points of the set Z} (x(t,)eZ}).

To prove the lemma we shall remember that if there exists a solu-
tion y(¢) of equation (1) such that y({) =y, = 0 for ¢ >1¢,, then the
admissible control w(¢) for ¢ > ¢, must be a solution of equation (14) with
the initial conditions w(t}) = w,eZ;;. The coordinates of the point of
trajectory ax(¢) (which is the subject of the lemma) at ‘“the moment” ¢},
that is the coordinates of the vector x(t}"), may be calculated from for-
mulae (11). For y(¢f) = 0 and w(t]) = w,eZ} formulae (11) reduce
themself to (16). Thus, we have x(t])eZ; which follows from the defi-
nition of Z}. Due to the continuity of trajectories in space X we get x(t))
= x(t]) = x(t,) and finaly x(¢,)eZ}.

From lemma 2 it follows that, for the control w(¢) which we are
looking for, the terminal point &, reached at the moment ¢, by the phase-
trajectory x(t) in space X (x(f,) = &,) is one of the points of the set Z}
(e eZ}).

5. The solution of problem I. Let us assume now that at the moment ¢,
the trajectory in space X passes through the point x, = (0,...,0,
gl giemi2 s at) and ®,eZ). To the point @, eZ;} there corresponds
in Z} a unique point w, determined by the one-to-one transforma-
tion (16a). Thus, we get

(20) w, = —I' g,

(11) As it was with the set Z; also Z7 is the closed set (see [1], lemma 7.2).
If all the roots of equation (15) have positive real part then Z} contains only one
point &, = 0. (Lemma 7.3 in [1] which says that “if one of the roots is positive or
having a positive real part then Z} contains only one point &, = 0" is obviously falsc
and its proof is wrong — sce the counterexample in Fig. 2b).
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where
. -m+1 n—m. 2
%, = (af , BT L, @),

Now we may formulate the following

LEMMA 3. Let us assume that the phase-trajectory x(t) in space X
at the moment t, passes through the point x,e Z} (x(t,) = x,), and the con-
trol w(t) for t > t, is a solution of equation (14) with the initial conditions
w(l) = w, obtained from relation (20). Then and only then the phase-tra-
Jjectory y(t) in space Y, which corresponds according to (11) to the trajectory
x(t) and to the function w(t), remains for t >t, at the point y, = 0 (i.e.
Y(t) =y, = 0 for t > t,) and the control w(t) for t > i, is an admissible one.

To prove lemma 3 note first the consequence of the assumption
that the control w(¢) for ¢ > ¢, is a solution of (14). From this it follows
that for ¢ > ¢, the movement of a point in space Y is described by a diffe-
rential equation of the form

(21) Yy +ay*V+...+a,y =0.

Phase-trajectories in space Y (for ¢ > ¢,) are determined by the solu-
tions of this equation and their course depends on the initial conditions
y(¢]). From the assumption of the lemma we have also ®(f,) = x,¢Z}
and, due to the continuity of trajectories in space X, ®(tf) = x(t,) = @,
=(0,...,0,zy ™ gh-m+2 0 al). According to the assumption there
is also w(t}) = w,, and the quantities w, and x, = (@}~"™*!, oP~™+2 .
.., 2}) fulfil relation (20). Therefore, the coordinates of vectors a,'l and w,
fulfil the equation (16). Point y(¢;") of the trajectory y(¢) (being the sub-
ject of the lemma) corresponds, according to (11) to the pair of points
x(tf) = x, and w(t}) = w,. Hence, in virtue of (16) we get y(i) = 0.
The solution of equation (21) for ¢ > ¢, with the initial conditions y(¢}) = 0
is of the form y(t) = 0, and so there is also y(t) =y, = 0 for ¢t >1,.
Since x,¢Z} and transformation (20) is a one-to-one transformation
of Z¥ onto Z}, then w(t]) = w,eZ};. According to the definition of Z},
the solution w(t) of equation (14) (for ¢ > ¢,) with the initial conditions
w(t;) = w, fulfils the condition (4), hence w(¢) is an admissible control
for ¢>1,.

On the other hand, when y(f) = 0 for { > {,, and a control w(¢) is
a admissible one then it is easy to proove that w(t) is a solution of equa-
tion (14) with the initial conditions fulfils (20), where @, is a point for
which ®, = x(t,).

Directly from lemmas 1 and 3 we get the following

COROLLARY 1. Assume that the point x,, which according to (11)
corresponds to the pair of points y, and w(ty) = w,, belongs to Z}. Let
us denote by w(t) the control which for t >, is a solution of equation (14)
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with the initial conditions w(t7) = —I'"'x,. Under the control w(t) the solu-
tion y(t) of equation (1), if Yy(ty) = Y,, fulfils the relation y(t) =y, =0
for t > t,. Hence we have t, = 1, and the point in space Y may be conducted
under the control w(t) (which is the admissible one for t > t,) from position y,
into position Yy, = 0 in the ttime T =1,—1, = 0.

Now we may interpret Z; as the set of points in space X which, accor-
ding to (11), correspond to all pairs of points w(f;) = w, and y; ; where y
is an arbitrary point of space Y which may be conducted in time T’ = ¢, —{,
= 0 (under an admissible control w () with the given vector w(;) = w,)
to the position y, = 0 in such a way that y({) =y, =0 for t > ¢, = 1¢,.

Hence, for the case of xyeZ} the conirol w(t) specified in Corollary 1
18 the optimal control required in Problem 1.

If a point a, does not belong to Z} (x,¢ Z}) then it has to be ¢, > t,.
Indeed, solutions x(f) of the system of equations (12) are unique and
continuous (%) and x,¢ Z} yields @, # @, for any ®,¢ Z}. From lemmas 1
and 2 follows that x(i) = x, and x({,) = ®, where x,¢Z}. Hence,
x(t,) # «(t,) and ¢, #1t,. From the assumption ¢, >1? we finaly
get &, > 1,.

Let us denote by w(t) the optimal control in the interval of time
lo < t<t, which conducts in the shortest possible time T = ¢, —1{, the
point in space X from the initial position &, to an arbitrary point of Z;.

The trajectory in space X, which under the optimal control w(t)
(ty < t < t,) passes through x, at #,, later at ¢, passes through a point
which we will denote by @, (obviously a,¢Z}). In other words, if w(f)
= W(t) (t, < t < t,) and x(¢) is a solution of the system of differetial equa-
tions (12) with the initial condition x(¢) = a,, then ®(f,) = a,. Hence,
x, is the selected point of Z} which is available in the shortest time from
the position x, (under an admissible control). Both % (¢) and &, may be
obtained by solving the problem of time-optimal control in space X
from the given initial point @, to the target set Z}. Selection of the point a,
in Z} can be made easier by the proper application of the transversality
conditions (1%). If we know the coordinates of x,, e.g. =, = (0,...,0,

gyl L., 7)), then by a transformation inverse to (16a) we may
find the point wj e Z; corresponding to &,

(22) w; = —I''x,,

where

'x‘l — (Erla—m+l§-;n—m+2 E?)
= 1 9oy .

(%) They are unique, that is for an arbitrary moment ¢’ there is only one point
x(t’) in space X and if ®(¢’) # x(t”’) then ¢’ # ¢/, and the continuity means ax(¢'~)
=x(t’'t) = x().

