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STATIONARY INEQUALITIES
FOR DAMS WITH CONTENT-DEPENDENT RELEASE RATE

1. Introduction. Let us consider the content process Z with state
%Pace [0, oo), defined by the stochastic equation

t
(1) Z(t) =z+A@)— [r(Z(w)du, 1>0,

Where 2 > 0 denotes the initial content of the dam, A (t) the total input
'R the interval (0,t], and r(x) the output rate if the content is x.
. Assume that the process A is a compound Poisson process with
JUMp rate 1 > 0 and jump size distribution function (d.f.) H (H(z) = 0,
f§ 0). Assume that the release function # satisfies the following condi-
10ns; r(0) = 0, r is strictly positive and continuous on (0, oc), and

@ R = [

In this model we are interested in the bounds for the stationary
C{;ntent distribution of the dam. Namely, consider two content processes
,.o’Z’ defined by (1), with input processes A° A and release functions

', Tespectively. Denote by F°, F the appropriate d.f.’s of the stationary

Yontent distributions of the dams and by F°, F their second order d.f.’s.
T an arbitrary d.f. G of the positive random variable we put

duw < oo for 2> 0.

r(u)

G(z) = fz(l —G(u))du/fw(l —G(w))du.

:n Theorems 2 and 4, respectively, we shall give sufficient conditions
OT the inequalities F°(z) < (=)F(z), > 0, and F'(z) < (=)F (@), # >0,
© holg, Next, applying these theorems we show that — under some
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assumptions concerning, among others, the identity of the first two
moments of inputs and of the release functions — the deterministic dis-
tribution of inputs is maximal, in a certain sense, among the stationary
d.f’s and the second order stationary d.f.’s (Theorems 6 and 7), and
the exponential distribution of inputs is minimal among these d.f.’s but
only in the class of IFR input distributions (Theorems 8 and 9).

The results obtained in this paper are an extension of some results
given by Harrison [3] (see also [6]) who has considered the model with
additive input process and constant release function. We show that
Theorem 2 may easily be proved also for the additive input process under
the assumption that »(0+) > 0.

2. Stationary distribution. The problem of the existence of the sta-
tionary d.f. F in the above-defined model has been solved by Harrison
and Resnick [4] who have considered even a somewhat more general
model. In [4] the construction of the Markov process Z (for the proof
of the Markov property see [2]) satisfying equation (1) has been shown
and the necessary and sufficient condition for the existence of the sta-
tionary density of this process and also its explicit-form have been given.
For our purpose we express the Harrison and Resnick theorem in the
form adapted for the stationary d.f. Therefore, we introduce the necessary
notation.

Let k, and K, (n > 1) denote the nonnegative functions defined by

(3) k(@,y) = AML—H(@—y))r(@), 0<y<a,
(4) %Wﬁf=fM%“WthwM7 0<y<a, n>2,
(5) fk yYdu, 0<<y<z, n>1.

We put k(x,y) = k,(r,y) and K(x,y) = K,(x, y). Furthermore, let

(o, 9) = Y k(w,y), K'(z,9) = D K,(,9),
n=1

and let k& denote the constant given by the formula
(6) k= [ ¥, 0)ds.
0

Remark 1. The series k*(z, y) and K*(z, y) are convergent because
by (2) the following inequalities hold:

(7) kp(, y) < A" (R(2) —R(y))"/(r (2 "‘1)!), <y <w,
(8) Kn(w,y)<7."(R(x)—R(y)"/n!, o<y<z, n=>1.
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THEOREM 1. The content process Z defined by (1) has a stationary

distribution, iff k < oo. Then the stationary d.f. F fulfils the equation
9 F(a) = F(0)+ [ E(@,wdF(w), >0,
[0,z)

Which has 4 unique solution of the form

(10) F(2) = F(0)+F(0)K*(2,0), 230,

Wheye F(0) =1/(1+k).

in The proof of the theorem is an adaptation of the proof of Theorem 1

Paper [4] with application of Proposition 6 of that paper.

b R.emark 2. If (2) is not fulfilled, then there exist stationary dis-
Tibutiong being not of the form (10). For example, in the case 7(x) = x

