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OPTIMAL STOPPING OF A SEQUENCE OF MAXIMA
BETWEEN RANDOM AND FIXED BARRIERS

0. Introduction. Let X, X5, ..., Y¥, Y& ... (k=1,2,..., K) be inde-
Pendent copies of a known continuous distributed random variable. Suppose
that we observe the realization of the sequence &, = max (X4, ..., X,) only.

€ want to stop the observation at the moment at which &, exceeds the
maximum of unobservable sequences and it does not exceed a fixed constant
With maximal probability. The infinite and finite fixed lengths of observation
are considered. In Section 1 the precise formulation is given. The above
Problems can be led to the classical optimal stopping problem for some
Markov chain (see, e.g., [3]). The way of this reduction is presented in
Section 2, Sections 3 and 4 contain the solutions of these problems. The
Optimal gains are found. In the finite case, the optimal stopping time and, in
the infinite case, the method of calculation of the ¢-optimal stopping time are
Obtained.

Maximizing the probability that at the moment of stopping the given
€vent is attained in the so-called “secretary problem” and “disorder problem”
Was investigated (cf. [1]-[3]). The problem of optimal stopping the two
S¢quences of maxima when only one is observed was considered by Szajow-
ski in [4]. This paper generalizes a part of Szajowski’s results.

L. Formulation of problems. Let K be a fixed positive integer number.
Assume that

(1) X, X,,...,Y, Yk ... (k=1,2,...,K) are independent identically
distributed random variables with a continuous distribution function
F, defined on the probability space (2, &, P).

Let

Sn=max(X,, ..., X)), n,=max(Yl,..., Y, .. YK .., ¥K,
)]

a =sup {xeR: F(x) < A4},

Where 4 is g given number in the interval (0, 1], and R is the set of real
Numbers, L et &%, be the o-field of events generated by &,, ..., &,, and 7 be
the set of al Markov moments with respect to the family (#,)2;.
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Consider the foliowing two problems (Py) and (P):
(Py) Find a stopping time t* €7 such that

P(‘[* <N,az éﬂ)ﬂﬂ) =supP(r<N,az=z¢ > 'h),
ted

where N is a fixed positive integer number, and under the assumption that
(3) A#1
(P) Find a stopping time t* €4 such that

Px* <w,a=2¢&+>ns) =supP(t <o0,a =& >n).
ted

2. Reduction of the problems. In this section, for convenience we put N*
= N for the problem (Py) and N* = oo for (P). Write
) - Z,=P@z{>nl#F), n=1,2,.., N,

for the both problems. From (3) we have Z , =0 as. (almost surely) for the
problem (P). Thus

Pa=zé >n)=E(Z,) for ted

such that P(t < N*+1) =1 (E denotes the expectation with respect to the
distribution P).

| Since F is a continuous function, F(X,) is uniformly distributed on
[0, 1] and ’

P(X,>Yf < F(X,)>F(Y9H)=1.
Therefore, without loss of generality we may additionally assume

(5) the random variables X, and Yy (n=1,2,..;k=1,..., K) are uni-
formly distributed on {0, 1].

Using (5) we can write (4) in the form

7 _{4‘:‘" if {,<a,
"0 if ¢£,>a.

The sequence ¢ = (£,)Y-, is the Markov chain with respect to (#,)Y., (we
assume &, =0 as. and %, = {Q, 2}) with the state space [0, 1] and the
transition function

x+|Bn(x,1]] if xeB,

(6) Py (B) = P($y44 eB [En=x) = {|B N(x, 1] if x¢B

for n=0,1,..., N*—1, x€e[0, 1], B being a Borel subset of the interval
[0, 1], where |-| stands for the Lebesgue measure.
Thus we reduce both initial problems to the optimal stopping of t_hc
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Markov chain ¢ = (¢)M, with the reward function f, where

™ f(n, %) = {0 " for xel0, al,

for xe(a, 1]

for n=0,1,..., N*. The problem of the optimal stopping of the Markov
chain ¢ W1th the reward function f(n, -) consists in calculating

v(x) £ supE, f (s, &)

teF

(E, denotes the expectation with respect to the distribution P,, x is the initial
State) and in finding a stopping time t* € such that

Exf(r*9 61‘) = U(X)
(f. [3)). Put
IV ={ted: n<1< N*},

(8) vin, ¥ = sup E.f(z, &) if &=x,

, te.T ,
Tf (n, x) E.f(n+1, ).