(**) See [5], p. 59 and further remarks in this paper.
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Now, denote by w*(#) the control (for ¢ > ¢,) which is the solution
of differential equation (14) with the initial conditions w*(t}) = w}.

Next, we shall prove the following

THEOREM 1. The time optimal control w(t) for t >1t, (in the sense
of Problem I), which in the shortest time T = 1,—1, conducts a point in
space Y from position y, to position Yy, = 0 and makes it stay there for t > t,
(i.e. y(t) =y, = 0 for t > t,), is a function of time which:

1. in the interval of time t, < t < t, coincides with a piecewise constant
Sunction w(t) which is the solution of the problem of time-optimal control
from the given point x, to the set Z7;

2. for t>1t, coincides with the function w”*(t) which is the solution of
differential equation (14) with the initial conditions w”* () = w} = —I'"'3,

The point x, is determined by w, and y, (which are given tn Problem I).
The point &, eZ} and the moment t, result from the solution of time-optimal
control from the point x, to the set Z7 (14).

Proof of theorem 1. It follows from lemmas 1 and 2 that if a con-
trol w(t) (¢t > t,) is admissible, has a given vector w({;) and conducts
the point in space Y from position y, to position y, = 0 in such a way
that y(t) = y, = 0 for ¢t > ¢,, then the trajectory ®(¢) in space X, which
according to (11) corresponds to the solution y(t) (y(f;) = y,) and to
the function w(t), passes the points x, and x, ¢ Z} (i.e. () = x, and
&(t)) = x,¢Z}). The control w(l) (t, < t < t;), according to the definition,
conducts the point in space X from position a, to position x,¢Z} in the
shortest time 7 = ¢, —1,, hence for w(t) = w(t) (t, < t < t,) there is x(t,)
=x,, (t,) = x,¢Z and T = T,;,. According to the maximum prin-
ciple of Pontryagin, as we have mentioned previously, the optimal control
W(t) (t, < t<t,) is a piecewise constant function taking only the extreme
values « and fg.

From ®(t,) = ®,¢Z;} and from lemma 3 follows that under the cont-
rol w*(t), t >t,, (which is admissible) a point in the space Y remains
In position y, = 0 for ¢t >1,, that is y(!) = y, = 0 for ¢ >1,, where y(¢)
is a solution satisfying the condition y(f;) = ¥,.

The control w(t) which is equal to w(¢) for t, <t < ¢, and to w*(¢ )
for ¢ > ¢, is an admissible control for ¢ > #,. Indeed the control w(t) is
admissible in the interval of time #,<?< ¢, and w"(f) admissible for
t >, whereas at the point #,, which . may be a dlscontmulty point of

w(t), there exist the values w(l;) = w(t]) and w(t;) = w*(t;}). There-
fore w(t) is an admissible control for ¢ > ¢, which (for a given vector w (t, ))

(**) We remind here that the moment ¢, is cither given in advance or it may
be arbitrarily chosen.
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conducts a point in the space Y from the position y, to y, = 0 and y(¢)
=y, =0 for 1>1,.

Now we shall prove that the time T' = ¢, — ¢, = T, for the control
w(t) is the shortest one of all times required by admissible controls w (t).
To show this let us assume that there exists an admissible control w’(?)
# w(t) for which 7" = t; —t; < Ty From lemmas 1 and 2 follows that
for the control w’(t) the corresponding solution &'(¢) of (12) has to fulfil
the conditions &’ (f,) = &, and &’ (¢,) = x,eZ;. Therefore w'(t)fort, <t < t,
is a control which in time 7' = t; —t,, shorter than that for the control
w(t) = w(t) for t, < t < ¢;, conducts a point of the space X from the posi-
tion x, to the position x,¢Z}. This contradicts the definition of % (¢),
t,<t<t,, as a control which in the shortest time conducts a point of
the space X from the position x, te the position x,¢ Z;].

6. The solution of Problem II. Let w(f) be an admissible control
for t > t,. We shall extend it for { < ¢, in such a way that w(f;) = w,.
We denote by Z, the set of all points w, of the m-dimentional space W (with
coordinates w, wV, ..., w"™ V) for which the so extended control is admi-
ssible for t > ty— ¢ (here ¢ is an arbitrarily small positive number).

One can notice that Z, consists of the points w, of space W for which

(28) a<wy < B if w >0,
a<wo<p if wid<o.

An example of the set Z, for m = 2 is presented in Fig. 3. In this
figure the points of dashed halflines do not belong to Z,.

Wit

o

Fig. 3. An example of the set Z,, for m = 2

Now let us denote by Z,, (y,) the set of points xy in X which correspond,
according to (11), to all pairs of points y, and w,, where w, is an arbilrary
point of Z,,. The coordinates of the points x,e Z, (y,) may be calculated
as follows
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Lo = Yo,
w(l)t—?n J(n m— l)
n—m41 _ n—m
(24) xo y( ) yn—mw07

(1)

n—nt-2 n—m+1)
Lo ?/f) - yn—m+lw0 — Vau-mWo 'y

w:)& yan 1)
where y, = (Yo, ¥, ..., g™ V) and w,, wl", ..., wf,"“l) are the coordi-
nates of an arbitrary point ww,¢ Z,. One can easily notice that having
given a point y, formulae (24) determine a one-to-one correspondence
between the points w, of Z,, and the points x, of the set Z, (y,) and for
any point xye Z; (y,) the first » —m of its coordinates are equal to the
corresponding coordinates of y,.

Since it may be difficult in practice to realize the vector w(t,) if
some of its coordinates are of large values one can also impose some bounds
upon the coordinates of w(ty ). This will induce the appropriate changes
in the sets Z, and Z (y,)-

Now we may formulate the following

LEMMA 4. Let w(t) be an arbitrary admissible control for t > ty—e
and x(t) a trajectory in space X which according to (11) corresponds to the
solution y(t) of equation (1) (for which y(t,) = y,) and to the function w(t).
The trajectory x(t) at the moment t, passes one of the points of Z_ (y,), that
s T (t) €Z, (Yo)- _

The proof of lemma 4 follows immediately from the definition of
sets Z, and Z; (y,) as well as from the continuity of the trajectory in
Space X.

Let us assume now that for an admissible control w(t), ¢t > ¢,, to
a trajectory x(t), ¢ > {,, in space X which at {, leaves an arbitrary point
ToeZ (y,) (i.e. x(t,) = x,) and to a function w(t) there corresponds accor-
ding to (11) a trajectory y(t), ¢t > t,, in space Y. We want to find a vector
w(ty) for the function w(t) such that the above mentioned trajectory
y(t) passes at ¢; the point y, (i.e. y({;) = y,). Since both trajectories
Y(t) and x(¢) as well as the function e(t) are related according to (11)
then the values of y(fy) = yo, ®(ty) = ®(ty) = @, and w(ty) have to
fulfil also the same relations. From the last m equations in (11) we thus
obtain

(25) X = no—I'w(ly),

1 _ m—1
—Va-1Wy— Vy-2Wo — —Vn- mw(() )

Where x, and 1, ave m-dimensional vectors with the coordinates equal
to the last m coordinates of the vectors &, and Yo, respectively.
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Taking into account (19) we may calculate from equation (25) the
value
(26) w(ty) = I (no—%).

