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A GAME MODEL REFERRING TO THE CONTROL
OF INDEPENDENT DISCRETE TIME STOCHASTIC PROCESSES

1. Imtroduction. There is a considerable number of papers dealing
With decision models, control of stochastic processes, and stochastic games
(see [4]-[7]). The aim of the present paper is to discuss a game model
which incorporates some elements of the afore-said theories and was
Primarily stimulated by a “blackjack” type game solved in [1].

Let us consider m > 2 independent stochastic systems associated
with m players. Each of the players observes subsequent states only in
his system at discrete moments of time ne N = {0,1,...} and may
control the transition probabilities of his system by using an action a e A
Pprovided the current state of his system is in the set of admissible states S.
If the system leaves the set S, then the player has to stop the observa-
tion and control.

The player may stop the observation and control also before his
system leaves the set S. It is assumed that for any sequence of actions
an inadmissible state of a system is attained in a finite period of time.
A player may either choose his actions in the set A or stop at random
taking into account the information about the history of his system.

The game is over when all players stop their observations and controls.
The random pay-off of a player depends on the sample functions of random
sequences of states and actions generated in all m systems up to the cor-
responding stopping times.

In the next section we formulate the mathematical model and basic
assumptions for the game. In Section 3 we discuss the method of solution
based on the fixed point theorem [3] and on the results in the theory
of decision models. The last section contains some examples of the game.

2. The game model and basic assumptions. First we describe a sto-
chastic system observed and controlled by a given player. Let (BY, RY),
N ={0,1,2,...}, be the linear topological space of real sequences with
c-algebra RY of Borel subsets in,R". Let A and S be two given compact
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subsets of R = (— o0, o0). We introduce the following mappings: for
a, » € RN

T,(a) =inf{neN|a,¢ A}, Tsz)=inf{neN |o,¢S}.

The elements of R and S are called states and admissible states of
the system, respectively. The elements of A constitue the actions to be
taken by the given player and T 4(a) is interpreted as the moment of
stopping the observation and control of the system. T (») is the moment
at which the system leaves the set .

We denote by R**! (n € N) the c-algebra of cylinders with bases
over {0,1,...,n} and we put A* = R"NA". Let

{Pn (A, | Doy Zyy cvvsy Dp_y; Qgy Gy oevy Byy)}
be a given family of transition probabilities from (R"® x A", R" @UA") into
(R, R). It is known [2] that the family determines a family 4/, = {u(- | a),
a € AN} of probability measures on (R, RY). We consider a wider family
of measures on (RY, RY), denoted by #, = {u(-|a), a € RV}, where in
the case n < T, (a)+1

p(C|a) = f?o(dwo) fp1(d*’”1 | @y @g) X ... X
Co 151
X fpn(dwn | @oy eevy Bp13 Qoy ovvy Oy_y)
c’n

forC = {weRY |2,€Cpy -1 P €0}, CLeR (k =0,...,n), and in the
case n=>T,(a)+1
p(B" | a) = 0.

In the sequel, we assume that for every a e AY
(1) plfw | Ts@) < oo}la) = 1.
Evidently, if T4(a) < oo (a ¢ AY), then
plfw| Tg(») =T4(a) +1}a) =1.

Thus, a stochastic system related to the given player is determined
by the triple (RN, RN, 4,).

Now, we define a policy of the player. Let a,z ¢ BN. We consider
the family of functions

(2) {Qn(dan I Tog o0y Ly s Aoy ovey an—l)}
satisfying the following conditions:

(a) If n < min (Tg(2) —1, T 4(a)), then, for all (x,, ..., 2,5 a,, ..., a,_,)
in 8" xA™ q,(* | Boy .-y Bpj Boy ++.y Gp_y) 1S & Measure on Y = RNA for
which

0< (4 | oy ooy Tnj By ovvy Oyg) <1,
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and for every Be, ¢,(B|a,,..., Zy; Ggy.nny @y_y) is a (YT QAM)-
measurable function where y"+! = R*+1Agn+1,

(b) If » > min(Tg(x)—1, T,(a)), then
@ (A | Boy ooy Bp5 oy eney @yy) = 0.

Using Theorem 1.1 from [2] we have a family of probability measures
IIy = {n(- | ), s € R’} on (RN, R") satisfying the condition

n({a]| Ty(a) < Tg(@)}la) =1, zeRY.

Now, for a given stochastic system (R, RM, #,) and for every
Policy = e IT; there exists a unique probability P, on (RY xRY, RY @RY)
and the probability measure is concentrated on RY x RY, where

Ry ={weRY | Tg(x) < o} and RY. ={aecR¥ | T, (a)< oo}.

Therefore, we have a random sequence ¢ = (&,, a,), n € N, with
values in R xA and a random stopping time

T =inf{neN | a, ¢ A},
where for C ey, D, e¥U(k =1,...,n—1)and C, e R, D, €A (n € N)
(3) P,{&oGCO,GOEDQ,...,a_l E.D_l’ EnECn, T=n}

= fpo(dwo) IQO(dao | @g) X... X
Co Dy

X f[l— IQn(daanm""wn; a07""an—-l)]x
4

X P (A%, | Bgy ovvy Tpy_15 Boy evvy Gp_y).

It follows from (1) that P,{r < oo} = 1.
Now, let (&, #,P, . ..) be the product space of probability
spaces associated with m players. Thus, we assume that the random

sequences {; and the random stopping times z;, ¢ = 1, ..., m, are mutually
independent.

