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ON ESTIMATION OF MULTIPLE REGRESSION COEFFICIENTS
BY THE p-POINT METHOD

1. Introduction. The classical approach to estimating the parameters of
a regression line is via the least squares method. Another approach to this
problem was presented by Hellwig [1]. The method proposed by him is
Called the two-point method. In this method, the observed values (x;, y1),
(x2, y3), ..., (x.s y») Of the bivariate continuous random variable (X, Y) are

divided into two sets I and II. The point (x;, y;) belongs to the set I if x; > X,
where ‘ ' '

|-

1 _ "
X=-Yx and y=-3 y

h i=1
are the coordinates of the gravity center for the whole set of observations.
Let (x, J1) be the gravity center of the set I. In this case the expression
y/x i[ - f
is an estimator of the regression coefficient a,,. This estimator is unbiased
and consistent but its efficiency is less than the efficiency of the least squares
¢stimator. However, we find this estimator very easy to compute and that is
Why we deal with it. A similar problem was considered earlier by Wald [4].
Wald remarks that the division of a sample may be arbitrary, which leads us
to a certain class of estimators. The purpose of our paper is to generalize the
Tesults of Hellwig ([1], [2]) and Wald [4] for the multiple regression case.

2. Determination of estimators of regression coefﬁcienté by the p-point
method. We assume the following multiple regression model:

D Yi=agta,(xy—%)+... +a,(x,—X )+ fori=1,2,...,n,

Where (Y, ..., Y) are the observed random variables, a,, ..., a, are un-
k.nown fixed parameters, x,,, ..., x;, are constants determined by the condi-
tions of the i-th trial, and €, ..., &, are independent, identically distributed
random variables with E(g) = 0 and D2(g,) = 03, i=1,...,n



54 C. Platt and Z. Paprzycki

We define the sample as a set of the form

Co = {(xil’ s X V)i i=1, .., "},

where y; is the observed value of ¥,. The set C, is divided in p manners into -
twd disjoint subsets each time, i.e., 1f the pairs of subsets C,, C}, ..., C,, C,
are the results of divisions, then for each pair C,, C, we have

CGuCG=C, and CnC =0.
Let
C.=1{ieCo: (Xi1, ..., X;p, ¥)€C,}, k, =cardC,,
where Cy = {1, ..., n}, and let

12 12
y=-— i X, - Xiss S=1,2’ s P
Y nlgly n:=zl P
1 1
y'=_ Yi» s ' Xiss T,S=1,..., D.
kr:eC,. kr ieC,

The points gy = (X4, ..., X, )7) and g, = (X}, ..., X}, ) are called the grav-
ity centers of the sets C, and C,, respectively.
Let

(2) y--_}7=§1(x1—f1)+ ...+ﬁp(xp-—5c'p)

be the p-dimensional hyperplane passing through the points go, g5, ..., g,. In
this case we set up the coefficients of (2) as the estimators of the regression
coefficients in the model (1). If the matrix

is nonsingular, then the hyperplane (2) is determined uniquely. Therefore, we
assume that the matrix W is nonsingular throughout this paper. Under the
above assumption, the proposed estimators of the regression coefficients are

(3) 60'——-)73 &i=m/mi=ls""ps

where W # 0 is the determinant of the matrix W, and W, is the determinant
obtained from W by replacing the i-th column with (7' -7, ..., y»— ).

THEOREM 1. The gravity centers g,, go, g. of the sets C,, C,, C.,
respectively, lie along one straight line.
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The theorem follows from the equation

k, k. \ ,
o =—grt+ 1—— gr-
h H

It is easy to see from Theorem 1 that it is sufficient to take into
consideration one of the subsets C, or C, for k = 1, ..., p. In this connection
We denote the chosen subsets by C,, ..., C,, respectively. These subsets do
not have to be disjoint.

The presented method of division determines a class of estimators
because of the free-choice division of the set C,.

3. Properties of the estimators obtained by the p-point method. Model (1)
has a familiar form in the matrix notation:

4)

where

y=2Zay+e¢,

y=(y1"-~= yn)Ts gz(gl,,__,gn)T,

a =(a0’ ai, ... ap)T:

....................

