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A GENERALIZATION OF SMITH’S THEOREM

A perfect matching of a graph G is a regular spanning subgraph of
degree 1. A 1-tree (or a unicyclic graph) is a connected graph with exactly
one cycle. 1-trees are used in some algorithms for solving the travelling
salesman problem (see [6]). In this paper we prove the following theorem,
Where we assume that O is also an even number.

Tueorem 1. Let G =(V, E) be an undirected graph, {u,v}eE, and
deg(u) = 3. Then the number of partitions of E into sets M and T is even if M
and T satisfy the following conditions:

(a) M is a perfect matching in G;

(b) T is a spanning 1-tree of G containing {u, v} in its cycle.

As was proved by Smith (see [1]), the number of hamiltonian cycles in a
cubic graph which contain a given edge is even. This result is a special case
of Theorem 1 when G is a cubic graph. The proof in [1] is ineffective. A
different, effective proof was given by Thomason in [8]. Our proof is based
On some ideas taken from his paper.

Proof of Theorem 1. Let G, u, v be fixed. By a u-partition of E we
mean a partition of E into sets M and T such that
- (1) T is a spanning tree such that u is a leaf of T and [u, v}e T;

(2) in the subgraph (V, M) of G, the vertex u and some other vertex ¢
have degree 2, all other vertices have degree 1. _ -

. A u-partition defined above is denoted by (M, T). The vertex ¢ from (2)
IS called an end-vértex of (V, M). _

Let (M, T) be a u-partition with end-vertex ¢t and let x and y be
neighbours of t in M. Let us assume that x # . If {t, x]} is added to T, then
. We obtain a cycle. Let z be the neighbour of x in this cycle different from .
Since u is a leaf of T z cannot be equal to u. Suppose that we transfer {z, x}
from M to T and {x, z} from T to M. Then we obtain another u-partition
(M, T") with end-vertex z. The above operation is called a switch. We can
Perform a similar operation on y provided that y is not equal to u. Consider
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now a graph PG whose vertices are u-partitions and two u-partitions are
joined by an edge if one can be obtained from another by a switch. All
vertices in PG have degree at most 2. Thus PG is a union of disjoint cycles
and paths. Obviously, the number of u-partitions which have degree 1 in PG
is even. However, a u-partition (M, T) has degree 1 in PG iff its end-vertex ¢
is joined to u in M. If we transfer {u, t} from M to T, we obtain a partition
of E satisfying (a) and (b). Thus there is a 1-1 correspondence between
partitions of E satisfying (a) and (b) and u-partitions with degree 1 in PG.
This completes the proof.

In [3] it was shown that Smith’s theorem has some consequences for
combinatorial optimization. Let K = (V, E, d) be a complete weighted graph,
where d: E— R* is a distance function. Consider the following optimization
problems:

(MPM) Given K, find a minimum perfect matching in K.

(TSP) Given K, find a minimum hamiltonian cycle in K (this is the
travelling salesman problem).

(MST) Given K, find a minimum spanning tree in K.

Let P, and P, be two of the problems listed above (one can consider

here also other problems of a similar form). We say that P, and P, are k-
dependent if for each K the following condition holds:

() For each solution X to P, (resp. P,) in K there is a solution Y to Pz
(resp. Py) in K such that X and Y have k edges in common. '

In particular, if solutions of P, and P2 are unique, then they must have
k common edges.
In [3] it was shown that MPM gnd TSP are 2-dependent. From

Theorem 1 we infer that MPM and MST are 1-dependent. First we prove
the following

CoroLLARY 1. Let G = (V, E) be a graph with at least 4 vertices. Suppose
there is a partition of E into two sets T, and M,, where T, is a spanning tree
and M, is a perfect matching. Then there is another partition of E into a
spanning tree T, # T, and a perfect matching M, # M, .

Proof. Consider any leaf u of T;. Let v be any vertex not adjacent to #
in G. Add the edge {u, v} to T,. Let T be the resulting 1-tree. Then, by
Theorem 1, E can be partitioned into T' and M,, where T’ is a 1-tre€
different from T and containing {u,v} in its cycle, and M, is a perfect
matching. Deleting {u,v} from T’ we obtain a spanning tree T, # T,.

CoroLLARY 2. MPM and MST are 1-dependent.

- Proof. Consider solutions M; to MPM and T, to MST in a complete
weighted graph K = (V, E, d). Let F = M, U T, and suppose that M, and T1
are disjoint. Consider the graph G = (V, F). By Corollary 1 there is another
partition of F into a perfect matching M, and a spanning tree T,. We have
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d(M,)+d(T,) = d(M)+d(T;). Clearly, M, and T, must have an edge in
Common. Since d(M,) > d(M,), we have d(T;) <d(Ty), so T, is also a
Solution to MST. The other part of the proof is symmetric.

The following example shows that Corollary 2 is the best possible.

Fig. 1

} Exampie 1. Let us consider a weighted graph shown in Fig. 1. The
edges not drawn have infinite length. Then a unique solution to MPM is

M= {{xla x2}: {JC3, x4}: seey {xn—ls x,,}},
2 unique solution to MST is

T= {{xl! xZ}s {xls X3}, reey {xla xu}}:
and M and T have exactly one edge in common.

There is an open problem related to Smith’s theorem. It is well known
that the problem whether a given graph contains a hamiltonian cycle is NP-
Complete, even for cubic graphs [5]. Suppose now that we are given a cubic
8taph G, a hamiltonian cycle H in G and we want to find another

Amiltonian cycle. The corresponding decision problem is trivial by Smith’s
th"(’l't"m, so we cannot prove NP-completeness here. On the other hand, no
Polynomial-time algorithm is known. The proof of Thomason [8] suggests
AN algorithm, but its time complexity is not known. The problem is to bound

® number of switching operations (similar to those in the proof of Theorem

A In [7] it was shown that the order of magnitude of this number is at least
"%, which was recently improved to n® in [4]. We believe that Theorem 1 is a
SPecial case of some general phenomena whose investigation may give a

®eper insight into the nature of this problem and lead to its solution.
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