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A RUNGE-KUTTA-LIKE METHOD
WITH EXPONENTIAL CORRECTION

1. Let us consider the initial-value problem
dx
dt

(2) Z(t) = @,

(1) = f(¢, 2),

In paper [3] a second-order one-step method was described to
solve the problem (1)-(2). This method is expressed by the formula

(3)  @py1 = @+ R (8, @) + 9 (s 20) [E (L), ,)]7? {exp [hk(t,, z,)]—1}—
—hg(ty, 2,) [k, )17, n=1,2,..,
where

0 0
k(t,z) = %f(t’ z), g(t,»)= Ef(% @) +f(t, 2)k(t, x).

If x, = x(t,), then 2, ,, = x(t,.,)+ O(h?) and, for all linear differential
equations with constant coefficients, z,,, = z(¢,,,) exactly.

In the present paper this idea of exponential correction is used to
obtain the formulae analogous to the Runge-Kutta method. In the p-th
order Runge-Kutta method, the approximate solution of equation (1)
at the point ¢, , =t,+h is expressed by

V4
(4) Tpy1 = Z,+ Za’ikﬂ
1=1

where a; are constants and

i—1
ki = W (ta+ Mok, @, + Y Lyk)  with M, =0.
i=1

The quantities a;, M; and L; are evaluated so that the coefficients
at A" (r =1, 2, ..., p) in the Taylor series of z,, agree with the respective
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coefficients of the Taylor series for the exact solution z(f,+ k) of the
following initial-value problem:

dx

W =f(t7 .’D), w(tn) = Ty

In other words, we obtain the increment of the solution z(t) between ¢,
and t,,, as a weighted mean of increments k; calculated along some lines
tangent to solutions of equation (1) at selected points from the band
fy < E<tpyy.

2. Now let us consider a two-parameter family of functions of the
independent variable ¢:

(8) =2(t; £, %) = (E—Df(E T)+
+9(, %) [k(E, ©)] 7 {exp[(t - k(E, 2)]—1} — g (¢, B) [k(F, 7)1 (7).
The graph of such a function will be called an exponential curve

passing through the point (, Z). Let us express the approximate solution
of equation (1) at the point ¢, , = {,+ h by the formula

q
(6) Tpy1 = Tp+ Za’izi’

=1

where a; are constants, and
i-1 i-1
2 = z(tn+l; tn+ M;h, mn+2Ljizji\, —z(tn; ta+ Mh, 2, + ZLjizji)
j=1 j=1
and
ji-1 -1
2 = 2 (tat+ Mib; ty+ Myh, @yt 3 L) — 2 (tas ta+Mhy @+ 3 Liyzy),
k=1 k=1

i=1,2, oto,q, Ml =0.

In other words, we want to express the approximate value of the
increment of the solution x(f) between ¢, and ¢,,, as a weighted mean
of increments 2; calculated along the exponential curve of type (5) passing
through some points (7, ) from the band t,<?<?,,,. One needs to
calculate the quantities a;,, M; and L; so that formula (6) will have
properties similar to formula (4).

3. Let us write

p_ Fo(t) _ _¥f(t, @) _of(t, @)
o) = av t=tn’ =52, fi= a1 ! [z =y
L _oe . _oges | #dio

T 8x2 T T atax T M T a2 e
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Further, we expand « (%, + &) in the Taylor series in the neighbourhood
of the point ({,, x,). Thus we obtain

1) ol = 35 Waf

=1

1
= -t W+ OBy )+ W U+ 2fnf +

haaf* il PV WU+ 8fuaf +iaa + Faeef
+faofe+faf ]} +O0(h).

(tnsp)

Moreover, we must express z; as a power series to obtain the expansion
in powers of h for the right-hand side of formula (6). From the definition
of z;; we have

(8) 2y = {M h(f—gk™") + gk~ [exp (M hk) — 11}, 2
(9)  #3 = {Mh(f—gk™") + gk~ [exp (M3 hk) — 11}, 2,0
(10) 2y = {Msh(f—gk™")+
+ gk~ exp ( — M, hk) [exp (Mshk) — 11}, 1 so,0p 4 21920)
and — consequently — we obtain

(11) 2, = {h(f—gk™") + gk [exp(hk) ——1]}1(,”%)

+ 0 (1),

(tno%n)

= A+ 00 4 ¢ Wt 57 Wl
(12) 2 = {h(f—gk™)+ gk~ exp(— Mo hb) [exD (W) — 1Tl atgh o+ 2rseny
— Bf+ R2[0.5f, +fuf (M3 Lys + 0.5 — M) ]+ 18 { 05 My(1— M) +

