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IMMEDIATE SERVICE
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1. Introduction. In this paper we consider a class of single-server
systems in which consecutive inter-arrival times and also service times
are not necessarily independent and identically distributed. Such systems
were investigated by Bene§ [1] (wirtual waiting time W (¢)) and Borovkov
[2] (actual waiting time W, of the n-th arriving customer). For the case
of the Poisson input and general independent not necessarily indentically
distributed service times, Szczotka [6] has found the generating function
of the number of units in the system and the stability conditions.

Bene$ [1] has given conditions for the existence of the limit

LmP{W(t) =0 | W(0) = 0}
t—>o00

\

and also the value of it. Marcerian and Tauberian methods were used
to investigate this limit. Results of Bene§ are not sufficiently effective
to be used in queueing practice. He has described the queueing systems
in terms of total work load K (¢) offered up to time ¢ and used an as-
sumption of Tauberian or Marcerian type concerning the functions

F(t) = Emax(0,t—K(t)), R(t) =P{K()<t},
P(t)y =P{W(t) = 0}
and their Fourier transforms.

In this paper we give the local description of the considered queueing
8ystems, i.e. in the independence case in terms of the distributions of
Service times. Stability conditions are also given. Furthermore, we give
conditions for the existence of the limit of the conditional probability

P{W@)< x| W(0) =0} for ¢t tending to infinity and we give the
Value of it.

2. Local description of the queueing system. Suppose that

I' ={x;i,j>1} and 8 = {s}; 1,5 =1}
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are infinite matrices of non-negative random variables defined on the
probability space (2, #, P).
Let 7, be a proper, non-negative random variable independent of
st and t, i, j > 1.
Put
5;:=3;:—T;:1 t, j =1,

n
§={;j>1}, n=mnfn: Ye<o}, i>1.
ji=1

Let us write the following conditions:

a,. the sequences &' are independent and identically distributed;

a,. P{& >0} > 0;

a;. Er; < oo

a,. E(s{ |7, >%k) = Es. and E(7} |, > k) = E7i, where E(- | ; > k)
denotes the conditional expectation of - in relation to event {r;> k}.

Let us define the following sequences of random variables:

n(n) = max{ Zr <n}

RO =0’ 'Ri =‘Ri—1+r'i7 i}l,

Vo =N — Rn(n)’

8y = s"(")+1, T, = 'c;’,f:)“, n>1.

The sequence {s;,,, 7;,j > 0} generates the single-server queueing
system in which s; is the service time of the j-th unit, and 7; is the inter-
-arrival time between the (j—1)-st and j-th units.

We assume that conditions a,-a,; are satisfied. Then 1;3 is the time
between the arrivals of the j-th and (j+1)-st units during the i-th busy
period, s} is the service time of the j-th unit during the ¢-th busy period,
and 7, is the number of services during the ¢-th period.

Condition @, implies that the random variables r; are independent
and identically distributed. Condition a, implies that the expected value
of the busy period is positive. Condition a, holds if all random variables
sj and 7}, j >1, are independent.

According to Chow and Robbins [4], we give two groups of condi-
tions for which a, holds.

a. Independent case. Here we assume that &, j > 1, are independent
random variables satisfying

n
) .1
(i) hmz E E¢ =c, —o0< <0,
n—> =
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(ii) lim [ (B&—&) =0 for every &> 0,

tad 1,1
{B&, —&,>ne}

(i) [ ®&-&)> —k> —.
{BE), £ <0)

Sometimes it is advantageous in practice to express these conditions
by moments. One can see that condition (i) and the condition

El& —E&°< k for some o> 1
imply (ii)- (iii).
b. Dependent case. Here we assume that the dependence of & is
expressed by the formula

E(f; l ‘g’-j—l) = EEZ’

where E(-| #;) denotes the conditional expectation of - in relation to % i
and #; is the o-field generated by the random variables (£,, &, ..., &).
Then a sufficient condition for a, is condition (i) and

(ii") E(& B | F,_1) <k for some a>1.

Let W(t) be the virtual waiting time in the considering queueing
system, and let

Ty =7y T =Tk 1+, k>1,
To = 0, to = To, tk == Trk _T

Tre—1 ’

Under conditions a,-a, the sequence of random variables {¢,, k > 0}
forms a general renewal process. Denote by F the distribution function
of the random variable ¢, for k > 1.

THEOREM 1. If conditions a,-a; hold, the distribution function F is
aperiodic and

"1
E E 7j < 00,
i=1

then, for any number x > 0, there exists the limit

LmP{W(t) <z | W(0) = 0}.

t—>o00

Remark. One can see that condition a, and the boundedness of the

Sequence
1 n
1 \Vg 1.}
2
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imply
1
E 2 7j < oo.
j=1

This follows from the equalities

1 © . % )
EZT} — ZE(T; | 7, > §)Pir, > j} = 2:1?{7«1 - i}i-—i—ZEr}.

=1 =1 =1 j=1

Since Etr; >0, we can change the order of summation in the last
expression.

Proof. We use the results of Smith [5] to prove this theorem. Notice
that {T, ,k >0} is the sequence of regeneration points of the process
W (t). Let « be a fixed and non-negative number. We define the functions

D(t—u) =P{WHt)<xz| W(0) =0, Tn, =u, n; > 0}
and
Y () = (1—F(1)D(2),

where n, is the greatest number k£ such that T, ... .. <t We prove
that the function Y(¢) is of bounded variation in every finite inter-
val [a, D).

