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1. Introduction. In the paper, a sequential estimation problem for
stochastic processes is considered in the case where the loss incurred by
the statistician is due not only to the error of estimation but also to the
cost of observation. In such a problem, the statistician must decide at
each moment whether to stop observing the process and to suffer a speci-
fied stopping risk or to continue the observation at some specified addi-
tional observing cost. We use the Bayesian and minimax sequential esti-
mation methods for the solution determining his optimal behaviour.

It is proved by Dvoretzky et al. [1] that in case of the Poisson, nega-
tive-binomial, gamma and Wiener processes the fixed-time plan is minimax
if a weighted quadratic loss function is used. In the present paper we gen-
eralize the result of Dvoretzky et al. for the case of the exponential class
of processes satisfying some additional assumptions. This result was
presented by the author at the 2-nd Conference on Mathematical Statis-
tics in Wista (Poland), December 1974.

2. Preliminaries. Let £(f) = X(t, w), teT, we 2, be a stochastic
Process defined on a probability space (2, #, P), with values in a meas-
urable space (%, Z). By T we denote the half-line [0, c0). We assume that
Z < R, where R denotes the real line, and % is a o-algebra of Borel subsets
of Z. The state of the process £(f) at time ¢ is denoted by X,;(w) or, more
simply, by X,.

Let, for every t € T', #, denote a sub-c-algebra of &, generated by the
random variables X, (w), s < ?. A function 7(w),#-measurable, with values
in Tu{oo} is said to be a Markov stopping time if it satisfies the following
condition:

{w: 7(0) <t} eF; for every teT.

Let {£5(t) = X (¢, w),t e T, w € 2, & € O} be a family of stochastically
continuous processes, each of which is defined on an appropriate space
(Q,7,P;), #€b.
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One-dimensional probability distributions induced on the space
(Z, #) by the random variables X,(w), t €T, depend evidently on the
parameter ¢. The family of one-dimensional probability distributions
-on (&, #) corresponding to the family of processes {&,(t),teT, & € 6}
is denoted by {#¥, te T, 9 € 6}.

We assume that @ is an open interval of the real line. ® may consist
.of the entire line or of an entire half-line. 4 € © plays the role of an unknown
parameter of the process. To estimate this parameter we use the Bayesian
and minimax sequential methods. '

By E4(-) and Dy(-) we denote the expected value and the variance,
respectively, evaluated with respect to the measure P,.

In the consideration of optimal sequential estimation problems it
is natural to assume that all measures P,, & € @, are mutually absolutely
continuous. The random variable X, is called a sufficient statistic for & € ©
if for every system 0 <t <t <...<t, <t (n =1,2,...) and for every
B,e# (it =1,2,...,n) the conditional probabilities

Py(X,, € B, X; €By,..., Xy €B,| X, =)

are the same for each 9 € 0. _

Intuitively, it means that, given the values of ¢ and X;, we shall not
-obtain any additional information about the parameter 4 from the values
of random variables X, , X, ,..., X, at the previous moments. In the
sequel we consider only such processes which have the above-given
property.’ ‘

All processes considered below are assumed to have right-continuous
paths.

Let us note that if the paths of the process {(f) = X (¢, w) are right-
-continuous, then for every finite (with probability 1) Markov stopping
time v the function X,(w) = X(v(w), w) is a random variable and
F -measurable, where &, denotes a ¢-algebra consisting of all sets 4 e#
such that

An{w: v(w)<t}e#F, for every teT

{see, for instance, [3], p. 70).

Denote by U the product space T X &'. Let  be a o-algebra of Borel
subsets of U (a o-algebra of Borel subsets of T is considered).

Definition 1. A real-valued function f defined on U and #-meas-
urable is called an estimator of the parameter .

A Markov stopping time = determines a time up to which the process
&(t) is observed. Knowing values of v and X, we wish to estimate the value
-of the parameter #. The problem is to find Markov stopping times v and
-estimators f(7, X,) having some optimal properties.
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Definition 2. By a sequential plan we mean any pair § = (z, f),
consisting of a Markov stopping time v and an estimator f, such that the
condition P, (0 < 7 << o0) = 1 is satisfied for each ¥ € @.

The non-negative function L(#, f), where & is the true value of the
parameter and f is the chosen estimator, determines the loss incurred
by the statistician and is called the loss function.

Let ¢(t), t € T, be a given cost function which represents the cost to
the statistician of observing the process up to time ¢. We assume that
¢(t) is non-negative, lower semicontinuous, and satisfies the condition

lime(t) = oo.
t—>o00

The statistician observes the process £(f) and decides when to stop
the observation and what estimator to take when he does stop. He is
interested in making such a choice of r and f that the expected value of
the over-all loss function L(#, )+ c(r) be small.