According to the assumptions of model (1), the. covariance matrix of the
vector ¢ is of the form o2I, where I is the identity matrix. The estimator

o ~ - AT
Ay = (a05 agy -.., ap)

of the vector of parameter a, is the linear function of the vector y, since

(5) do = (W) ry,
where
[(1/n) 1 1
@k P =y 1 . [ of}
A R W ‘[o W
(k) IP=(1n) 1

and 1 is a row vector of order n with all elements equal to unity. The row
vector I' consists of k, elements equal to unity and n—k; elements equal to

zero. The r-th element of the vector I is 1 if the r-th observation belongs to
the set C, and is 0 otherwise.
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THeoREM 2. The vector 4, is the unbiased estimator of the vector a,.

Proof. By virtue of (4) we have E(y) = Za,. Thus
E(do) = (W*) 'rZa, =(W*) I W*a, = a,.

THEOREM 3. The covariance matrix of the vector @, is of the form
I* = (W)L AT (W) T,

, T
A* o [;/n Z ]=rrT’

k, 1
A=|: k —-]’ rs=1,...,p,

where

k.k, n
k. = {card(C,nC,) if r+s,
* kr ifr':s‘

From (5) we obtain
D?(dg) = (W%~ 1D (0 e  [(W*™ 11T = a2 (WH ™~ LT [((W*) 1.

Theorem 3 implies that the estimator 4, = 7 is uncorrelated with the
estimators g, for i=1, ..., p.

THEOREM 4. Let @ =(dy, ..., d,)" and a=(ay, ..., a)". If

@ limk,/n=d, where 0<d, <1 forr=1,..,p,
(i) ~ liminf|W] > 0,
(iii) Il <M forf some M and i,j=1,...,p,

t'll;en, for every vector & =(Ay, ..., A,), AT @ converges stochastically towards
a.

Proof. Of course, E(4Td) = iTa and

D*(A" @) =D*(A, G, + ... +4,d,)

!
P

M

]

P
O'kkj.f'f' Z o-kllklll= )-TZL .
k=1 l=1.

k=1

where
o? '
2=[oy] =5 [W AW = > W=t AW~ 1)
is the covariance matrix of the vector @. The matrix X is a generalized

quadrati.c form. The- diagonal elements of X are positive definite quadratic
forms with the matrix 4. The off diagonal elements of X are bilinear forms
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with the same matrix. Furthermore

lim a,, = lim (l—l)= liml-:: limllim-'l=0,

n—+w n—+o kr n n-—*ook,- u—»oonn-mokr

lim ays = hm (krs '_1) = lim k,., < lim ______max(k,, k“) =0.

n—=a n—aw krks n-’d)krks n—*o0 krks
From the above facts and from conditions (i) and (iii) we obtain

lim D2(AT &) =0.

n-=*a
The assertion of Theorem 4 follows from Chebyshev’s inequality.
From this theorem we infer immediately that the estimator 4 is con-

sistent. Note that the estimator d, = 7, as a sample mean, is also consistent.

US represent the set C, as a sum of disjoint subsets By, ..., B,,, where
each B; is of the form

P NCZN...nCP,
where C* means C, or Cj. Then m = 2*.

TleOREM 5. If the assumptions of Theorem 4 hold and if
) Lim X exists, '

L B ]

() if I, = card B, then

im l/n=c,, where 0<c, <1, k=1, ..., 2",

n-w
(i) lim nd = A", where A° is a positive definite matrix,
n—wm
then the joint distribution of the random vector

(T}n), ey T;"))’
where

i o= =4
is asymptotically normal N (0, X,) with
|  WTAW,
" LW AW, W7 A"é]'

.In t!le proof of Theorem 5 we use the following central limit theorem for
Ivariate random variables from the monograph by Rao ([3], p. 165):

: Let X, X,,...be a sequence of independent random vectors of order k
with E(X) = 0 and coviXp=2Xri=1,2,..1If

Y

mult

lll
,—12 I'>X#0 asn—o
i=1
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and, for every positive number t,

® LT BOXE XN A=1 S [ IR -0,

1|l xz” >T.n

-where F; is a distribution and ||X||| is the Euclidean norm of the random
vector X;, then the sequence of distributions of the random vector (X, + .