For solving the problems, first of all we show the following
Lemma 1. The equation Tf (n, x) = f(n, x) has in the interval (0, a) the
unique solution x0 for n=1,2, ..., N*—1 such that ‘
x0<x%, and Tf(n, x) < f(n, x) for x> x2.
Proof. Let x€[0, a] and n < N*. From (6) we have

E f(n+1, &) = xK+Dxy [kt gy

Kn+1)+1

K(n+1) a
il UL Y (UL YR S
K(n+1)+1 Kn+1)+1

Define the function g(n, x} = Tf (n, x)—f(n, x). It is continuous on [0, ],
has at most a unique extremum and g(n, 0) >0, g(n, a) <0. Therefore, the
equatlon g(n, x) = 0 has the unique root x%. On [x2, a] the function g(n, x)
is obviously non-positive. To prove the inequality x{ < x2,, note that

g(n+1,x)=x*g(n, x)+q(n, x),
where '

L | K (n+2)+1
q(n, x) : [K(n+1)+1] [K(n+2)+i]'xx
ZKo+ D+1 gkrr D+l

TK@n+1)+1 xK+K(n+2,)+1'
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Since the function g(n, x) is .positive on [0, a), we have
g(n+1, x3) = q(n, x3) > 0.

This fact and the properties of the function g(n+1, x) yield x2, , > x°. The
lemma is proved.

3. Solution of the problem (P,). To solve the problem (P,) we use the
following

Lemma 2([3], [4]). Let & =(&,)3- be a homogeneous Markov chain with
a state space E and let

f:10,1, ..., N} xE >R

be a non-negative bounded function. Then the function v(n, x) satisfies the
equation

v(n, x) = max {f(n, x), To(n, x)},
and the stopping timz
Tf =min{n <k <N: v(k, &) = f(k, &)

is optimal in Y. The optimal gain is v(x) = v(0, x) and the optimal stopping
time is 1¥.
Now we prove ‘he following theorem giving the solution of (P,).

Taeorem 1. Under the assumptions (1) and (5) there exists a solution of
the problem (Py) which is of the form

©) h=min{n < N: &, > x,},
where xy =0 and x, (n=1,..., N—1) is the root of the equation

KN
KN+n

(10)

xKN+n+(prn__xK(N—ﬁ) =il

in the interval (0, a). The constant @y_, = @y_,(Xy-n+1) can be obtained
recursively by the formula

. KN xKN+n ‘ 1 xK(N=n+1)+1
(KN+n—1)(KN+n) " """ K(N—n+1)+1 V!

aK(N—rH- 1)+1

+K(N_n+1)+1+¢N—n+1 xN"II"‘l

1) on-, =

Jor n=1,..., N—1 (py = 0). The optimal gain is

(12) oy = (@1 + KxE+1 - Ry NK+1y,

K+1
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Proof. It is clear that v(n, x) = 0 for x > a. Now we assume that x < a.
Lemmas 1 and 2 together with (6) and (7) give

xK(N=1) for xy., <x<a,
13 — — KN+1 '
13)  »(N-1,x) { KN L., @ for x < xy_1,
KN+1 KN+1
Where xy_, = x%-, (defined in Lemma 1). Notice that
aKN+1
KN+1 vt
Now we show that
xKN~2) for xy_, < x<a,
(149  yN-2 x)={ KN
’ ———x N2 o for x < xy_,,
. KN+2x Pn-2 N—-2

Where ¢, _, is defined by (11), xy- , is the solution of equation (10) for ‘r't =2
and <Xy-3 <Xy_;. Lemma 2 implies

p(N—2, x) = max {f (N—2, x), TH(N—2, x)).
Using (6), (11) and (13) we obtain

K(N—-1)+1
K(N-1) xx(~—1)+1+_aN—r_.T for xy_; <x<a,
-— K(N-1)+
T(N=2, x) = Kj(gv D+l (V=1
KN+2xKN+2+_(PN_2 for x <xy_y.

The function h(N-2, x) £ To(N -2, x)—f(N=2, x) is continuous on
(0, @) and it has the following properties:

(@) h(N-2, x) <0 for xy_, < x < a:

(b) h(N -2, x) >g(N-2, x) for x <xy_;;

(¢) for x < xy_, it has at most a unique extremum.