";nd.H(x) =1—exp(—ux), >0, we have R(x) = oo, k = oo, and the

z;i_ﬂtlf.)na-ry distribution exists and the Laplace-Stieltjes transform of this
IStribution can be obtained (see [1] or [5]).

th 3. First order bounds. In the next part of the paper we suppose
At the assumptions of Theorem 1 are fulfilled and let F be the stationary
1. defined by (10). Define a chain of functions {F,, n > 1} of the form

W @ =FO)+ [K@wdf,w, >0, 130,
[0,2)
Where F, is a given, nonnegative and nondecreasing function, and F(0)
a\ 11+ k). It is easy to notice that the functions ¥, are also nonnegative
nd nondecreasing, and F,(0) = F(0). Iterating (11) we have

02)  F@) = FO)+F(0) Y K@, 00+ [ K,(@, 0)dF,(w).
i=1 (0,2)
;Da»king in (12) the limit with n—oo, using (8) and the bounded con-
‘rgence theorem, we obtain
{13) Lm P, (2) = F(z), >0,
for ap arbitrary function F,.
Assume now that F, is of the form

(1) Fo(a) = F(0)+F(0) f}Kﬁt(m,m, »>0,

;Vr}:greothe functions K are defined by (4) and (5) with upper index zero
k) = k° is some nonnegative function.

St&t‘Remark 3. The obvious candidate for F, of the form (14) is the
10nary d.f. F° of the content process Z° defined by (1) with the input
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process A° and release function 7°. If A° is a compound Poisson process
with jump rate 2° and jump size d.f. H’ then

K (z,y) = 2 (1-H (—y))/" ().
Furthermore, if

Zk %, 0)du =k,

n=1

then F° = F,. However, in the following theorem, stating the monotone
convergence of the chain {F,,n>1} to F, the form of the function %’
is not important.

THEOREM 2. Assume that the function F is of the form (14), the release
rate r does not decrease, and the following condition is fulfilled:

(15) K'(z,y) < (Z)K(z,y) for 0<y<
Then the chain {F,,n > 1} converges monotonically to F and
B (x)/ (\)F(x), x=0.

We precede the proof of the theorem by the following

LeMMA. If the release rate r does mot decrease, then for arbitrary
n=1,2,..., x >0, the functions K, (x,y) defined by (3)-(5) are nonin-
creasing with respect to y.

Proof. We show that for every fixed # the function

K(x,y) = fxl —H (u—y))/r(u)] du

is nonincreasing. Let 0 <y, < y. Since r is nondecreasing, we obtain

24-(y—yy)
K(x,y,) = A f [(L—H (v —9))/r (v —(y —y,))] du
- (y—y;)
> f [L—H(u—y))/r(w)|du > K (=, y).

Y

Assume by induction that K;(»,y), j = 2, 3, ..., n, are nonincreasing
functions with respeet to y. Using (3)-(5) we obtain

Kopy(@,91) = 4 [ [B, (@, ) (1 —H (1 —yy)r (w)] du
z-+-(y—v,)
=4 [ K (e, u—(y—y0) (L —H (u—y)/r [u—(y—yy)] &
z+y-vy)
=2 f [K, (@, u)(1 —H(u—y))/r(w)]du> K, ,(2,9).

v
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y Proof of Theorem 2. We prove the version without brackets.
. 18 Dot difficult to see that the function F, of the form (14) satisfies
Quation (9) with K = K°. Hence and from (11) we have

Fy(a)—Fow) = [ (K(2,0)~K(z, ) dFs(u),
_ [0,2)
Which by (15) gives F,(z) > P, ().
i Assume by induction that F(x)>F;_,(x), j =2,3,...,n Integrat-
& by parts the right-hand side of (11) we obtain

Fopn(@)—Fy (@) = [ (Fo1(w) —F, (0) &, K (%, %).
[0,x)

It fOIIO'WS from the Lemma and the inductive assumption that the right-
and side of the last inequality is nonnegative, which by (13) completes
€ proof,

th _Rema,rk 4. By the assumptions of Theorem 2, we can prove directly
© Inequality F,(«) < (>)F(2) using (10) and (14) because (15) implies
® Mmequality K7 (z,y) < (>)E,(@,9), 0<y<z, n>1.

