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1. Introduction. Let X be a compact metric space and let C(X)
denote the space of real functions continuous on X, normed by

Ifll = max {w(2)|f(®)|: © e X},

where w is a positive weighted function from C(X). We assume that &
i8 a continuous mapping from the open subset K <= C(X) into C(X).
. Let M be an arbitrary fixed non-empty subset of K. The following three
definitions from [3] will be useful:

Definition 1. An element p € M is an optimal starting approxi-
mation in M for g € ®(K) if
lg—2(@PN<lg—D(ll for all ge M.

Definition 2. The operator @ is called pointwise strictly monotone at
fe K i, for each h, g € K,

|D(f) (@) — D (h) ()] < |D(f) (o) — P(g) (%) for each x, € X,

where either g(z,) < k(%) < f(#) or f(ao) < h(a) < g(a)-
Definition 3. The operator @ is said to be pointwise fived at f e K
if h e K with h(z,) = f(%,) for x, € X implies

D(h) (@) = P(f) (o).

Meinardus and Taylor [3] proved the Alternation Theorem charac-
terizing the optimal polynomial starting approximation. Gibson [1]
Proved this theorem for the optimal rational starting approximation.

In this paper, assuming additionally that

(%) g(z) = h(z) implies ®(g)(2) = P(h)(2) for all g, h e M,

Wwe obtain theorems characterizing the optimal polynomial and rational
Starting approximations being dual to the Kolmogorov criterion.

We note that assumption (x) is only needed in the proofs of the
Sufficiency of Lemma 1, Theorems 1 and 2, but not in the proofs of the
necessity.
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2. Main results. First we prove the following lemma:
LemmA 1. Let f,g,he K = C(X) be arbitrarily fized and let the

operator @ be pointwise strictly monotone and pointwise fized at f. Let
D = {w: w(®)|D(f)(®)—D(g)(2)| = IP(f)—D(g)II}.
Then, for x € D, the inequality (f—g)(x)h(z) > 0 (or (f—g)(2)h(x) < 0)
holds if and only if there exists a real number A +# 0 such that
IP(f)—P(g+ ) < 1D(f) — P9l
Proof. Necessity. Let us suppose that

(f—g)(@)h(x) >0 for each x e D.

Since the set D is closed and K is the open set, we can choose i, > 0
such that, for 0 < 1 < 4,, we have

g+AheK and O0< Asup{|h(z)|: x € D} <inf{|(f—g)(»)|: x € D}.

Therefore, by the inequality (f—g)(z)h(x) >0, 2 € D, for those 4
and for each x € D we have either

9(®) < g(»)+ Ah(x) < f(»)
or
f@) < g(x)+Ah(2) < g(®).

Now, since @ is pointwise strictly monotone at f, for 0 < 1 < 4, and
for all x € D we obtain

w(@) |D(f) (@) — P9+ Ah) (@) < w(@) |D(f)(x) — P(g)(w)] = [P(f)—P(PH.

If D = X, then the proof is completed.

Otherwise, from the continuity of the function w|D(f)— DP(g+ Ah)]
it follows that there exists an open set U > D such that the above ine-
quality is true for x € U. Let V = X\ U. Obviously, V is a closed set,
Let us write

6 = sup {w(x) |D(f)(x) — P(g)(@)|: © € V}.

Since VND is an empty set, we have ||®(f)— P(g)|| > 6. From the
continuity of @ it follows that there exists A, > 0 such that for 0 < 2
<2< 1; we have

IP(9) —P(g+ AR < |P(f)—P(g)I— 3.
Hence for x € V and 0 < A < 4, we obtain
w(2)|D(f)(2) — P(g+Ah) (@) <
< w(2)|2(f)(2) — P(9) ()| +w(2)|D(g)(w) —P(g+ AR) ()]
< 6+1P(f)—P(9)! =36 = 1D(f)— (.
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Finally, for 0 < A< A, we have
I1P(f)—P(g+2AR) I < 1P(f)—P(g)li.

The proof in the case of (f—g)(x)h(r) < 0 for all z € D is analogous.

Sufficiency. Suppose, on the contrary, that there exist z,y e D
such that

(F—9)@h(z) <0 and (f—g)(y)h(y)>0.

First, we assume that (f—g)(2)h(z) = 0. If h(2) = 0, then, by (%),
the proof is evident. If f(z) = ¢(2), then it follows from the fact that & is
Pointwise fixed at f that @(f)(2) = P(g)(2), and hence the proof is com-
Dleted.

In the second case we assume that (f—g)(2)h(2) < 0. Then for an
arbitrary 4 > 0 we have either

g(2)+ Ah(2) < g(2) < f(2)
or

F(2) < g(2) < g(2) +Ah(2).