If xyeZ; (y,) then w(ty)eZ,. From the definition of Z,; and from
the assumption that w(t) is an admissible control for ¢ > ¢, follows then
that the same control w (f) extended for ¢ < ¢, so as to fulfil (26) is an admi-
ssible control for ¢ > {,— ¢ (point #, may be a discontinuity point of the
function w(t) however there exist both side limits w(#) and ww(t;})).

Thus we have proved the following

LEMMA 5. Let for an admissible control w(t), ¢t >t,, for a trajectory
x(t) in space X which at t, leaves an arbitrary point X eZ, (y,) and for
a function w(t) there corresponds, according to (11), a trajectory y(t) (¢ > t,)
in space Y. If we extend the control w(t) for t < t, so as to fulfil the equation
w(ty) = I (yo— %), then the extended comtrol is an admissible one for
t > t,—e and the trajectory y(t) passes at ty the point y,, i.e. y(t7) = y,.

From lemmas 3 4 and 5 it follows

COROLLARY 2. Let us assume that the set Z, = Z, (y,) N Z} is not
empty and let x, be an arbitrary point of Z.. By w(t) we denote the control
which for t >, is a solution of equation (14) with the initial conditions
w(tF) = —I''x, and which fulfils the condition w(ty) = I'*(y,—x;). Under
the control w(t) the solution y(t) of equation (1) for which y(ty) = y, fulfils
the relation y(t) = y, = 0 for t > t,. Therefore t, = t, and a point in space Y
under the control w(t) may be conducted from the position y, to y, in the time
T =t,—1t, = 0. Besides w(t) is an admissible control for t > t,—«.

It is easy to see that in the case of a non-empty set Z; the control w(t)
discussed in corollary 2 is the optimal control which is asked for in problem II.

Point x, is an arbitrary point of the set Z) so if Z, contains more
then one point there exists also more then one admissible control w(t),
{ > t,— ¢, which may conduct a point in space Y from the position y,
to y, in time T' = ¢, — ¢, = 0 (there may be even an infinite number of
such controls).

In a general case we may formulate the following theorem speci-
fying the control w(t) which is asked for in problem II.

THEOREM 2. The time-optimal conirol w(t) for t > t,—e (in the sense
of problem II), which in the shoriest time T = t,—1, conducts a point in
space Y from position y, to position Yy, = 0 and makes it stay there for t > 1;
(i.e. y(t) =y, = 0 for t > t,), is a function of time which:

1. fulfils the equation w(ty) = ' (Y,—%,);

2. in the interval of time t, < t < &, coincides with a piecewise constant
function w(t) which is the solution of the problem of time-optimal control
from the set Z, (y,) to the set Z};
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3. for t >t, coincides with the function w*(t) which is the solution of
differential equation (14) with the initial conditions w* (t}) = w; = —I''%,.

The points xyeZ,(y,) and x,cZ} as well as the moment 1, result
also from the solution of time-optimal conirol from the set Z, (y,) to the
set 77,

The proof of theorem 2 is analogous with that of theorem 1 with
the modification that instead of referring to lemma 1 now we have to
refer to lemma 4. In addition we have to ensure that the trajectory y(t)
(t > t,), which for ¢ > t, coincides with the point y;, = 0 of space ¥ and
which corresponds (according to (11)) to the trajectory a(¢) (for which
x(t,) = ®, and x(t;) = &,), at the moment #; passes the point y, (i.e.
Y(ty) = ¥y,)- On behalf of lemma 5 this condition holds if the optimal
control w(f) contains the vector w(ty) = ' (1o — %)

Remarks on the application of the transversality conditions.
For the determination of points &, and a, the transversality conditions
may be applied. Those conditions were proved in [5] on the assumption
that both the starting set and the target set consist of points lying on
smooth hypersurfaces. Let S, be an r,-dimensional hypersurface (7, < n)
containing the starting set and S, a r,-dimensional one (r, < ) containig
the target set. If we carefuly study the proof of the maximum principle
and in particular that of the transversality conditions (published in [5])
we can notice that the above assumption may be partially released. Thus
the transversality conditions hold also for all points &, and @, having
neighbourhoods in space X inside which the hypersurfices S, and 8§,
are smooth. The whole construction of the proof, for ¢ sufficiently small
to restrict the movement to the given neighbourhoods, remain valid
also for the points a, and @, which fulfil the released assumption. So the
hypersurfices S, and 8, do not need to be totally smooth, they may con-
tain edges and the sets of starting points &, and targets &, may contain
borders consisting of points which lay on hypersurfices S, and §,. Those
edges and borders are in general also hypersurfices of dimension lower
than 7, and r,, respectively. With respect to the points &, and &, on the
edges and borders one can also apply the transversality conditions, taking
into account the lower dimension of hypersurfices (edges or borders),
if the above condition holds at the points in question.

These remarks are of importance for problems discussed in the paper
since the geometrical objects corresponding to the sets Z} and Z;(y,)
are often not totally smooth.

7. Examples. Let us consider a plant for which the differential equa-
tion (1) is

(27) i =b+w
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and the admissible control w(t) is a piecewise continuous function which
obeys the restriction

(28) —1<w() < +1.

So we have n =m =2, a, =0,a, =0,b, =0,b, =1 and from
(8) we get yo =1, y, =0 and y, = 1. According to (11) we introduce
the new variables
n =y—w
(29) .
2 =g—w.
The system of equations (12) which describes the movement of
a point in two-dimensional space X, i.e. in the plane X with coordinates
x', 2, now takes the form
! = a2,
(30) .
2 = w.
In the plane W with coordinates w, w the trajectories w(t) determi-
ned by the solutions of equation

(31) wW4+w =0

are (as it is well known) circles with the common centre in the origin of
the system of coordinates. Thus, taking into account the definition of Z;,
one can easily notice that the set Z} consists of the points w0, of the plane W
which lay within and on the border of a circle with the centre in the
point w = 0 and the radius equal to 1 (see Fig. 4a).

a p b
plane W Z* ¢ plane X

\\ w x’
U 7 ,7 2 7 2

Iy\z

+
w

Fig. 4
a — the set Z;",' , and b — the set Z:'c" for the discussed example

From (16) we get

1
O = —W,,
(32) . )
Ty = — W,

so that Z;} is the set of points @, = (z}, 27) of the plane X which lay in-
side and on the border of the unitary circle g with the centre in the point
& = 0 (see Fig. 4b).
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The solution of Problem I. Let us begin with solving the problem
of optimal control in plane X with a given starting point &, (determined
by the points w, and ¥, in Problem I) and with a free target ®, belonging
to the above determined set Z}. To this effect, following the notation
used in [5], we introduce the function (%)

(33) Hy, 2, w) = 9,2+ py0,
where y,, p, are the coordinates of the vector y which fulfil the systém
of equations
'}’1 =0,
P2 = — Y.
This yields
Y1 = Cyy
Yo = G — Gy,
where ¢, and ¢, are constants.
It follows from the maximum principle that the optimal control
w(t) at any moment has to fulfil the condition

(34)

H(y,2,w)= sup H(y,z,w).

—-1sw<+1
On the ground of (33) we obtain
(35) w(t) = signy,(t) = sign(e,—e¢,t).

Thus, the optimal control % (?) is a piecewise constant function having
only the values +1 or —1 and no more then one switch (from the value
+1 to —1 or vice versa).