4. Second order bounds. Assume that the stationary content dis-

:Ilbl.ltion with d.f. F satisfying (9) has a finite mean ¢. Let 7 be the
ationary second order d.f., i.e. let

(16) F () =%f(1—1i’(u))du, x>0,

For the function K (see (3)-(5)) let
U Riz,y) = 1/(F(0)g) [ 1 -FO)—K(u,p)du, 0<y<a.
v
THEOREM 3. The stationary second order d.f. ﬁ’ is of the form

(18) 2

F@) = [ K(w,wdF(u), x>0.
[0,z)
th Proof. Let f denote the density for F. Formulas (16) and (9) imply
€ equalitieg

f@) =9 (1-F(0)~ [ K(o,uw)dF(u)

[0,2)
= (1—F(0))/(F(0)9) (F(0)+ [ E(z,u)dF (u)—
[0,z)
—1/(1=F(0) [ K(z,w)dF(w))
[0,z)

=1/(F(0)¢) [(1—F(0)—K (2, w))dF (u).
[0,x)

I .
ntegl‘atlng both sides in the interval (0, z) we obtain (18).



216 M. Jankiewicz:

Consider again the chain of functions {F,,n =1} defined by (11)
and define the chain of functions {F,,n > 1} of the form

T
(19) P (o) = ¢! f (1—F,(w)du, x>0.
0

Assume that the function #, occurring in (11) for n = 0 is the d.f. with
finite mean equal to ¢ and that F,(0) = F(0). Moreover, assume that

the second order d.f. F, is of the form

(20) Folw) = [ R'(z,w)dF,(u), @

[0,z)

\Y

0,

where K° is some nonnegative function.
Remark 5. The candidate for F, of the form (20) is the second

order d.f. F* of the stationary d.f. F° of the content process Z° defined
by (1) with input process A° and release function 9. If A° is a compound
Poisson process with jump rate A° and jump size d.f. H® and the equalities
E* =k and ¢° = ¢ are fulfilled, then it follows from Theorem, 3 that

F" is of the form (20) with the function K° defined by (17), where in place
of K we should put

K'(z,y) = ).Of [(1—H (& —u)) [r*(w)] du.

In the following theorem the form of the function K° is not important-

THEOREM 4. Assume that the function FO s of the form (20), the function
7 is nondecreasing and 1/r is convex, there exists the density h for the d.f.
H, and that the following condition s fulfilled:

(21) K'x,y) < (=>)K(z,y) for 0<y<a,.
Then the chain {fﬂn, n > 1} converges monotonically to F and
P (z) (\)F@), x=0.
Proof. Using (19) and (11) we can verify the equality

Fy(a) = (1—F(0)) Fol0) +F(0) [ K(w,u)dF,(u).
[0,2)
Hence and from (20) and (21) we obtain

Fy(x)—F,(x) = F(0) [ (B (2, uw)—R"(@, w))dF,(u) = 0.

[0,z)
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It follows from the existence of the density % that the derivative

a x
o Klow) =1 f [h(u—y)/r(w)]du—Afr(y), 0<y<w,

€Xists. Let us put

-0
a(®,y) = f —a——K(u, y)du.
s 0y
Using again (19) and (11) and also (17) and integrating by parts we obtain

Fn($)=<p"1 f(l—F(O)—K(u,O)— f(l— n_l(s))d,K(u,s))du

(0,u)
T

=F(0)K (2, 0)— [ a(z, )dF,_,(u)

0

=F(0)K(2,0)+ [ F, ;(w)d,a(@,u) for n>2.
0

By the equality of the extreme expressions we have

A

Fp(2)—F,(2) = [ (F(0)—F,_, () d,a(z, u).

imce by the inductive assumption the inequality F, () > F,_,(u), >0,
olds, it iy sufficient to show that for fixed x > 0 the function a(x, u),
S %<, is nondecreasing.
Define the functions g and G by
x—y I<y<wo
gty =127 ’
l 0, y >,
1

G(y) = g(y)m, ¥y >0.

eslnee g and 1/r are convex, the function G is also convex. Hence, for
VerY % >0 the function G(u+vy)—G(y) is nondecreasing for y >0.

i;f h is g density, then the function [ (G(u+y) —G(y))h(u)du is also non-
ecreasing for y > 0. 0
From the definition of the functions « and G we obtain the equalities

a(@,y) = 4 [ [a—u)/r(w)h(u—y)]du—A(z—y)/ry)
vy

=2 [ (@(u+9)—G@)h(u)du

= Zastos, ppgt. 18.2
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which imply that the funection a(x, y), 0 <y <z, is nondecreasing.
Thus we have shown that Fn+1( )= F, (), x>0, n>=0.