The statement (@) is valid because h(N-2,x)=g(N-2,x) for
X€(xy_y, a), the function g(N—2, x) has on (0, xy_,) the root x3_,, X9,
<XN-y =xy_, and g(N—2, x) <0 for x > x3., (cf. Lemma 1). The state-
ment (b) is a consequence of the fact that TW(N—2, x) > Tf (N—2, x) for x
=*y-1. From (a), (b) and (¢) ((¢) is easy to show) we conclude that the

nction h(N—2, x) has the unique root xy_,€(0, xy_,) and x§_, <xy_,
<Xy-1. The form of v(N—2, x) is shown.

Let us assume for induction that we have obtained forn =1, 2, ..., i—1
the roots Xn~n of equation (10) having the property
(15) |

. 0
Xy—1 > XN—2>...> Xy—i+1 > XN-i+1
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and
YKN=n) for xy_,<x<a,
(16) v( n, x) {KN-anKN”HpN_" for x < xy_,.

Now we determine xy_; and v(N—i, x). Using (11) we can write To(N —i, x)
in the form

TO(N—-i, x) _
K(N—i+1) gtk -ith+1 ,
xK(N i+1)+1 . < < ,
K(N—i+1)+1 +K(N—i+1)+1 for xy-isy S x<a
KN
KN+_xKN+'+(0N_i for x <XN—i+1-

_ Taking .into account the inequality xy_ i+1 > Xy_i+1 We can show
analogously as above that the function

h(N—i, x) £ B(N—1i, x)—f (N—i, x)

is continuous on (0, 4) and it has the following properties which can be
proved similarly as for i = 2:

(@) h(N—i, x) <0 for xy_;+; < x< a;

(b) A(N~i, x) >g(N—i, x) for x < xy_;41;

(¢) for x < xy_; it has at most a unique extremum.

Hence the equality h(N —i, x) = 0 has the unique solution xy_; on (0, a)
and x§_; < Xy_; < Xy—;+1. This implies that (16) holds for n=1, ..., N—1.

The inequalities x; <X, <... <xy_, and the fact that the reward
function (7) is increasing on [0, a] imply that the stopping time (9) is
optimal. Assuming P(£, = 0) =1 we calculate the optimal gain:

(A7) on =vn(0, 0) = T0 (0, X)|x=0

1 K N(K"'l)
xx+l ax+l
=K+l [N(K+1) 1 X

From (16) for n=N—-1 we ha_we
' KN
— K _ NK+1)-1
LTI D1

-and the optimal gain (17) leads to (12). The theorem is proved.

4. Solution of the problem (P). To solve the problem (P) we use the
following lemma:

LemMma 3 ([3], [4]). Let & = (£)2 o be a homogeneous Markov chain with
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@ state space E and let
f:{0,1,2,..} xE >R

be @ non-negative bounded function. Then the function v(n, x) given by (8)
Satisfies the equations

v(n, x) = max { (n, x), To(n, 9},
v(n, x) = lim Q"f (n, x),

m— a0

Where

(18) Qf (n, x) £ max {f (n, %), T (n, %)},
nd the stopping time
The =inf{m > n: v(m, {,) < f(m, {)+e}, >0,
is e-optimal in T, LT e,
o(n, 9 < B f (s &3 ).

I Pty < o0) =1, then the optimal stopping time is 8, and the optimal
gain is v(x) = v (0, x).
From this lemma we have

THEOREM 2. Under the assumptions (1), (3) and (5) there exists a solution
o the problem (P) which is of the form

(19) ™ = inf{n: én 2= yn}’

Where (a2, is a non-decreasing sequence such that

limy,=a
and its components fulfil the recursive equalities
(20) yEm = K(n+1) yxin1+1)+1+_ffff1_
" T K@n+)+17" Kn+1)+1
The value of Yn can be calculated as the limit
y, = lim z},
|- m

Where 2} is the unique root of the equation
@y _K@+D) -

K(n+l)+l [xK(n+l)+l_(z£'—_;11)K(n+l)+l]
K(n+1) i km+1)+1 ghrr 1 —xkn =0
Kt 41 TKmtrD+1
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in the interval (0,z,.}) for 1=1,2,... (z° Sa n= 1,2,..). The optimal
gain is

1 ke +1
(22) - L . '
Proof. We assume that x < a because v(n, x) = 0 for x > a. From (6)
and (7) we obtain |
_Tf(n,x)—_~_K__(_'f_"i (n+1)+1 M_n.
Kt D+ K(n+1)+1