The expected value of the over-all loss function is called the risk
Junction and denoted by R(#, §), where 6 = (v, f) is a chosen sequential
plan and # is the true value of the parameter. We consider only such sequen-
tial plans 6 for which

E(#, 0) = Es[L(#, f) +¢(7)]

exists and is finite for all 4 € ®. The set of all such sequential plans is
denoted by 2.
A sequential plan 6* = (z*, f*) is said to be minimaz if

sup R(#, 6*) = inf supR(#, 9).

9O 6D 0O

Let ¥ be a g-algebra of Borel subsets of @. Suppose that the prior
Probability distribution of the parameter & on (0, ¥) is defined by the
distribution function &(#). Let R(#, §) be a ¥-measurable function of
the variable 4. Then for a given sequential plan ¢ the expected risk with
respect to @ is defined by

r(®, 8) = fR(ﬁ, 8)d D (D).

A sequential plan 6 = (7, f) is said to be Bayes for @ if

r(®P, 8) = inf #(D, ).
.37

A sequential plan (v, f) for which = is equal, with probability 1, to
a constant 7, > 0 is called the fized-time plan and denoted by

¢ = (Toyfo) = (Toyfo(XTo))7 where fo(XTo) =f_(T07 XT0)°
Further, for the fixed-time plan 8° = (T,, f°) we write
(1) R(8,f") = Es[L(8, )]

3 — Zastosowania Matematyki 15.4



*z0 N, Maglera

and

(2) HD,f) = [R(9,f)dD(9).
©

An estimator f° is called a 8°Bayes estimator for & if functional (2)
attaing its minimum for f° = f°.

Suppose that, for a fixed-time plan §° = (T,, f°) and the prior distri-
bution function ®(3), given X, = z, the posterior distribution function
@ (¥ |x) is defined. Then the conditional expected loss, given the observa-

tion, corresponding to @ and f° is defined by

(3) M, 1) = [L(9,f)dd(8|2).
]

The conditional expected loss 7(®, f°|z) is called the posterior 8°-risk
corresponding to @ and f°. A 4°-Bayes estimator for @ minimizes the
posterior 8°-risk corresponding to @ and f°.

The next lemma, which describes a well-known method of solving
for minimax rules in decision theory (see also [1]), is used in further
considerations.

LEMMA. Suppose that, for every T, > 0, there exists a sequence of distri-
bution functions D, (n =1,2,...) for which there exist corresponding
8°-Bayes estimators f with the property that the posterior 8°-risk corresponding
to @, and f° is independent of the value of the random variable Xrp,. More-
over, suppose that there exists an estimator f° for which

R(T,) = sup E(9, f°) = im#(,, fy).
n—00

9O
If there exists a Ty (0 < Ty < oo) for which
o(T5)+ R(T;) = min[¢(To)+ B(T )]
T0>0

holds, then the fized-time plan 8° = (Ty, f°) for Ty = Ty is minimaz.

3. Exponential class of processes. .

Definition 3. By the exponential class of processes we mean the
class of homogeneous processes with independent increments and satis-
fying the following conditions:

(a) Py(X, = 0) =1 for each 9 € 0;

(b) By4(X}) < oo for every teT and all 4 € 0;

(e) for all t > 0 and o € @ the distributions 2 are absolutely con-
tinuous with respect to a o-finite measure v on (%, #) and their Radon-
-Nikodym derivatives are of the form

d7P

(4) dy

(@) =p(t, x;d) = s(t, x)exp [w, ()¢ +w,(F)z],
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where z € ¥, 3({,x) denotes a (non-negative) function defined on U,
and w, (¥) and w,(?#) are some functions defined on 6.

We assume that the functions w, (#) and w,(#) are twice continuously
differentiable in the interval @ and, moreover, that the derivatives w, (%)
and w,(9) satisfy the following condition: w,(#) > 0 for all ¥ € ©® and the
function w;(#)/w,(?) is strictly decreasing in the whole interval @.

The expected value and the variance of processes belonging to the
exponential class are given by

_ w(9)
(5) Bo(X) = —2rgy
and
_ 1 d [w(d)
“ D) = = iy i)
respectively.

The paths of processes from the exponential class are assumed to
be right-continuous.

For processes belonging to the exponential class the random variable X,
i8 a sufficient statistic for the parameter &.

Let us remark that the Poisson, negative-binomial, gamma and
Wiener (with linear drift) processes belong to the considered class.