It follows from (13) that for the pointwise convergence of F to ¥
it is sufficient to show that there exists a constant M < oo such that
F,(x) < M for arbitrary « and n. Since, for fixed #, the function K, (x, y)
is nondecreasing with respect to x, using (12) and the monotone con-
vergence theorem we have

n o0

(22)  lim F,(x) = F(0) 2 f k;(w, 0) du+f1c (00, u)dF,(u).

T—>00 =10

From the Lemma we get the inequality K, (x, y) < K, (», 0) for arbitrary
n and x, and hence also K,(o,y)< K,(oc0,0). Further, since

k_kanu O)du—ka (u, 0)du < oo,

0 =1 n=10

taking the limit in (22) with n—oc we obtain

lim lim#,(r) =1 = limF(x),
n—>00 x—>00 T—>00
i.e. the chain {F,(cc),n > 1} is bounded. This completes the proof.
Remark 6. From the inequalities for the second order d.f.’s we can
obtain other useful inequalities. If we denote the random variables with

d.f.’s @° and @ by X° and X, respectively, and if we assume EX° = EX,
then the implication

G°(¢) > G (2) = Eg(X°) > Eg(X)

is true for an arbitrary concave function ¢ (for convex g we have a con-
verse inequality). A simple proof of this implication can be found in [3].

5. Additive input. Consider now the case where the input process
A occurring in (1) is a pure-jump Lévy process with nondecreasing,
right-continuous sample paths, vanishing at zero. Such a process is called
additive (see [2] or [5]). The Laplace transform of the random variable
A(t) for fixed t is of the form

o0}

(23) E{e~*4®} = exp { —t f (1 —e %)y (du)} Res > 0,

0

where v is a o-finite measure satisfying the condition

J yaD)v(@y) < oo
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(and = min(a, b)). It is well known (see [3]) that

E{A(t)} =mt and D*{4(t)} = o’¢,
Where

m = ffzw(du) and o2 = fu%(du).
0 0

ihe Compound Poisson process is the only one additive process whose
re{”’JSIIre v is finite. Next, we suppose that m < oco. Assume that the
e?JSe function r satisfies the following conditions: r(0) = 0, r is strictly
Positive and continuous on (0, co) and also that r is nondecreasing, and
"(04) > o.
Let %, and K, (n>1) be nonnegative functions defined by for-
Mulas (4) and (5) in which now k,(x,y) = k(x, y) = Q(x —y)/r(x), where
T) = v(2, o).
If

1 & T
Gila) = o f Qudu, G, () = f G, (@ —u)dG,(u),
then

(24) K, (z,y) <G, (r—y), n=1,0<y<2.

7 I_Il [2] it was shown that also for such a model the Markov process

i sa’mfying (1) can be constructed, and then the assumption »(0+) >0
: 10t needed. Using the results of [1] we can prove the following theorem,
Dalogous to Theorem 1.

TuEOREM 5. In the dam model with additive input the content process
has g stationary distribution iff

(%) sup r(z) >m.

=0

Then, the stationary d.f. fulfils equation (9) which has a unigque solution
% the form (10).

i Proof. In [1] it was proved that condition () is necessary and suffi-
'ent for the existence of the stationary distribution and that it is equiv-

alent to the condition %k < oo. Then the stationary density f fulfils the
€quation

f(z) = F(0)Q(2)/r(2) +1/r(a) [ Q(@—wu)f(u)du.

Hence, integrating by sides, we obtain (9). Iterating (9) N times we have

N
F(x) = F(0)+F(0) Y K,(2,0)+ [ Ey,(@, w)dF(u).

n=1 [0,x)
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From (24) and from a well-known fact in renewal theory we infer that

> G,(A) is a measure which is finite on bounded Borel sets A. It follows
n=1

that the series K*(x,y) is convergent for 0 <y < #. Consequently, by
the bounded convergence theorem, we obtain (10). Using the monotone
convergence theorem we have

F(z) = F(0)+F(0) [ k*(u, 0)du,
0
whence k < oc.
On the other hand, it is easy to verify that, by the condition & < oo,
the d.f. F of the form (10) satisfies (9), which completes the proof.