In the case w = +1 or w = —1 it is easy to determine the phase-
trajectories in plane X applying the system of equations (30). They are
Pparaboles of the form

(€2)2 = 221+ C for w = +1,

()2 = —22'+C for w = —1,

Where C is a constant.

_ Let us assume now that the point x, does not belong to Z7} (i.e. @,
lies outside of the circle g)(1¢). Since the trajectory is continuous in the

plane X we may then restrict ourselves to the case when the target @,
lies on the border g of the set Z;.

(36)

. (*%) See Pontryagin et al. [5], p. 23-26. As it can be seen from (33) the function H
18 an inner product of two vectors y and .
(1%) If @yeZ} we may, applying Corollary 1, to get a control w(t) for which
= tl— to = 0- '
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The transversality condition for the target x, of a trajectory demands
that the vector y(¢;) be orthogonal to the border g at the point ®,. On
the other hand, from the condition

H(V’(tl)y x (1), 'w(tl)) =0

which appears in the maximum principle, and remembering that the
function H is an inner product of the vectors y and @, we obtain an addi-
tional information saying that y(¢,) should be directed inside the circle.
Thus, the coordinates of y({,) have to fulfil the equation
P2 (th) . ﬁ
v1() @ ’
wherefrom on the ground of (34) we obtain
(37) o—t = w%/wL
where ¢ = ¢,/c, is constant.
To simplify further calculation we will assume that ¢, = 0.
From (37) we may deduce some conclusions on the course of optimal
trajectories in space X which terminate at different points of the circle g.

d i x2 b AXZ

I /
4
3
2

-
-4 =3 -2 - X 2 3 4 X;
X 9
[b

-2
-3 W=+1
» X,

i v

Fig. 5

a — the course of optimal trajectories in plane X which terminate at the points a; of the circle g laying
in the first and the third quadrant; b — the course of optimal trajectories which terminate at the points &
of the circle g In the second quadrant

Thus, for the trajectories terminating at the points @®,eg which lay in
the first and the third quadrant of the plane X (see Fig. 5a) we have
xr/zs > 0 and therefore ¢—t, > 0. Since ¢, > 0, then it is also ¢ > 0 and
in the interval of time ¢, = 0 < ¢ < ¢, there is y,(?)/y,() > 0. Now, from
v.(t) = e, follows that y,(f) is of a constant sign in the above interval.
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‘Thus, the optimal control #(t), according to (35), for the whole interval
o < t < t, retains constant value + 1 or —1 (there are no swiching points).
It is easy to notice that w(t) = —1 for the trajectories terminating at
points x, of the circle g which belong to the first quadrant, and w(¢) = +1
for those in third quadrant. In order that the vector y(¢,) be orthogonal
to ¢ at point &, and directed inside the circle, for the points &,eg in the
second and the third quadrant it has to be

(38) pi(t) = pit) = ¢, >0,
while in the first and the fourth quadrant it has to be
¥1(¢) = ¢, <0.

Let us consider now the trajectories terminating at those points @,
of the circle ¢ which belong to the second quadrant of the plane X.

It is known that from conditions of the maximum principle the vec-
tor ¥ may be determined with preciseness to the constant coefficient
(only the argument but not the absolute value of y may be determined).
Hence because of (38) for the second quadrant we may accept

vi(t) =1,
pa(t) = 0—1,
where ¢ = ¢y/c, is a constant.

From (35) it follows that the swich occurs at the moment ?,,#,< , < ¢,,
at which the function y,(t) equals zero, 8o y,(f,) = 0. Since #, = 0 then
t, >0 and y,(t,) = 0—1%, = 0 hence
(40) Q — tp'

Thus, for the existence of a swich it is necessary that o > 0; if 0 < 0
no swich occurs.
Taking into account (40) from (37) we obtain

(41) t,— 1, = a3[x;.
In the interval of time #, < ¢ < ¢, there is w(f) = — 1. Substituting

this value into the second equation of (30).and integrating it over ¢ from
t, to 1, we get

(39)

$2(t1)—-$2(tp) == tp_tl'

. If we denote z'(f,) = x,, #%(t,) = 5 and remember that &'(¢,) = 2},
&*(t,) = a2 then

(42) at—ad = t,—1,.
Combining formulae (41) and (42) we obtain
(43) T — T = T[4},

5 — Zastosowania Matematyki XII. 3
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For the control w(f) = +1 ({, <?<1?,) the corresponding trajec-
tory is a parabola passing the points #,, #, and on the strength of (36)
we have

(44) (@) — (@) = 2(ap—5).

For w(t) = —1 (t, < t<1,) the parabola passes the points @, and
®,eg 80 we have

(45) (@) — (@p) = —2(@ —a3).
Since the point &, lies on the circle g its coordinates obey the equation
(46) (@)’ +(21)* = 1.

Thus we have obtained the system of four equations (43)-(46) where-
from one can get the unknown coordinates of the points «, and , (the
coordinates of x, are given in advance).

From this system we will calculate the equation of the swich curve
(let us remember that now we consider the case of trajectories termina-
ting at points &, of the circle g which lie in the second quadrant). From
(43) we obtain

2 _ ofy 1

Substituting this into (45) and solving it with respect to « yields
1 1 1 (#7)

Xy = — ——
PTH T @y

or, applying (46),

(48)

1 1
%=V )

Equations (48) are the parametric equations of the switch curve
and in the second quadrant the parameter #; runs over the interval
—1< 2} < 0 or the parameter 1/x} over the interval —oo < 1/z} < —1.
Remembering this, from the first one of equations (48) we obtain

1 _—
(49) — =1-V2—-22}.

T



Time-optimal control 305

Substituting (49) into the second equation of (48) we obtain the
following equation of the swich curve p—

(50) o = 1/1-1/(1—V2 —24)*V2 24},

It is easy to notice that the equation of the swich curve p* for tra-
jectories terminating at points x, of the circle ¢ which belong to the
fourth quadrant may be obtained from (50) by substituting —«, and
—a}, for z}, and 23, respectively. Thus, for the fourth quadrant we have

(51) = —Y1-1/(1—V2+ 20 V2 + 22},

The knowledge of the course of swich curves p~ and p* enables the de-
termination of the optimal control w(x?, x2) which i8 a function of the coordi-
nates of the point & im plane X. The swich curves p~, p™ and the circle g
divide the plane X into parts in each of them the control # (¢) is determined
in a different way. So, to the left from the line consisting of the curve p~,
a part of the circle g and of the curve p* including points on p* there
is w(x', 22) = +1. In the remaining part of the plane X with the exception
of the set Z} there is w(x', #2) = —1. Inside and on the circle g (i.e. for
the points xeZ}) the control w(x!, #2) at the point & = (2!, 22) has to
fulfil the relation w(a', #?) = — «*. This follows from the definition of Z;}
and from the first equation of (29) in which one has to remember that
for ¢ > t, there is w(t)e Z} and y(t) = 0.

The knowledge of w(x', ) may help us to construct the system which
realizes the optimal conirol in the sense of Problem 1.