+X, /\/1; converges to the k-dimensional normal d1str1but10n N(O, X).
Proof of Theorem 5. Note that

1 ,
O G-a=y Y E-IW,
| R (l 1 )
= Irr T &j—— € m;
Wrgl kr jeZC ! jeZCO !
=_1_ 6.(W1' +__Wi"__m'_ __Wi‘. +
|14 jeBy ! ‘ kl kp n h
I/‘/li vv.pz
+je§1;' 81( noon )]

Z ;%

where o) is the expression in the brackets at ¢;. Substituting the last
expression into formula (6) we can write T as

n

(10) TO= T f0+..+ T 5 0= &0,

jGBI ]EB =1

where B$) are of the form

; ()
(11) R

" w /DraEm

Since, for every ]eB,, B have the same value, say B, we obtain
D*(T™) = e 1, (BOY + ... + 02 L, (BL?,

where |, for k=1, ..., 27 is the cardinal number of the set B,. Further,

without loss of generality, we take into consideration only the non zero
elements , and B{. Thus

(B9 + ... + 1, (B0 = 1/o?
and this yields

0<L(BN2<1/o* for k=1,....n
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Hence

Lo . 1
0 <22 < —-
n ne
Since 0 < Cx <1, we get

lim (52)* = 0.

R— 00

For j =1, ..., n we define the following vectors of order p:

(12 X = (e B2, .o 6 BT /.

Since, by assumption, g for j=1,..., n are independent random variables,
the vectors X{ are also stochastically independent. By (10) we have

(T, s T = (XP+ .+ X0 S = (L B2, . X B0
. j=1 i=1

The definition of the vectors (12) and the assumption E(¢) =0 imply

E(é(}"’) =0. Now we must prove that the vectors (12) satisfy conditions (7)
and (8).

To prove (7) let us note that the elements of the covariance matrix X% of
the vector X" are

COV(b‘jB}i’:‘ n, gjﬁ.(’_”? \/’_1) = no? ‘(’2 _(,':.)

Hence, by (9) and (11), the elements of the matrix n~! Y 27 can be
written as =

S
i=1 F1w? /D@ /D (E")

_ cov(@®, &) WT AW

D) Joran) | W AW W aw,

- By the assumption of the theorem and using the above results we get

= cov(T”, T{").

ﬁmnA:A‘=[c" —l:l forr,s=1,...,p

n—w C.Cg

and
(13) limli hx:
nswh =

n~o /W AW J/WT AW, B WL AW, \/MT(;AWLO,
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where W, is the limit vector of W,. From the assumptions of the theorem it
follows that not all elements of the vector W, are equal to zero and the
denominators in the limit (13) are different from zero. Hence the proof of (7)
is complete.

To prove (8), let T be any positive number. Then

lim~ 3 E(IX®I2: X9 > 1 /n)

n—amnj=1

.13
= lim = 3 E(ne} [18all*: lej 11l > 7)

n-ooll =1
= im [ Z 18112 E (e,?: e}l > —i—)+
L, B )
T
+ ”an"zE (8;: IEI > _—)
jeZBm R | Bl
. T |
= him [, ||8 ,,IIZE(G?: e >-——-)+
mma B

+ lim 1, ,,,,,ZE(,,?: _T__)
0 b Bl “E\ 7 lef > 1

D T . T
<= hmE(82: lej| > )+...+ hmE(szz 8|>——)],
az[m 7 el > g e+ ImELe: ol > pp

where ||| = JER?+ .+ (BB, This completes the proof since
lim ({))> = 0 implies that each of the last m = 27 limits is equal to zero, ie.

n—>®

(8) is true.
Remark. The assumption relating to the convergence of X, as n — oo is

unnecessary for the convergence of the marginal distributions T to the

normal distribution N(0, 1). In this case, the assumptions of Theorem 3 are
sufficient.