Remark 7. Obviously, assumption (2) is fulfilled when r is non-
decreasing and »(0-) > 0.

It is not difficult to show that in the case of additive input the Lemma
remains true and one can obtain the proof by a modification of the proof
given in Section 3, having in mind the new definition of k(x, y). Then
Theorem 2 remains also true and its proof does not change. Only in the
proof of the convergence in (13), taking the limit in (12) with n—occ we
use (24) instead of (8).

Unfortunately, one cannot copy the proof of Theorem 4 because
2 =0Q(0) = oo.

6. Bounds with deterministic jumps. Consider two content processes
Z° and Z defined by (1). Assume that both input processes A° and A
are compound Poisson processes with jump rates A° and 1 and with jump
size d.f.’s H® and H (H°(x) = H(z) = 0, ¢ <0), respectively. Let S
denote the random variable with d.f. H. Moreover, assume that H(z) = 0
for 0 <o <1/u% H(z) =1 for > 1/u’ ES =1/u < oo, and that the
function » is strictly positive, continuous, and nondecreasing on (0, o)
(r(0) = 0).

We use again the notation for m, ¢%, and ¢ introduced in Section 5,
taking into account that for a compound Poisson process we have @
= A(1 —H). We attach the index zero to all quantities associated with
the process Z°. Applying Theorems 2 and 4 we prove theorems about
the inequalities for stationary d.f.s F°, F and also for stationary second
order d.f.’s ﬁ’°, F.

First, we put

x

Q@) =m™* [Qu)du, f(z,y) = K'@,y)—K(2,y),

0

y(@,y) = F(0)p(K'(z,y)—K(z,¥)),
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Where
B'(@,y) = 2 [ [1—H(@—w))/r*(w)] du

?’lnd K° is of the form (17) in which we substitute K° for K. Since » is
Olldecrea,sing, using (3), (5), and (17), we can verify the inequalities

@) L e 1
,.(w)of (@ (1) —Q(w) du < B(,9) < "(Wof (@ (1) —Q(w) du,

@) 1 5o L EPVINPY
) ,,,(w)af (Q(u) —Q°(w)) du < y(, y) < T(y)of (@ (%) —Q°(u)) du.

0 .THEOREM 6. If 2° = 2, u® = p, r° = 7, then for arbitrary y (0 <y < )
¢ tnequality K°(x,y) > K(x,y) holds true.
Proof. By assumption we have 2° = Q°(0) = Q(0) = 4 and Q°(x) = A
t‘}’lr 0<% <1/u® and Q°(x) = 0 for > 1/u% while Q = A(1—H). Hence
© Integrand in the definition of the function A(z,y) is nonnegative
Ty<u< y¥+1/u® and nonpositive for % > y +1/u° Then, for fixed v,
cre f.llnction B(x,y) is nondecreasing for y <z <y-+1/u® and nonin-
€asing for x> y+1/u’. Moreover,

lim §(z,y) =0

=Y
a4 it suffices to show that

lim §(x, y) = 0,
Which follows from (25) and from the equalities

/

J @wdn = 2> = u = [ Q(u)du.

NOW, we obtain the following obvious corollary:

. COROLLARY 1. Theorem 6 remains true for the function r°(x) < r(z),
=0,

th In order to apply Theorem 2 to the stationary d.f.’s F° and F, assume
i« A F°(0) = F(0), which is equivalent to the equality k° = k. Thus
¢ follows from Remark 3 that F9 is of the form (14) and we can formulate
he following

CoroLLARY 2. Under the assumptions of Theorem 6 the inequality
)= F(x), #>0, holds true.

To apply Theorem 4 we assume that the d.f. F° has a finite mean
Nd g% = ¢, Thus it follows from Remark 5 that F° is of the form (20).

F“({v

P g
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THEOREM 7. Assume that o < oo, the function 1/r is convew, and
that there exists a density h for the d.f. H. Then, if }." = m?/o?, u® = m/o?