Depending on to which part of the plane X belongs the starting
point @, the control w(?), t, < t < t,, differs in its course. For example,
at points &, belonging to the region A~ bounded by the curve p~, a part
of the circle ¢ and the parabola I~ (see Fig. 5b) there is w(t) = —1,
ty < t < t;, while at the points &, in the region B* bounded by the curve p~,
a part of the circle g and the curve p* there is w(t) = +1, t,<t<t,
and B(t) = —1, t, < t<t,.

If x, belongs to A~, then for a trajectory passing through the point x,
we may find coordinates of the terminal point &, applying the equations

(52) (@) — (@) = —2(21— )
and (46). Thus we obtain
(53) Z =1—V2—2x — (227,

and z may be calculated from (46).
- If @ belongs to B, then the control %(¢) has a switch. Point @,
In which the switching occurs is an intersection point of the corresponding
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parabola passing through the point 2, and the switch curve p~ and,
therefore, its coordinates may be calculated from the system of equa-
tions

(#5)* — (@)" = 2(7p— ),

al = ‘/1 —1/1—V2—2z))V2 24},

where #; and «; are known. Eliminating «} and introducing a new variable

(54) 2 =1-V2 23 = 1/a}
we obtain an algebraic equation of the fourth degree
(85) 24 — 42— [() — 20+ 112 +22—1 =0

which may be solved, e.g. applying the Cardano formulae. If Z is a root
of the equation (55) and zZ < —1, then the coordinates x;, and %, may
be calculated as follows

zy =1—3(1—2),

7 = 1/z.
Since the calculation of z from equation (55) may require a lot of
work while it is quite easy to calculate 6 = z} — }(«2)? for a given value
of Z we may draw a diagram of the function § = @(z) (see Fig. 6). This

(56)

¥4

6

~10 xJ -1 [}
i
i

-3

Fig. 6. A diagram for the approximate solution of equation (55)

leads to & graphical method of determination of z for the given values
of x; and 3. Applying (56) we then find 2, and Z; to obtain finally from
(50) and (46) the values of «; and z;. The meaning of 6 is shown in Fig. 5b.

To determine the time interval for which @w(f) = +1 we may use
the formula

(57) ty—to = & — a2

which follows directly from the second equation of (30). The time inter-
val for which %(t) = —1 is given by formula (42).
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To determine coordinates of the point ®,¢g in the case when x, be-
longs to A+ or to B~ one should apply the formulae following from (53)
or (54) and (55), (56) by the substitution of —ag, —%;, —Z, — &, instead
of xy, %, Z, Tp.

If we know the coordinates of the terminal point &, then, applying
Theorem 1, we may determine the control w*(t) for ¢ > ¢,. The solutions
of equation (31) are of the from

(58) w*(t) = Asin(t+¢),

where 4 > 0 and ¢ are constant.
Initial conditions for the control w*(¢) at the moment ¢, may be
obtained from relation (32). This yields

’w*(t1) = —%,
| w*(t,) = — 7.
Therefore it has to be
Asin(t, +9) = —7,
Acos(t,+¢9) = —7;.

Taking into account (46) we obtain for constants 4 and ¢ the following
values:
%
(59) A=1, <p=a,1'ctg§—2—tl.
1
The solution of Problem II. According to Theorem 2 first we have
to gsolve in plane X the problem of time-optimal control from the set
Z; (y,) to Z}. The set Z} has been already determined. To determine
the set Z (y,) we have to know the set Z, in plane W. In the case m = 2
the set Z, is shown in Fig. 3 though we have to remember that in our
case a = —1 and B = +1. According to the definition of Z; (y,) (for
& given point y,) the coordinates of points x,e¢Z; (y,) may be obtained
from the formulae

1 .
(60) .’L‘: = ?{0 '“.707
To = Yo — Wy,

Where y,, 3, are the coordinates of y, and (w,, w,)e Z,. The set Z (y,)
is shown in Fig. 7 where points on the borders y~ and y*+ marked by a con-
tinuous line belong to Z; (y,) while those marked by a dashed line do
Dot belong to Z, (y,). Since the trajectories in plane X are continuous,
then we may restrict ourselves, as we did formerly, to the case when
the starting point @, lays on straight lines y~ or y* and the terminal
Point &, lays on the circle g. Though we have to remember that if solving
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the problem of time-optimal control in plane X we get a starting point @,
in dashed parts of straight lines y~ or y* then the problem in fact has
no solution (since x, does not belong to Z; (y,)). In this case the obtained
solution determines only the lower limit for the control time 7' = ¢, —1,.
We may arbitraryly aproach this limit (choosing the starting point
x, ¢ Z; (y,) sufficiently close to &,) but it cannot be reached by any control
which is admissible in the time interval ¢ > ¢, —e.

%/I- " /

X(yl?

%/

7
7/4
W i 1L W
Fig. 7. Optimal trajectory in the plane X in the case of Problem II

From the transversality condition in the starting point x, of a tra-
jectory we get '
Pallo) = Ca—C18p =0
or

(61) Y3 (8) = ¢1(tp—1),

8o the function y,(¢) for ¢ > ¢, does not alter its sign. Taking into account
the relation (35), which holds as well in the present case, we conclude
that the control % (f) takes either the value + 1 or the value —1 in the
whole time interval {,< t < ¢, (there are no switch points). The trans-
versality condition in the terminal point &, is of the form

pa(t)  ei(lo—1y) _ ;

vi(ty) B ¢ )
or
-}
62 to—1; = —.
( ) 0 1 wi
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Since in the case when w(f) = —1 for {, < t < ¢, there is
bh—1t = a;'f--w(’,
then we have
22 _ T

_ This case obviously takes place if sets Z7 (y,) and Z; have no points
in common and Z7 (y,) lays in plane X to the left of the set Z7, i.e. if
Yo < —2. To determine the coordinates of the points &, and &, besides
(63) we have the following equations

(64) (@3) — (03)* = —2 (a1 —y),
(65) (@1) + (#7) =1,
(66) Ty = Yo+ 1.

Let us notice that equations (63), (64) and (65) are similar to those
in (43), (45) and (46), with the only difference that in (63) and (64) there
are coordinates of the point &, while in (43) and (45) there are coordinates
of x,,. Therefore some of the previous results may be used now if we sub-
stitute the coordinates of &, for those of @,. Thus, formula (49) yields

(67) z = AT (1+1/2+2 7))
and from (50) we obtain
(68) 2 = 1/1-1/(1—V2 -2z V2 _ 27,

Since 7} can be directly calculated from (66) so using formulae (67),
(68) and equation (63) we can calculate the remaining coordinates of @,
and ax,.

Comparing formulae (50) and (68) we find out that the point x,
lies on the curve p~—. It can be obtained as the point of intersection of
the straight line 7} = y,+1 (which is paraller to the axis #2) and the
switch curve p~ (if y, < —2) which was determined in Problem I.

If y, > 2, i.e. in the case when Z_ (y,) lies to the right of the set Z7,
then the control % (1), {, < ¢ < ¢, takes the value 41 and the appropriate
formulae for coordinates of &, and &, can be obtained by a substitution
of —=z, —7), —¥y,, —a for Z;,Z, Y, To in the formulae discussed
above.

If —2<y,<2, then Z; (y,) and Z; have some points in common
and by Corollary 2 we can find a control for which T = ¢,—¢, = 0.