We define the pay-off functions for the game. First, let F; = {ffv-"m}
be a family of measurable bounded functions defined in R, where I = m+

m
+2 2 ng, n; € N, ¢ =1, ..., m, satisfying the condition
=1

(4) sup  [Iffreotm|| < oo,

(Ryseeestyp) €

where ||| denotes the supremum norm.
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Now the pay-off function for the player ¢ (¢ =1,...,m) is defined
by the relation

(5) Bi(ay ooy Tim) = By F (L ooy )

where x. = (&, &, ..., &, o}, al, ..., of_,) describes the history of the
stochastic system up to the random stopping time 7;, and E, . is

the expectation operator with respect to the probability P,....n, We
denote the considered game by '

Ir= ((Si)’ (4s), (V/{A,-)7 (Fg), ¢ =1, "-1"”’)’

Remark 1. A similar construction of the game model could be
based on the product of decision models described in [4] or on stopped
decision models given in [7].

Remark 2. Instead of a fixed set of admissible states one could
consider a sequence {S,},n €N, as well as a sequence {4,}, n € N, of
action sets.

3. The method of solution. We have already known that every
strategy = e ITg is represented by the family of transition probabilities
given by (2). Let us introduce a sequence of measure spaces (H,, 9H,, 1,),
where H, = 8"t x A™, $, is the ¢-algebra of Borel subsets in H,, and
l, is the Lebesgue measure on $, . Let M (A) be the space of Radon meas-
ures on A and ¥(A4) the space of continuous functions defined in 4. We
denote by E, = L, (H,) the space of all integrable functions defined
in H, and taking values in ¢(4). Let o(E,, E,) be the w*-topology in
B, = L§4)(H,), the dual of E,. We consider the space (E’, ]_l[V o(E,, E,)),

ne.

where
E = []E,.

neN

Let @ be a subset of E’' defined by

& = [[g™ e, 1™ >0, g™z <1}.
neN

An clement of & determines a sequence of transition probabilities
in (2) and, consequently, a strategy = € Ilg. Using the Alouglou-Bourbaki
theorem [8] we notice that @ is a compact subset in E’. In order to apply
the Kakutani fixed point theorem [3] one has to establish the continuity

m

of the pay-off functions K,(¢,, ..., ¢,) on [] ®;. Using (3) and (5) it is
i=1

possible to find the expression for K;(¢y, ..., ¢n), and then to study
the continuity properties. The continuity properties depend, in genecral,
on the families of functions F; given by (4), on the subsets 4; and §; as
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well as on the transition probabilities i (- ). It is an interesting problem
to find some general sufficient conditions for the continuity of the pay-off
functions K;(¢1, ..., 9,). The simplest case is that where A, are one-
element sets, p% are Markov and homogeneous, and the random pay-offs
depend only on the states of the m systems at the random stopping times.
If the existence of the optimal equilibrinum strategies is established,
then an associated decision problem [4] can be formulated as
(6) @& = sup B, G¥ (1),

n‘ieHSi
Where for n, e N and by, €SPt X AT
g — ThseeesTirenes T,
G,-'(hni) = E"p---:“i—ln"‘i+1’"-’"mf"l Bt (e ooy Bagy ooy Xey)

~ The problem stated in (6) can be solved by the application of the

Tesults presented in [2], [4], and [7]. Usually, a simple class of non-
dominated strategies can be obtained, which enables the game to be re-
duced to a game over a compact subset of a finite-dimensional space with
‘€ontinuous pay-off functions. For the reduced game an analytical solution
€an be easily found. The method of solution deseribed in this section
was applied in several cases of two-person zero-sum games. We give
Some examples in the next section.

4. Examples. We consider here only some antagonistic symmetric
games. Therefore, we give only the elements of the stochastic system
for one of the players. We use the notation I' = (S8, 4, 4, F).

1. We generalize the model given in [1]. Let S =[0,¢] and A
={1,2,...,k}. The family of measures .#, is determined by the se-
quence

Du(B | @y eeey @y Ggyeeey @) = fga"—l(u—‘m —1)du,
B

where n>1, BeR, (5,,a,)e RxA (k=1,...,n—1), and {g°(z),a € A}
is a family of density functions satisfying the condition ¢*(») = 0 for
<0, acA. The family F (see (4)) is given by

f”l’nz(hnl’ hnz) = r(w},l, wrzuz)y

where
1 fo<y<os<<corovelS and y>c,
riz,y) =1 0 iU @x=yorzx>candy>ec,
-1 Ho<o<y<coror>cand yefl.

2. Let § = A = {1, 2}. The family 4, is described by two matrices
M(a) = (py(a), a € A, i,j €8, where py(a) >0 and p;(a)+pi(e) <1.
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The family F is given by

2 (b hy) = Vet )st(hn,)?

where
i ) card{0<n<m—1la, =2,,} Iif o, €8,
S| if o, ¢8,

ng

and (w,,) is a given infinite matrix.

3. Here we take § = [0, 1], A = {1}, and the family .# , described by

Po(B | @gyeeey®p_y5 1,1,...,1) = fp(mn_l,u)du,
B

where n>1, Be®R, #,eR (k =1,...,n-1), and p(z,y) is a Markov
kernel with the condition p (@, y) = 0 if y < @. The pay-off is determined by

f"l'nZ(hnl ) hﬂz) = k(w:l,l’ w:2)7

where
»—y-+ay fo<r<y<l,
0 fo<e=9<1,
kz,y) ={ —y+o—2y if0<y<o<l,
-y if yeS and >1,
@ if eS8 and y > 1.

The interpretation and analytical solutions of the examples given
above will be published elsewhere [9].
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