Let S = {t: W(t) < =}, Fr(8) denote the frontier of S, I = [a +T,,
b+T,), and L(I) = nyyq,—Neyr, e the number of regeneration points
of the process W (¢) in the interval I.

From condition a, we know that the expected value of the length
of the renewal period is positive. Hence E L(I) < oo.

Let y, = card{JnFr(S)}, where J is an interval, and let y; =
= Yz, _ T, where §; is the number of times the process attains or
crosses level z in the i-th busy period. Notice that 4; < r;+2. Hence
E §; < oo. In the above-given notation we have

LD+
(1) ur< D G2

i=na+T0

Notice that the random variables ;, ¢ > 1, are independent, identi-
cally distributed and

(2) E(ﬁn,,+To+i | L(I) >i—1) = E Gy ypy+ic
From (1) and (2) we obtain
E(y; | T,y W(0) = 0)
<E(L(I)+1) | T,, W(0) = 0)E(#+2 | T,, W(0) = 0)
< E(LI)+1)E(§;+2) < oo.
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y; is the non-negative random function of subintervals J of I
satisfying

Yr,+9Y1, =Yr,o1, for I, L, =Iand nIl, =9.
The random function y; satisfies the conditions of Smith’s lemma

([5], Lemma 2). Hence the function ¥(¢) is of bounded variation in every
finite interval. From [5] (formula 3.4.3, p. 15) we have

P{Wt)<z|W(0O) =0} =P{W(@)<wz, To>1t| W(0) =0}+
t
+ [ @ —w) (1 —F(t—u))dH (u),

where H(u) is the renewal function of the general renewal process
{T,,, k> 0}

Using Smith’s theorem ([5], theorem 2, p. 14), we obtain theorem 1.
Observe that theorem 1 can be obtained immediately from Smith’s theorem
if the distributed function of si is absolutely continuous.

THEOREM 2. If the assumptions of theorem 1 are satisfied, then
(3) limP{W() =0 | W(0) =0} =1—s/7,

where

Proof. To prove this theorem we use the results of Bene§ [1].
Let n(t) be the greatest number % such that T, < {. Put

n(t)
E(t)=D's, K(0)=0.

i=1
The process K (t) satisfies the requirements of [1]. Bene§ has shown
([1], formula 17, p. 42) that
14
0 = [P{E(t) < updu— [ P{E(t)—K(u)—t+u<0, W(u) = 0}du.
0 o,

From [1] (formula 16, p. 15) we have

4
(4) 0 =Emax(0,i—K()— [P{W(u) = 0}du+
0

t
—f-fP{K(t)—K(u)—t—l—u >0 | W(u) = 0}du,

Emax(0,t— K (t) = B(t—E(t) — Bt — K (%)) za,
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where y,, is the indicator of the set @, 2, = {{—K(¢) < 0}. Write
T =8, q1tSy, p2t...+8, k>1.

The random variables x; are non-negative, independent and identi-
cally distributed. The following inequalities are satisfied:

ng n(t) n+1
2 o< Y < ) o
k=1 k=1 k=1

From the ergodic theorem ([5], theorem 7, p. 27) we have
1 & 8
7ka_>?<1 as t —»o0,
k=1

where s = Ex,, and v = E{,. Hence

Therefrom, P(£;) -0 as t{ >oo. By [5] (theorem 8, p. 28), we have
Exz,
Et,

Notice that the last expression in (4) is o(?). Dividing (4) by ¢ and
increasing t to infinity, we have

E(l—%K(t))=1— +0(l) ast—>oo.

E
HmP{W () =0 | W(0) = 0} =1 — —2,

In the general case, theorem 2 does not give a simple method of the
effective calculation of limit (3). This limit can be estimated basing on
the distributions of the sequences {sj, 7;, j=>1}. Let us consider two
particular cases.

COROLLARY 1. If the assumptions of theorem 2 and a, hold and if there
ewists a number k such that P{r, < k—1} = 0 and also if Es} = Es; and
Er; =E1j, for i >k, then

. Es;
HmP{W(t) =0 W(0) =0} =1——"%

COROLLARY 2. If the assumptions of theorem 2 and a, hold and if there
exists a number p such that uEs; = B 1, then

HmP{W(t) =0 | W(0) =0} =1—1/u.

t—>o0
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Notice that u > 1. This follows from a theorem of Kolmogorov and
Prokhorov [3], from the inequality

T 1
Msi< D'
=1 1

i=

and from condition a,. In fact, we have

[ k o] k
MP{r, =k ) Evl =p D P{n =k ) Esl.
k=1 i=1 k=1 i=1

Since
T 71 "
E21k<oo and EZrk>EZsk,
k=1 k=1 k=1

we obtain u > 1.
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W. SZCZOTKA (Wroclaw)

PRAWDOPODOBIENSTWO OBSLUGI BEZ CZEKANIA
W BENESOWSKICH SYSTEMACH TYPU G/G/1

STRESZCZENIE

W pracy rozwazamy klase systeméw masowej obstugi, w ktérych kolejne od-
stgpy miedzy zgloszeniami, a takze czasy obstugi zgloszen, nie muszg mieé tych samych
rozkladéw. Podaliémy warunki stabilnodei systemu, warunki istnienia granicy
P{W () < = | W(0) = 0} dla t dazacego do nieskoriczonosci, gdzie W () jest wirtualnym
czasem czekania, oraz znalezliSmy te granice w przypadku x = 0.