According to the Theorem 2 the knowledge of coordinates of both
the starting point , and the terminal point =, makes it possible:
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(a) to determine the optimal control w*(t) for ¢ > #, using formulae
(58) and (59);
(b) to calculate the coordinates of the vector w(f;) by the formulae

'wr(to‘) = Yo — Fp,

) W(iy) = Jo— %

As we have mentioned, the optimal control does not exist if a, lies
on the dashed parts of the straight lines y~ or y*. Taking into account
that x, is the point of intersection of the straight line y~ (or y*) with
the curve p~ {or p*) and that the solution of Problem II does not exist
if &, lies on the dashed part of y~ or y*, we can now determine a region
of points y, (in space Y) for which there exists a solution of Problem II.

g

L
[«
e

r
L
e

No solution
~

§ 0 S t
s F"p, ‘{f F=Solotigns exist]
N’  —r Solutions exist
LY Ll
—— 730
Nt 4
s o e
‘\\J: ~ '
‘:\L’\ Fif. 8. The region of points y, in plane
?P;a\:‘i.“ + ¥ for which there exist solutions
Pt T of Problem II
\Solutions, exist ]
T> i
|1 | | No solution

This region is shown in Fig. 8. It is easy to notice that the line 6~ may
be obtained from turve p~ by shifting it parallelly to the axis ¥ one unit
to the left and the line 67 from curve p* by shifting it one unit to the
right.

Formulae derived above were used to obtain a solution of Problem
I in the case when y, = (—5,0), w, = (0,0), y, = (0,0). The results
are presented graphically: in Fig. 9a the optimal trajectory in space X;
in Fig. 9b the optimal trajectory in space Y ; in Fig. 9¢ the optimal eontrol
w(t). For a comparison in Fig. 10 there are presented results of solving
Problem II for y, = (—5,0) and y, = (0,0); the optimal trajectory in
space X (Fig. 10a); the optimal trajectory in space Y (Fig. 10b); the
optimal control () with the vector w, ~ (—1, —2,8) (Fig. 10c). From
this example we can see that for the same points y, and y, time 7' = ¢, —1,
under the optimal control in the sense of Problem IT is shorter than that
under the optimal control in the sense of Problem I.
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x)
ﬁ

4
P X, ~(-263,237)

Fig. 9. Optimal solution of Pro-
blem I for the following data: /
y0=(_5,0), w0=0,y1=0

w*(t)=sin(t-135) .

6 7  t[sec]

=0 | =237 =38
-1 ;
x2
ad J’j’ J- .
i X,=(~4, 28)
' - 3
'
i . X,=(-047, 089)
]
E > X’
-5 | —3 =2 2
BRSNS
g
4
b t, <t <t,
3
4\\ ;
-6 + -4 -3 -2 —7\

g
Ly 5,50 ﬁ 0

c wi(t)

wr )= sin(t+0.74) Fig. 10. Optimal solution of Pro-

/ (\, 4 5 / t[sec j blem II for the following data:

0
= 5N o= (=5,0,9, =0

w(i;)=(-1,-26)
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8. Closing remarks. The discussion presented above shows that the
time-optimal control of plants whose transfer functions contain zeros
considerably differs from that of plants with transfer functions having
no zeros (or more. genera.l from the time-optimal control of plants with
continuous ~solutions - under admissible controls — of the equations
describing the plant). In the last case the time-optimal control does not
depend on the way in which coordinates of the plant ‘“have reached the
location of the  point y,”’. In other words it does not depend on what
happened to the plant since the initial moment ¢, of the control (i.e. on
the history of the .plant) depending only on the starting point y, (having
given the terminal point y,). In the former case the time-optimal control
depends not only on the starting point y, but also on the vector w(i; ),
i.e. on the ‘“position of the rudder” at which coordinates of the plant
“reached the starting point y,”’ and so it depends on what happened to
the plant just before the initial moment ¢, of the control.

Therefore in the paper two problems were stated. With the first
one ‘we have to deal if we cannot influence the control w(t) before the
initial moment ?, accepting the fact that coordinates of the plant were
brought to. the pesition of the point y, with the given “position of the
rudder’’, that is with the given value of w({, ). In this case, using the
new variable & and the function @ = w(x) which expresses the dependence
of the optimal value @ on the point x determined by new coordinates
of the plant [2], we may perform the synthesis of a system giving the
optimal control (in the sense of Problem I) of the plant in the interval
of time ¢ > t,. This control depends on the starting point y, as well as
on the ‘“position of the rudder’’ w(t, ) (and in the space X on the point &,
determined by the points y, and w(f;) = w,). We have to emphasize
that such a system may realize the optimal control immediately after
the moment of receiving information on the initial point y, and the
“position of the rudder’ w(i,).

It is obvious that in the case of Problem II the realization of an
optimal control has to be based on different rules. In this case the sulution
of the problem has to be attained before the initial moment ¢, of the con-
trol, to provide the calculated optimal ‘“position of the rudder’” w(t;)
when coordinates of the plant reach the position of point y,. To fulfil
that requirement a certain interval of time is necessary before the initial
moment ¢, of the control. If no restriction is imposed, then coordinates
of the plant may be brought to the position of point y, at the moment i,
in an arbitrary way which only guarantees the calculated “position of
the rudder’ w(f, ) just before the moment ¢,. .

Thus the realization of the optimal control in the sense of Problem II
consists of two steps. The first step is a preparatory one and from the
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point of view of Problem II only the final effect of this step is relevant:
to reach the best conditions, under existing restrictions, for the time-
optimal control during the principal second step. In the second step
the optimal control in the sense of Problem I is then performed. Since
now the optimal control is carried on in the best initial conditions achieved
in step one so the time T = ¢, —1{, for the optimal control in the sense
of Problem II in general is smaller then that for the optimal control in
the sense of Problem I.

The arguments of this paper do not cover all the considered problems
but they may be used to find similar answers to many other questions
concerning the discussed plants.

APPENDIX 1. PROOF OF FORMULAE (7) AND (8)

From the assumption that the derivatives w'(¢) and y¥(t) in (1)
are understood in the distributional sense follows(!”) that

o
(1) [y =gt -y @), i=0,1,...,n,
P

»
(2 fw(f)(t)dt = w0y -V, j=1,2,...,m,
;

for any pair of moments ¢’ and ¢’ at which the derivatives y¢~V(¢) and
wU=1(¢) are determined.

Let us assume now that b, =0 for ¢ =0,1,...,n—m—1, so that
equation (1) may be written in the form

(3") Y™ 4,y VL. ta,y = bw™+b w4 b w.

Let t be a discontinuity point of the vector-function w(t). From (2’)
it follows

T+ A¢ e} 05 1 Awtli—9 < 4
) w t for 7 <

(4) lim f at; f i, ... f wO (&) dt; = ) .\].’

A0 . ° 44 T— A4t T—4t for < > Js

where, according to (6), there is

(5') Awt= () = =9 (z+) — w9 (7).

—_——

(*?) See [4], p. 62.
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The operation specified on the left-hand side of equation (4’) will
be called in the sequel an ¢ times integration around the point t = 1.
In a similar way we have

T+ 4t t? t:—l
(6) im [ dif [d... [ y?@)dg = 4y9-9(),
40 ¢~ 44 -4l t—A4¢
where
(1) Ay(j—i)(t) — y(j—i)(r+)_y(i-i)(.,—)

and yY—9(t), if j —4 < 0, stands for the indefinite integration ¢—j times
of the function y(?).