Using Lemma 1 we can write (18) in the form

xkn for z; < x < a,
' Qf(na X) = { K(n+1) xKn+1)+1 _“m for x <z}
Kn+1)+1 - K{n+D+1 "

where z, = xJ (defined in Lemma 1). Thus z} <z},, and z! is the unique
solution of equality (21) for I=1 in (0, a). Since from (18) we have

(23) Q"f (n, x) = max {Q"™ " 'f (n, x), TQ™ ' f(n, x)}
= max {f (n, x), TQ™ 1f(n, x)},

we consider on [0, a] the functlon

gm(n x) Q"l lf(n3 x)—f(n, x)'

Let m=2. Then g,(n, x) is a continuous function and it has the
following properties:
(a) if x>zh,; >z}, then

g2(n, x) = TQf (n, x)=f (n, ) = Tf (n, x)—f (1, %) = g91(n, x) <0,

because g1(n, x) =g(n, x) and z; = x? (defined in Lemma 1);
(b) g2(n, x) 2 g,(n, x) 2 0 for x < z;;
(c) for x <z, the function g,(n, x) has at most a unique extremum.
From (a), (b) and (c) we conclude that g, (n, x) has the umque root z2
and zl <22 <z,,+1 Hence z1,, <z2,,, and therefore z2 <z2,,. Moreover,

xKn for zZ2<x<a
2 — R ’
| QS (n, x) = {TQf(n, x) for x <z2.
‘The constant z? satisfies (21) because for x <z2 <z!,, we have
K(n+2)
T , = 7 [xKetD+2__ (1 \K(n+2)+27
Qf (n x) K(n+2)+2[ (zn+1) i
K(n+1) gKn+1+1

( :+ )K(n+ 1)+1

K(n+1)+1""*! Kn+1)+1°
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Let us assume for induction that we have obtamed forj=1,2,...,Ithe
root zJ of equation (21), n=1, 2, ..., and
(24) z} <z_,,<...<zf,, <z,
(25)  Q'f(n, %)
- xKn for z, < x < a,
_ ] Kl(i(_':_-;)l_’)_l [ K(n+l)+l_(z£:111)K(n+l)+>l]
K1) (CAS) a for x <z!.

L PRt +1 ! K+ )+1

The function g;,,(n, x) has the following properties:
(@) if x=z',, >z, then

di+1(n, x) = Tf (n, x)—f (n, x) = g,(n, x) <0;
(b) g14+1(n, x) > g;(n, x) = 0 for x < z! because of (23) and
Q" f(m )= Qf(n, x) > f(n,x) for x <z;

(¢) for x <z.,, the function g,,, (1, x) has at most a unique extremum.

From these propertles the equality g,_,_l(n x) = 0 has the unique solu-
tion zI*1 and 2L <zi*! <z, . n=1,2,... Hence zi*t <zt and the
Statement (25) holds for each I =1, 2, .

Since the sequence (z})2, is 1ncreasmg and bounded, the limit
lim 2z = y, exists. Hence

l-g

v(n, x) = lim Q'f (n, x)
-

and, consequently,

xKn for y, < x<a,
v(n, x) = { K(n+1) gkt D+1

K(n+1)+1 £ <.
Kont)+17"1 Knt)+1 O X=h

The function v(n, x) is continuous at the- point x =y, so y, fulfils the
Tecurrence relation (20). This yields

K(n+1)+1 ~J1/Kn
[m] < Y < [aKtr*+ D+ 171/Kn
and, obviously,
lim y, = a.

Since the reward function (7) is increasing and, obviously, y, < y,+ 1, the
Optimal Markov moment takes the form (19). It is a stopping time because



92 Z. Porosinski
we assumed that P(¢, =0)=1 and

@ ao
Pa* <o) =P(U &2 0}) 2 P(U {& > a)) = lim P(¢,> a) = 1.
n=1 n=1 n— o
It is easy to show that the optimal gain is given by (22). Thus Theorem 2 is
proved.

5. Remark about a limit relation between (P,) and (P). Theorem 1 gives
another method of calculating the e-optimal stopping rule for the problem
(P). Theorems about convergence of the optimal gains and the optimal
stopping times in J3 as N tends to + oo for the stopping in the classical
case imply that the limit of the sequence of the optimal stopping times 3
given by (9) as N tends to + 0o is an optimal stopping time in (P) (cf. [3]).
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