Hence and from the pointwise strictly monotonicity of & at f, for
every 0 < A< 4, we obtain

w(2)|B(f) (2) — B(g +AR)(2)] > 0(2) [B(F) (2) — D(g) ()] = ID(f)— B(g)l,

where 4, is the greatest real number such that g+ 4,k € K. On the other
hand, there exists 4,, 0 < A, < 1,, such that for 0 < A < 4, we have

wYP(f)(y)—P(g+AR) (W) < [P(f)— P (9.

By the above inequalities, the proof of the lemma is completed.
Note that without assumption (x) the sufficiency part of Lemma 1
may be stated as follows:

If there exists a real number A % 0 such that

1P(f)—P(g+ R < IP(f)—P(9)ll,
then, for x e D, the inequality (f—g)(@)h(z)=0 (or (f—g)(2)h(x)<0)
holds.
. The proof of this is analogous as that of Lemma 1 and, therefore,
18 omitted.
Definition 4 (Kolmogorov and Fomine [2], p. 125). The open set

K < ((X) is said to be an open field if it contains a non-empty kernel
J (K) defined by

J(K) ={feK: VgeC(X) e >0 (|t|< ¢ implies f+1g € K)}.
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THEOREM 1. Let &: K—~>C(X), where K is an open field in C(X),
be a continuous operator. Let V be an arbitrary subspace of C(X) and let
M =KnV be a non-empty set. Additionally, suppose that @ is pointwise
strictly monotone and pointwise fized at f € K\ M. Then p € M is the optimal
starting polynomial approximation for @ (f) in M if and only if there exists
no function g € V such that

(f(x)—p(2))g(z) >0

for every ® e D = {w: w(@)|D(f)(x)—D(p)(®)| = IP(f)—D(p)I}

Proof. Since K is an open field, the proof of the necessity follows
immediately from Lemma 1.

For the proof of the sufficiency we suppose, on the contrary, that
h € M is a better starting approximation in M for &(f) than p. Then

|2(f)—D(p+ (h—p))|| < 1D(f)— D(P)I

and Lemma 1 imply

(f—p)(@)(h—p)(®) >0 for all z e D.

Thus, we may set ¢ = h—p, which completes the proof.
Without assumption (x) the sufficiency of this theorem may be formu-
lated as follows:

If there exists mo function g € V such that

(f@)—p(@)g(@) >0 for every v € D,
then p e M is the optimal polynomial starting approximation for D(f)
n M.
Now, let us assume that two subspaces P and @ are fixed in C(X).
We denote by R the family of functions r = p/q, where p € P, q € Q and

g(z) > 0 on X. For a fixed r € R, let P +rQ be the subspace of (X) such
that

P+rQ ={p+rq: peP and qec@}.

THEOREM 2. Let @: K—C((X), where K i8 an open field in C(X), be
a continuous operator and let M = KNR be a non-empty set. Additionally,
we assume that @ is pointwise strictly monotone and pointwise fixed at fe K\ M.
Then r € M is the optimal rational starting approximation for ®(f) in M
if and only if there exists no function g € P+ rQ such that

(f(2)—r(@))g(@) > 0
for every o€ D = {w: w(2)|B(f)(@)— B(r) (@) = [D(f)— B}

Proof. For the proof of the necessity we suppose that the function
g = Po+7q, € P+rQ, where r = p/q agrees on D in sign with f—r. Then
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the function (f—7)g/(¢g—Agq,) i8 positive on D for a positive number 2
such that (¢—1¢,)(z) > 0 on X. Hence and by Lemma 1 there exists
& positive real number A, such that for 0 < 4 < 4, the inequality

|D(f) — D (r+ 2g/(g— Ag0))|| < 1D () — B ()]

holds. Hence and from Definition 4 it follows that there exists a 1 > 0
such that the function

r+29/(¢—Aq) = (P+Apo) /(4 —Ag) € M
approximates f better than r.
The proof of the sufficiency is analogical as that of Theorem 1.
Without assumption (x) the sufficiency part of Theorem 2 may be
stated in an analogous way as in the polynomial approximation.
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CHARAKTERYZACJA OPTYMALNYCH STARTOWYCH
WIELOMIANOWYCH I WYMIERNYCH APROKSYMAC)I

STRESZCZENIE

W niniejszej pracy udowodniono twierdzenia charakteryzujace optymalng
startows wielomianows i wymiernsg aproksymacje, dualne w przypadku klasycznej
jednostajnej aproksymacji do twierdzen typu kryterium Kolmogorowa.