4 fiaf 0.5 My(Lyy—2My+1) + frnf* 0.5 M, Lyy (M, Lyy +

1
+1—2M,)+fif. (0'5M§L12—0-5M§ + F) +

+

' 1
+f:f[0.5M2L12(1 —Mg) - 0.5M2 + O.5M§ + F]}
(EnsTp)

2

M;
+ At {ftu 1—22 (8 —4M,) + fu.f- O-5M§L12[(1 —M,)+
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1
+ — M?: 1 —2M2)] + franf " M3 L15(0.75 — M,) +

M,
+f:c1:xf3 sz 2M le"}_3 6M +fufa: (2 3M )+

M M,L
+fmfxf[—2 (1—3M3+3M3) + — = (2+9M,— 18M§>]+
+f,,f, (2+3M,L,,— 6 M3)+

+fuf,f -(6M2L,, +2+3M,—12 M%)+

-M2 12

1 1

M,
+f£f[%+—(L12_1) (2—3Mz+2M§)H 0 (h),

12 (tn’xn)
(13) 2= {h(f—gk™")+
+ gk~ exp( —Mhk)[exp(hk) — 1T}, 1 s yh 2, + Ly3os5-+ Logzs)
= hf‘|‘ R {0-5ft +fzf[M3(L13 + L23) +0.5 _Ma]} +
10 0.5 M, (1~ M)+ - 0.5 DL~ 2+ (B + Eo) x
X (1 —2M3) 4+ My(Lqg+ Lys)] +f:m:f2 [0.5M3(Ly3+ L) +
1
+1—-2M,]+f.f., (0.5L13M§ +0.5L M, + e 0.5M§) +

1
+ 121|080 d 4 Ly (UM, B+ 0.5, — M) +

+

()

—0.5M5+0.5M,(1 —2M,) (L, + Lzs)]}

2

M
Rt 3

+ {fm 12
+0.5M3(1 — M) (Lis+ Las)] + frao(Lns + Lag) M3 [0.5 — My +

(3 — 4 M) + £ f[0.25M3(1 —2.M,) +

1
By + B) 025 = 05 M)+ focef* (L + L | - M3(Lus+

+ Lys) +0.25 M3(1 — 2M3)] +fuf: [0-5L23M2M3(1 —M,)+



Runge-Kutta-like method 465

_|_

T @ oMy |+t [0 —sa 33 5 e

1
+ g Msl o L)) + L (M (0.5— M +-0.5T5)
(MM, L+ 0.5 M, — MM, (My+0.5M — M,M,)]+0.25 M2 L, +
1 .

Sl

+ feaof*[(Lne + Lys) (1 — 1.5 M) M5 +
+ Loy Lyy Mo M3 (0.5 M, Lyy + 0.5 (M, — My))| +

M[(Lys+ Lys)®-3M,+2—6M;]+

1 1
+ ff:ft [2_4‘_ 1_2 M§L23(3 + 4M3)] +

+O0(h%).

(bpsy)

1 1 :
+ 2|5+ T2 —san, 2 |}

4. From formulae (8)-(13) we can obtain all methods of type (6)
till the fourth-order ones, inclusively. If we write these methods in the
general form

Tpy1 = wn+h¢(tn7 L5 h)?
we can easily prove that they are consistent in the sense defined by Henrici
(see [1], (2.2)), that is, the sufficient and necessary condition of conver-
gence, namely ®(t, z, 0) = f(i, ), is satisfied.

Comparing the coefficients at " (r =1, 2, 3, 4) in the expansion of
x(t, -+ k) and of the right-hand side of (6), we obtain the relations L,, = 1
and L3+ L, =1 and, finally, the following system of equations:

0y +a,+a; =1,
ay My(1—Ms)+a; My(1—M,) = &,
(14) a, M3(3 —4 M) +a, M3(3 —4M,) = 4,

a, M, (2+3M,—6M;)+a; My(2+3M,—6M3) =2,
@y My(2—3M3)+ ag M3[2 —3M;+ 3Ly My(M;—M,)] = 1.

These five equations contain six unknown quantities, and this fact
allows to express the five sought parameters as functions of the sixth

one, e.g., of M,.