THEOREM 6. Let SS, denote the residual error sum of squares if .the
method of estimation described in our paper is used and let SS; denote the same
in the least squares method. Then ”

_ E(SS)
fim =02 _
e E(88)

Proof. It is easy to verify that

, 1 » 2
: E(SSP)=02(n_1+WfZ Z '(xis_is)(xir_fr)wTAM)'

i=1 rs=1
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Furthermore, it is known that

E(SS)) =62 (n—p—1).
These results imply the assertion of Theorem 6.

4. Applications.

ExampLE 1. In experimental designs in which the matrix of data has
Mmutually orthogonal columns, the regression coefficients are mutually inde-
pendent and their simple form assists the simplicity of computation. In
Particular, let us consider a p-factorial experiment of type 27 in which the
variables X1, ..., X, have two values only, 1 or —1, and all treatments occur

the same number of times. Using divisions of the observed values according
to the formula

Ck = {(xls [RRE) xp’ y) X = —1}’
We obtain mutually independent regression coefficients of the form

5k=j;k__y for k=1,..., p.

=

In this Case, these coefficients and the regression coefficients obtained by the
least Squares method are identical.

ExampLe 2. In a map, a square with side length equal to 90 m was
fixed. Then this region was divided into smaller squares with side lengths
€qual to 10 m. Subsequently, a rectangular coordinate system, in which the
axes 0X, and 0X, divide the opposite sides of the initial square into two,
Was constituted. For every vertex of the squares we are interested in the
following values: y; — height in relation to the sea level, Xi1s X2
Coordinates in the system set up. Those quantities are given in Table 1. With
the regression plane we want to describe the topographical surface of the
fixed region. For this purpose we use the method proposed in this paper. Let
Co be the set of those points the coordinates of which are given in Table 1.
As a result of divisions of the set C, we obtain two sets

C = '{(xu, Xizs Vi) Xy < 0}; C, = {(xil’ Xizs Yi)! Xz < 0}
with the same cardinal number k, =k, = 50.

The symmetric position of the points describing the topographical
Surface in relation to the system OX,; OX, implies that the sums of numbers
In columng X;1 and x;, are equal to zero. Hence X =0, %,=0and x| =
=25, 3} =0, X3 = —25 %2=0. The quantities X] and x2 depend on the
number of points describing the surface as follows:

Z1_ o aﬁ
X=%x3=-——X—

4(/n—1)’



TABLE 1. The coordinates of the vertices of squares and their heights in relation to the sea
level of a map

Xi1 Xi2 Vi ¢, C, Xi1 Xiz Yi (o C
—45  +45 110.3 + 5 45 108.1
—45 435 1107 - 5 35 108.7
—45 425 110.0 + 5 25 109.5
—45 . +15 1113 + 5 15 110.5
—45 5 111.6 + 5 5 111.7
~45 -5 1125 + + 5 -5 1128 +
—-45 15 113.2 + + 5 ~15 114.0 -
—-45 =25 113.4 + + 5 —-25 1149 -
—45 -35 113.6 + + 5 -35 1154 4
—45 —45 113.7 + + 5 —45 1157 +
-35 45 109.3 + 15 45 1079
~-35 35 1098 + 15 35 108.6
-35 25 110.2 + 15 25 109.5
-35 15 110.7 + 15 15 110.6
~35 5 1115 + 15 5 111.8
—-35 —5 1124 + + 15 —5 113.1
-35 -15 1134 + + 15 -15 114.3 +
-35 =25 113.7 + + 15 ~25 115.1 +
-35 35 114.0 + + 15 ~35 115.5 e
—-35 45 1140 + - 15 —45 1159 4
-25 45 1088 + 25 45 107.7
-25 35 109.3 + 25 35 108.5
-25 25 109.8 -+ 25 25 109.5
-25 15 1105 + 25 15 110.7
-25 5 1115 + 25 5 1120
~25 -5 1125 + + 25 -5 1133 +
~25 —15 113.6 + + 25 —-15 114.6 +
-25 =25 114.2 + + 25 ~25 115.2 +
-25 =35 1144 + + 25 -35 115.6 +
~25 45 1145 + + 25 —45 116.1 +
~15 45 108.4 + 35 45 1074
~15 35 108.9 + 35 35 108.4
-15 25 109.6 + 35 25 1094
—15 15 110.5 + 35 15 110.7
-15 5 1115 + 35 5 112.1
—-15 -5 1125 + + 35 -5 113.6 +
-15 —15 113.7 o+ o 35 —15 114.7 +
—15 -25 1145 + -+ 35 -25 1153 +
—15 —35 151, -+ + 35 -35 115.7 I
~15  —45 115.1 + + 35 —45 116.2 +
=3 45 108.3 + 45 45 1069
-5 35 108.8 o 45 35 108.3
=3 25 109.5 + 45 25 109.4
- 13 H0g + 45 15 1108
5 _3 112-2 % 45 5 1123
B 18 i + + 45 -5 1138 +
5 o it + + 45 —~15 114.8 +
- - 15 + + 45 -25 1153 -
-5 —45 risce + + 45 —-35 115.7 +
: + + 45 —45 116.2 +
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wherq n is the number of points, and a is the side length of the’ square
containing the described topographical region. Furthermore, all the assump-
tions of the paper are fulfilled:

I. lim kl/n = lim kz/n = 1/2, lim klz/n = 1/49

[ mdl o] n=o n—aw
2. liminf|W] = a/16 > 0;
3. there exists lim X for i,j=1, 2 and

lim X} = lim X2 = lim ___~a\/71 = —E,
n-w n—o n-w (ﬁ—l) 4

lim X} = lim x? = 0;

n—a n—>a
4. W 0, where
=1
W = = Xy X5.
0 x2 172
Thus
-y 0
s -y B _7-y
1 5! x2 X
X} ?‘—y|
5 10 P-F|_7-F
T X

In Table 1 the s

gn + in column C,, i =1, 2, means that the point belongs
to the set C,.

_ Since the values X; are determined by the choice of the
Coordinate system and by the division of the set of points, it remains to
calculate only y, 7!, ¥*, which are equal to ~

y=112135, j'=111994, j37*= 114.372,v
respectively, and
@ = 112135, a, = 00056, a, = —0.0895.
Hence we have the following regression equation:
y = 112.135+0.0056 x, —0.0895 x, .

For comparison, the regression equation obtained by the least squares
method is of the form

y = 112,135+ 0.0049 x, —0.0852 x,, .
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The residual error sﬁms of squares have values
8§§,=51.043 and SS;, =49.468,

respectively. The rate SS,/SS, = 1.0318 is close to unity.

In conclusion we want to make some essential remarks.

The estimators of the regression coefficients discussed in the present
paper are less efficient than the estimators obtained by the least squares
method, but in the large sample case the efficiency of these estimators is
sufficiently good. As was noted above, this efficiency depends on the division
of the set C, and as a measure of this efficiency we can take the determinant
of the covariance matrix :

214
w2

Since finding the minimum value of this determinant with respect to the
numbers of elements of the sets C; is very complicated, nine simulated
samples have been examined. In each case, det I attained the minimum value
when the set C, was divided into two subsets with equal or approximately
equal numbers of elements. In the (p+ 1)-dimension regression case, where
the sample has the form of the set C, = RP*1, this division can be obtained
by means of the regression established for the set {(x, ..., Xip): i
=1,...,n} cR?. The construction of these divisions, when p >0 and
Xi1, ..., X;, are arbitrary, may be rather complicated from the numerical
point of view, however in many cases the divisions are determined by the
conditions of the experimental design. For instance, this situation arises in
the factorial design of the experiment discussed in Section 4. In both of the
above cases, the assumptions of the model (1) are fulfilled because we assume
that x;,, ..., Xip are constants determined by the experimental designs. Also
the matrices of the experiments are orthogonal, which involves the indepen-
dence c?f the estimators of the regression coefficients.
0 u111titls tt(l)l bg ‘emphasized that, in the situation when the ratio p/n is close
st ty’ € division of the set C, has a great effect on the values of the
mators and the efficiency of these estimators is very small. The method

rese ' ‘ : : : :
presented in our paper is convenient for -using when n is large and p/n is
close to zero.

It is also of interest to note that the good robustness is a favourable
property of these estimators, Th

paper ¢ authors consider this problem in a separate

12l =0
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