7® = r, then the following inequality holds: F°(z) > F(x), = > 0.

Proof. Using Theorem 4 we show that K° (w,y) > K (», y). From
(17) we obtain

y(@,9) = — [ Blu,y)du
vy

By the assumption 7° =r we have

Bz, 9) = [ [(@"(w—y)—Qu—y)/r(w)]du.

Furthermore, we can verify that 1° = A(ES)*/(ES?) < 4, i.e. @°(0) < @(0).
Both functions @° and @ are nonincreasing and

Q'(x) = {”” 0<o<1/u

0, x=1/u’
Hence @° may cross @ at most twice. If there are no crossings, then we
obtain a contradiction because

fQ" du<fQu)du—m

and m® = m by assumption. If one crossing occurs, then by the equality
x
m(Q°(2) —Q (@) = [ (Q"(u) —Q())du
0

we have (°(z) < @ () for all » with strict inequality for some . This
leads to a contradiction with the fact that d.f.’s Q° and @ have here
the same means equal to ¢°/2m. Thus there are exactly two crossings,

the first one from below and the second from above. Simultaneously,
it follows from (25) that

lim g(z,y) = 0 = lim (=
T—>00 x>y
Thus, for fixed y the function g(x, y¥) must cross zero exactly once, from
below. Hence y(x, y) for fixed y is first nondecreasing, and then nonin-
creasing. Moreover, y(y,y) = 0 and it suffices to show that
lim y(»,y) =0,

T—>00

which follows from (26).

Remark 8. It follows from the proof of Theorem 7 that even for

the additive input process 4 the inequality K°(»,y)> K(x,y) holds
because then @(0) = oo
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7. Bounds with exponential jumps. Under the notation of Section 6
We assume that H°(x) = 1 —exp{—pu'z}, >0, and H belongs to the
class IFR, i.e. the function log(1 —H) is concave on [0, oo) (see [3]).
The function 7 is again strictly positive, continuous, and nondecreasing
o0 (0, oo) (r(0) = 0). In the next theorems we use the fact that the d.f.
of the class IFR has a finite second moment and ES2 < 2(ES)* with
“Quality holding only for the exponential case.

THEOREM 8. If 2° = A, u® = u, and r° = r, then for arbitrary y (0 <y
N @) the inequality K°(x,y) < K(x,y) holds true.

Proof. By assumption we have Q°(0) = @(0). Furthermore, the
function logQ is concave and the function logQ® is linear. Thus logQ
May cross logQ°’ at most once and from above. The same is true for @
and Q° gince the log function is monotone. The supposition that there
are no crossings leads to a contradiction with the equality m® = m follow-
n.lg from the assumptions. Thus, for fixed y, the function g(x,y) is

rst Donincreasing, and next nondecreasing. Simultaneously, from (25)
Ve obtain

lim g(x, y) = 0 = lim f(=, ¥),
T—>00 =Y
d thus g(x, y) <0 for 0 <y < a.
i .COROLLARY 3. Under the assumptions of Theorem 8, if k° =k, then
¢ nequality F°(x) < F(x), & >0, holds true.
. THEOREM 9. Assume that o* < oo, k* =k, ¢° = ¢, the function 1/[r
i Convex, and that there exists a density h for the d.f. H. Then, @'fAZ" = 2u?/o?,
: 0>§02,u/a2, and 10 = r, then the following inequality holds: F°(x)<< F'(x),
Proof. It is easy to verify that m® = m and ¢ = ¢. If the d.f. H
'S Dot exponential (for not to have the same model), then ES® < 2(ES)?,
:e. Q°(0) > @ (0). Similarly as in the proof of Theorem 7, we can show
hat @ crosses Q° exactly twice. Thus f(x,y) for fixed ¥ crosses zero
CXactly once, from above. Hence, by (26), we obtain y(z,y) <0, i.e.
(#, y) < K (#,y) and the theorem follows from Theorem 4.

Remark 9. If #0 = r = ¢, then in Theorems 7 and 9 and in Corollaries
and 2 it is not necessary to assume that k° = k and ¢° = ¢ because

this follows from the remaining assumptions (see [3D.
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