5. For ¢ = 2 we obtain a third-order method. Then system (14) has

the form
a,+a, =1, a;M,(1—-M,) = 3.
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Thus @, =1/3M,(1 —M,), and a, = 1 —a,. Assuming, e.g., M, = 0.5,
we have a, = 4/3 and a, = —1/3, and formula (6) is of the form
(15) Tppr = X+ 3(42,—2), n=0,1,2...

Hence, writing Z(u,t, #) = u[f—gk™']1— {exp(uk) —1}gk*, we have
(16) 2y = Z(h, ty,y @,),
(17) 2y = Z(h, t,+ 0.5k, 2, +Z(0.5h, ,, x,)).

To avoid the increase of the propagated relative error when exp (uk)
18 close to 1, one can describe a computational scheme, analogous as in [3].

6. Taking ¢ = 3 and considering the whole system (14), we obtain
formulae for the fourth-order method. As the result we have

. OM,—8M2—3
B B M,(M,—M,)[3—4(My+M,)+4M, M)’
a3 -

My (My—M,)[3—4(M,+ M) +4M, M,]’

a; =1—a,—as,

M,
L = 0 M =
23 ’ 3 3M,—1
Assuming, e.g., M, = 0.5, we obtain L;; =1, M, = 0.5, M, =1,
a, = —1/6, a; =4/3, a; = —1/6. These values are very convenient for

calculations by hand, but the value M, = 0.6518 is more close to the
optimal (in the sense described in the next section) value M, = 2/3, and
is the optimal one in the sense of the least squares (see also the next sec-
tion). For this value we obtain

Ly=1, M, =0.6518, M, = 0.68200,
a, = —0.12518976, a, = 8.91047552, a3 = —7.78528577.
At last, the proposed fourth-order method is defined by the formulae
(18)  @py = @, —0.12589762, + 8.91047552, — 7.785285772, » = 0, 1, ...,

where
2, =Z(h,t,,w,),

2y, =Z(h,t,+0.6518h, x, + Z(0.6518h, t,, x,)),
2% = Z(h, t,+ 0.6820h, m, -+ Z(0.6820%, 1, z,)).

7. We compare the numerical properties and the results of computa-
tional experiments for the methods described above and for the well-
-known Runge-Kutta methods of the same order.
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For the third-order Runge-Kutta method, we have
(19) Tpyr = By +5 (2K, + 3K, +4K,), n=0,1,2,...,

where
Kl = hf(tﬂ7mn)7 Kz = hf(tn+05h7 $n+0.5K1)’

K, = hf(t, +0.75h, x, + 0.75K,),
and, for the fourth-order Runge-Kutta method,

(20) x,,, =2,+0.17476028K, — 0.55148053 K , +

+1.20553547K,+0.17118478K,, =n =0,1, 2, eey
where
' K, = Bf (tny %), K, = hf(tn+0'4h7 Tn +0°4-K1)7

K, = hf (1, + 0.45573726h, @, + 0.29697760K, + 0.15875966K,),
K, = hf(t,+h, @, + 0.21810038 K, — 3.05096470K, + 3.83286432K,).

We can estimate the error of method (18) similarly as for the Runge-
-Kutta method (20) in [4]. Namely, for the function f(t, ) and its de-
rivatives we assume that

’l+]f

If(t, @)l < M, ot 027

L1+J
< 5pT

where M and L are positive constants. Thus, for the %-th order method
we obtain estimations of the form

(21) g < G MLF, k=2,3,4,...

H

where ¢, denotes the coefficient at k**' in the Taylor expansion of (¢, ,) —

—&py1

For the fourth-order method (18), we have
¢y = 16 |by| 44 |by| + |by+ bs| + |by + 3bs| -+ |2b, + 3bs| +
+ 1bs] + 8 [by] + [bs| 4 1265 + ;| + b5+ bg + by + 1bg| + 12b6+ b,| + 1B,

where

1 1
1

by = 50— 75 [M2(1 3My—6M3)a, +M5(1+3 My — 6 M3) ag],
1

by, = m——[Mz(l 2M,+M3)a,+M3(1—2M;+ M) ay],
1 1

by = 25— 15 [M3(2—3M,) 0y + M3(2 — 3My) 5],

30
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1 1 W »
1 1 2 9 2 2
b, = TR [Mi(2—3M%)a,+M3(2—3M3)a,l,
7 1 3 3
b, — TR [M,(1+M,—2M; —M})a,+M;(1+M,—2M: —M3)ay]

are coefficients at the derivatives of f({, #) in the expression of ¢,.

Theoretically, we get the least value of ¢,, i.e. of the overestimation
of the error, when M, = M, = %, but these parameters are incompatible
with system (14).