It is easy to notice that solution y(f) of equation (3') is at least
piecewise continuous function with only first order discontinuity
points and a continuous function if m < n. To prove this let us
suppose that ¢ =t was a first order discontinuity point of the
function ¢(¢) = [y(¢)dt. Then, integrating »+1 times around the point
t = v both sides of equation (3’') we would get zero on the right-hand
side and dy(r) # 0 on the left-hand side, so that the equation would
not be fulfilled. Therefore, it has to be 4dy(r) = 0 and ¢# = 7 is at most
a first order discontinuity point of the function y(¢). Having this in mind
we get

(8") Ayi=9z) =0 for j< 1.

To prove folmulae (7) and (8) we shall proceed by induction. First
we shall integrate n times around the point ¢ = v both sides of equation
(3’). Because of (4'), (6’) and (8') we obtain

(9') Ay (z) = by dw(z) = y, dw(7),

where y, = b,.
In a similar way, integrating » —1 times around the point { =7
both sides of equation (3'), we get

Ay (r)+a, Ay (v) = by dw® (z) + b, dw (7).
Applying (9'), we obtain
Ay(l)(t) = bko(l)(T)+(b1_a17’o) dw(r) = Vko(l)(f)‘l'hAw(T)’

where y, = by, ¥y, = by —a;7,, and so formulae (7) and (8) are valid
for ¢ = 0 and 1. We shall now assume their validity for ¢ = 0,1, ...,J,
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where j < n. Integrating » —j — 1 times around the point ¢ = v both sides
of equation (3’), we obtain

Ay (1) + ay 4y (2) + .. + ay,,, Ay (v)
= by Aw D (7) + by Aw ™ () + ...+ b;,, Aw ().
Now, applying formulae (7) and (8) for ¢ =0,1,...,j, we get
AYTHD = by AwT (1) 4 (b, — ayp0) AW (7) 4 (by — ay 7, — @y y,)Aw=D(7) +
+ooo Oy — 0y — ey — .o — a1 9) dw(T)
or
Ay (1) = po 4w+ (7) + y, A (7) +... + Vip dw(z),
where
Yiv1 = b7'+1 —A Y — QY — e — R 1Y

This completes the proof of formulae (7) and (8).

APPENDIX 2. THE CASE OF LIMITED VALUE OF THE k-TH DERIVATIVE
OF THE CONTROL INPUT w(f)

Up to now we have discussed the case where the control input w(f)
i8 a piecewise continuous function having at most first order disconti-
nuity points and obeying the restriction (4). Such a function we have
called the admissible control.

Here we shall consider the case where some bounds are imposed
upon the value of k-th derivative of the control input.

Thus, we assume now that the admissible control w(¢) is a function
of time for which the derivative w® (f) (k < m is a given positive integer)
is a piecewise continuous function having at most finite number of first
order discontinuity points in any limited interval of time and taking
values which belong to the fixed interval

(4% a < w® () < 8.

From this assumption it follows of course that the admissible control
w(t) and all its derivatives w®(f) of lower order ¢ =1,2,...,k—1 are
continuous functions of time. With respect to the derivatives of higher

order ¢ = k+1,..., m—1 we accept similar requirements to those which
were formerly imposed upon the derivatives of w(f). We may substitute

w® = u,
(4%a) wkHD — oM

w(m) — u(m_ k)
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considering () to be a new control input. The restrictions imposed upon
u(t) are now of the same kind as those formerly imposed upon w(¢). Let
us introduce now the new variables:

2! =Y,
w2 J— y(l)’
wn—m-{-k — y(-n—m+k—1)’

—m+k+1 —m+k k
gn—mtEtl — gnomik) _,,  p®)

- k - k
(11*) " m+k+2 _ y(n m+ +l)_yn—mw(k+l)_ y”_m+lw(k)’ .
1 - -

z" = y(n ) — Yn- w™=1 — Yn-—m+ wm=? -7 —-k—lw(k)7
a"t! =w,
w'n+2 — ,w(l)’

k k—
"t w1

where the constants y; are now defined by a recurrent formula

(8*) Vn-m = On_m)
Vi =bi—ay; 1 —ay,_,—... =0 _pimVn-m
for i =n—m4+1, n—m+2,...,n—k.

Applying formulae (4*a) and the last % of equations (11*) to equation
(1) we obtain

1Y) y™4a g™Vt tay = bn_mu(m—k)_l_bn_m+lu(m—k—l)+
Fooet byt Bn @+ by @™+ b)),

Now, from the first n equations (11*) we may calculate y®,i=0,1,
..., . The substitution of these to (1*) and the use of (8*) yields

(1*a) &"+a, 2"+ a2 +...+a,o"
= VomW + (bn—k+1mn+k + bn_k+2wn+k—l 4.+ bnmn+l) .

Taking into account (11*) and (1*a) we get for n-+k variables
xY, 2, ..., 2"** the following system of n -+ k differential equations descri-
bing the movement of a point in the (n+ k)-dimensional space X:
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' = a7,

w2 — .,v3,

d}n—m+k—l — wn—m+k .

sn—mi+k ni—m4k+1

GrmHE = gy,

sn—-m+k+1 __ n-mtki+2
Z =2 +yn—m+lu?

ooooooooooooooooo

* “n—1 n
(12%) " =&+ Yp_g1Y,
" = —a,8'—a, B —...—a 2"+ b, 2" +b, 2"+
n+k
toet by 1 @+ Y,
a-,/.n+1 — 03”"'2,
mn+2 mn+3’
gntk =u.

In a similar way as it has been done before, it is easy to show that
to the defined in section 2 solutions y(f) of equation (1) (with the new
definition of admissible controls) there correspond, according to (11%),
continuous solutions a(t) = (z(2), #%(¢), ..., 2"**(t)) of the system of
equations (12*).

Equations (11*) may be looked upon (just as it formerly was with
equations (11)) as relations which transform a pair of points y and w
(y belongs to n-dimensional space Y and w to m-dimensional space W)
into a point @ in (n + k)-dimensional space X. We shall say that the point &
corresponds, according to relations (11%), to the pair of points y and .
To a pair of points xeX and weW (but only in the case where the last &
coordinates of ® are equal to those of w) there corresponds, according
to (11%) a unique poifit y in the space Y. Similar remarks remain valid
in the case where @, y and  in (11*) denote the functions of time 2 (t), y(f)
and w(t), respectively.

With some adjustments, which we shall discuss in the sequel, all
Previous lemmas, theorems and their proofs remain valid also in the
circumstances described here. To start with, all the formulae occurring
in the formulation and the proofs of all lemmas and theorems in the main
part of the paper now should be replaced by the new ones which are
Similar in form (especially in the matrix notation) and have the same
numbers with only an asterisk added. Thus, for example, in a former
Statement: ‘“the point @ (or the trajectory @(t)) corresponds, according
to (11), to the pair of points y and w (or to the trajectory y(t) and the
function w(t))”’ now we have to replace the phrase ‘“according to (11)”
by the new form of it “according to (11*)”.
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~ The previously used term ‘‘admissible control w(¢)”’ now has to be
understood in its new meaning defined here (with bounds imposed upon
w® (1)).