Hobot [2] has proposed another criterion to choose the value of
free parameters in the methods of this type: it consists in the minimi-
zation of the sum of squares of b; defined as above. M, = 0.6518 gives
the optimal estimation for ¢, in this sense, and is sufficiently close to
the above-mentioned value 3.

Then, in estimation (21), for method (18), we have ¢, = 0.072 and,
for method (20), ¢, = 0.104. But, if f,(¢,, x,) = 0, for these methods we
obtain ¢, = 0.0009 and ¢, = 0.0004, respectively, and the Runge-Kutta
methods give distinctly better results, which can be seen by numerical
examples. Thus, for equations of type dx/dt = f(t) as well as for df/0x
close to 0 or changing the sign in the interval of integration, it would
be inadvisable to use method (18).

Note that method (18) is exact for all linear differential equations
with constant coefficients similarly as the method described in [3]. Method

(15) has the same properties.

8. The numerical experiments were executed on the Odra 1013
computer with 31-bit floating-point mantissa. The results obtained for
the proposed methods (15) and (18) were compared with analogous results
for the Runge-Kutta method of the same order (19) and (20), respectively.
Some results obtained without subdivision of the step A are shown in
the tables below.

I dz/dt = t3—2tx, (1) = 1. Exact solution: x = exp(—t2+1)+
+0.5(t2—1).

h = 0.05

1 z(t) from (15) . error z(t) from (19) error
1.05 0.953829957 1.8,—6 0.953824648 —3.5,0—6
1.35 0.850591251 9.3,,—6 0.850555914 —2.6,0—5
1.50 0.911515491 1.0, —5 0.911469497 —3.549—b
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h =0.1
t z(t) from (18) error x(t) from (20) error
1.1 0.915582164 —2.0,,—6 0.915588799 4.5,,—6
1.5 0.911495767 —9.0,—6 0.911528563 2.3,0—5
1.8 1.226446582 —1.2,—5 1.226491722 3.3,0—5
2.0 1.549773612 —1.3,0—5 1.549822968 3.5,,—5
h = 0.05
t z(t) from (18) error z(t) from (20) error
1.1 0.915584136 —1.1;—7 0.91558516 2.7,0—6
1.5 0.911504316 —4.8,0—7 0.911506164 1.3,0—5
1.8 1.226457814 —6.8,—6 1.226460385 1.8,—5
2.0 1.549786290 —7.0,—6 1.549789088 1.9,,—5

II. dx/dt = t+x+sint, 2(0) = 0. Exact solution: # = 1.5¢' -1 —¢—
— 0.5(cost 4 sint).

h =02

z(t) from (18)

error

z(t) from (20)

error

0.2 0.042736489 3.0,—7 0.042731101 ~5.0,—6
1.0 1.386544615 8.5,—6 1.386478952 —5,7,0—5
2.4 13.165799103 6.9,0—5 13.165211312 —5.1,—5
4.0 77.602797210 3.4,,—4 77.598407685 —4.0;—3
h 0.1

4 xz(t) from (18) error 2 (t) from (20) error

0.1 0.0103337602 2.1;,0—8 0.010337431 —1.5,0—17
0.5 0.2945779999 1.3,—7 0.294576672 —1.1,,—6
1.0 1.3865366666 5.7—17 1.386532221 —3.8,0—6

In all cases the time of the calculation was longer for the methods
with exponential correction. For the fourth-order method this time
increases about 1.2 times in comparison with the calculation by the
Runge-Kutta method, but the increase of accuracy of results in the
Runge-Kutta method to the same level as in formulae (18) — that is,
by one decimal place — requires to shorten the length of the step h about

1.6 times and, analogously, to elongate the calculation time.

8 — Zastosow. Matem. 14.3
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TERESA POKORA (Lublin)

ANALOGON METODY RUNGEGO-KUTTY Z POPRAWKA WYKLADNICZA

STRESZCZENIE

W pracy podana jest metoda krokowa (6) rozwiazywania zadania poczatkowego
typu (1), przy zalozeniu mozliwoéci obliczania pierwszych pochodnych czastkowych
prawej strony réwnania. Poprawka wykladnicza z [3] stuzy do wyprowadzenia wzoréw
analogicznych do wzor6w w metodzie Rungego-Kutty. Wyprowadzono wzory dla
metody trzeciego i czwartego rzedu oraz zalgczono przykladowe wyniki obliczen,
poréwnane z wynikami otrzymanymi metoda Rungego-Kutty tegoz samego rzedu.