The set Z;) is now a set of all points w, of the m-dimensional space W
which, taken for the initial condition for solutions w(t) of equation (14)
at the moment ¢, (w(f,) = w(f) = w,), guarantee the fulfilment of
condition (4*) for ¢ >¢,.

The set Z] is now defined as a set of points @, of the (n + k)-dimen-
sional space X which correspond, according to (11*), to all pairs of points
y, = 0 and w, e Z}. Thus, the coefficients z}, 1, ..., 2}** of points =, Z}
may be calculated from the formulae

1 —
, =0,
wn-m+k — 0’
n—m4yk+1 __ (k)
r = —VYn-mWi",
n—m+k+2 __ k k+1
. x T2 = —7’n—m+l'w§ )—71;—mwg )1

(167) e e e e e et e e e e e e e et e
n k k41 m-1
) = —yn—k—lwl)—yn—k—zw(l ) —. '—Vn—m'wg )7
nt1 _
) Wy,
n42 - 1
xyt 'w(x)7
n+k k-1
" = w{k-Y

where w,, w{",...,w{™ V) are the coordinates of an arbitrary point
w, eZ;. The last m formulae of (16*) may be written in the form
(16*8‘) X = —P*wl,
where
w, = (wy, v, ..., w{"),

a7 ¥, = (afTmHRRL gpomARi L altE),
and 0 0 0 Yoom O 0 0
0 0 0 Yp-mi1 VYn-m O 0
(18*) rr=jo o .. o Yo—k+1 VYn—k+2 Vn-k+2 -+ VYn-m/|.
1 0 ... 00 0 0 . 0
01 0 0 0 0 0
_0 0 1 0 0 0 0 |




Time-optimal control 319

Due to the assumption b,_,, # 0 the matrix I'* is nonsingular
(19%) detI™ = (—1)km-Bpm-k - ¢
and there exists an inverse matrix ™~ so that
(20%) w, = —I' g,

Thus, formula (16*a) or (20*) determines an one-to-one correspondance
between the points of spaces W and X. '

From (16*) it follows that any point @,eZ; has the first n—m 4k
coordinates equal to zero

_ n—m+k+1 n—m+k42 n+k
x, =(0,0,...,0,2 y Ty yeeeey &)

and the corresponding m-dimensional vector x, contains (so as it was
before) all the remaining coordinates of &, which may be different from
zero.

The definition of the set Z, remains the same with the only change
that now we admit only those controls w(t) for which the k-th derivative
fulfils the specified conditions. The set Z,, now consists of such points
w, for which
a< w},") <p if wltD >0,

(23*
) a<w® < p if wlth<o.

To Z (y,) now belong those points &,¢ X which correspond, according
to (11%), to all pairs of points y, and w,, where w, is an arbitrary point
of Z,.

Equation (25) takes now the form
(25*) % = 9o— I w(ly),

Where
¥ = (mo—m+k+1’ mg—m+k+2’ ) wg+k)’

P, = (yn—mHR yirmrktd g0, 0)

are the corresponding m-dimensional vectors.
Taking into account (19*), we may obtain from (25%)

(26*%) w(ty) = I (9 — %)-

There are no difficulties to write further formulae with asterisks
Which now correspond to the former ones occurring in all lemmas, theorems
an proofs of the main part of the paper.

6 — Zastosowania Matematyki XII. 3
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STEROWANIE CZASOWO-OPTYMALNE DLA OBIEKTOW, KTORYCH FUNKCJE
PRZEJSCIA POSIADAJA ZERA

STRESZCZENIE

Prawa strona réwnan réiniczkowych rozpatrywanych obiektéw jest liniowa
forma sygnatu sterujacego w(f) i jego pochodnych w®(f),..., w(™ (f). Rozpatruje
sie przy tym funkeje w (), mogace posiadaé punkty nieciggloéci. Dla takich sygnaléw
w(t) wprowadzono w niniejszej pracy okreslenie rozwiazania y(f) danych réwnan
rézniczkowych. Pokazano, Ze rozwigzania y(t) = (y(t), yV (), ..., y(*-1()) moga
posiadaé punkty nieciagloéci. W zwiazku z tym, do wyznaczenia rozwiazania y (%)
z warunkiem poczagtkowym ¥(f;) = ¥y, potrzebna jest znajomosé wielkofci w (8 ) =
= (w(ty), w(ty), ..., wm=1 (7). Réwnies do wyznaczenia sterowania optymalnego
potrzebna jest znajomo&é nie tylko punktéw — poczgtkowego y, i koricowego ¥
— ale takze wielkofci w(ty), czyli ,,ustawienia steru” bezpoérednio przed chwila fy
rozpoczecia sterowania.

Biorge to pod uwage, w pracy postawiono dwa nastepujace problemy: pierwszy
— gdy dane sg punkty y, iy, oraz wielko&é w (fy°), a nalezy znalezé sterowanie czasowo-
-optymalne dla ¢> {, — oraz drugi — gdy dane s3 punkty y, i y,, a wielkosé w(fy)
nalezy réwniez znalezé, przy czym poszukiwane sterowanie optymalne powinno byé
dopuszezalne w przedziale czasu t> #— ¢ (¢> 0). W obu problemach stawia si¢ przy
tym — podobnie jak w [1] — wymaganie, aby punkt po osiggnieciu polozenia ¥
(czyli po chwili ¢;) pozostawal nadal w tym polozeniu.

Wprowadzajae, podobnie jak w [1]-[3], nowe zmienne @, ktére przy rozpatry-
wanych sygnatach sterujacych sa cigglymi funkejami czasu, sformulowano i udo-
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wodniono twierdzenia dotyczace obydwu probleméw. Z twierdzen tych wynika, zZe
sterowanie optymalne dla ¢> ¢, jest rozwigzaniem réwnania rézniczkowego, powsta-
jacego z przyréwnania do zera prawej strony réwnania obiektu. W przedziale czasu
lp< t<t, sterowanie optymalne — w przypadku problemu pierwszego — mozna
otrzymaé, rozwigzujac zagadnienie sterowania z zadanego punktu poczatkowego
do zbioru punktéw koncowych. W przypadku problemu drugiego, sterowanie opty-
malne dla ¢, < ¢ < t; wynika z rozwigzania zagadnienia sterowania ze zbioru punktéw
poczatkowych do zbioru punktéw koiicowych. Do rozwigzania obu tych zagadnien
moga byé pomocne odpowiednio zastosowane warunki transwersalnosci.

Okazuje si¢, ze w przypadku problemu drugiego, gdy mamy mozno§é wyboru
»ustawienia steru’” bezposrednio przed chwile #, rozpoczecia sterowania (czyli gdy
mozemy ,przygotowaé obiekt” do optymalnego sterowania), mozemy zazwyczaj
znacznie skrécié calkowity czas sterowania T = ¢, —1,. Widaé to wyraZnie w rozpa-
trzonym szezegélowo przykladzie sterowania obiektem o réwnaniu y = w4 w.

W pracy rozpatruje si¢ zasadniczo przypadek, gdy ograniczenia nalozone 83
na sam sygnat sterujacy w(f). W dodatku 2 pokazano, jednak, Ze oba twierdzenia
1 inne rozwazania zamieszczone w pracy 83 réwniez prawdziwe, gdy ograniczenia
nalozone s3 na k-t3 pochodna sygnalu sterujgcego (gdzie k < m).