4. Bayes and minimax sequential estimation for the exponential
class of processes. We consider processes belonging to the exponential
class for which the relation
w (8)

0, (%)
holds for all ¥ € @. Moreover, let us assume that there exists a constant
B> 0 such that the relation

(7) § = —

(8) f oxp [, (8)t -+ wy(9)2]d0 =

e

1 .
s(t,w)(t—-ﬂ)

is valid for all ¢ > g and x € & for which s(¢, z) > 0.
Let © be an open interval (a, b). Suppose that

(9) lim exp [w, (#)t + w,($)#] = limexp [w,(§)t+ w,(¥) 2]

9—>at 9-b—
and

(10) nnlaexp[wl(a)urwz(ﬁ)w.] = limdexp [w, ()t + w,(F)x]
9—a

9-sb—

for every ¢t > f and each x € & except perhapsx = 0 if ¥ = {z: x> 0}.
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All of relations (7)-(10) are valid for processes with independent
increments most frequently involved in mathematical statistics ; for example,
for the Poisson (with @ =0, b = oo, B = 0), negative-binomial and
gamma (with ¢ =0, b = oo, # = 1), and Wiener (with a = — oo,
b = o0, f = 0) processes.

Integration by parts, in view of (7), (9) and (10), leads to the following
relations:

(11)
t [ 9w, (9)exp[w,(8)t+w,(8)2]1dd = & [ w, () exp [w, (8)1+w, (8)2] d¥,
6 ]

(12)
[ 8(z— 8t)w, () exp[w; (9)t+w, ()x]dd = — [ exp[w, ()t +w,(9)z]dd.
2] 2]

By equations (8), (11) and (12) we obtain

2/ . ¢
(13) !(m—ﬁt) w}(9)exp [10,(9)1-+ 0, (9)2)dD = o

In wiew of (7) the expected value and the variance of the processes
to be considered, according to (5) and (6), are given by

(14) Eo(X,) = ot
and
15 Dy(X,) = ——— ¢
( ) 0( ‘) w2 (19) ?
respectively.
As the loss function we take the weighted quadratic loss function
(16) L3, f) = w,(9)(f—9),

i.e. the squared error measured in terms of the variance.

Let, for every n» =1,2,..., the prior probability distribution of
the parameter ¢, determined by the distribution function &(#), have
the density

1 1
A 0 =2 (o 8,79)

-1, (%Jr 8, 7’)-0Xp [(% ; ﬂ) ,(9) + ya(d),

where y i8 a positive constant. We prove that ¢, (&) is really a density of
a probability distribution on @, i.e. we show that

[pn(9)a@s =1.
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In view of (17) we obtain
1 1 1
Jontorao =o(Tr,3) [exp](+8) oo |ao,

and the desired result follows from (8).

Let us suppose that the process is realized up to time 7, > 0. The
density of the posterior probability distribution of the parameter 3,
given X, =z, i3 determined by

()0 (Ty, 25 9)
PPN = VD (T, @; 9) 5
(2}

Substituting (17) into this formula and taking into account (4) we
obtain

" Toxp U, (0) Ty 1/ )+ s () (5100

Now, using relation (8), we have

(18)  ga(P|2) = (To+%)s(1‘o+% +8, w+y) exp[w,w)(rﬁ-ilT +ﬂ)+

1w, (5) (w+7)]-

According to formulae (3) and (16), the posterior 8°-risk takes the
form

(19) F(Bny f12) = [10,(9)(f°— )0, (8]2) 0.
e
It is easily seen that this risk attains its minimum for
J P99, (B12)d0
£0
2Z) = ; .
1) = @ wie

By substituting (18) into this formula we have
[ Bw;(8)exp [w, (#) (To+1/n+ )+ wa(F)(z +y)]dd
20 8
Tnl®) = g'w;(ﬁ)exp[wl(ﬂ)(To-l-i/n-Fﬂ)+wz(ﬁ)(W+7)]d19 |

Finally, taking into account (11), we obtain

(20) @) = Tof;;:H -
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Thus the §°-Bayes estimator for &, is of the form
Xp,t+7
To+1/n+8 "

Substituting (20) into (19) and using (18) we obtain the following
formula which determines the posterior 4°-risk corresponding to esti-
mator (21):

(21) fa =

;(d’mfgul‘l’)=(To+%)3(To+%+ﬂ1w+)')x
2 1
< Jwieo ) grmarts —9) oxp|0,00)(Tot - +8) + w0+ | a0

- (To+1/n)s(Ty+1/n4 8,2+ ) x
(To+1/n+8)

X f[a:%—y——ﬁ(To-}-;lb——i-ﬁ)] w;(ﬁ)exp[wl(ﬁ)(To+%—+ﬂ)+w2(0)(;v+y)]d0

(2]

Taking into account relation (13) we obtain

Py fl0) = i

We then see that the posterior ¢°-risk is independent of X, .
With reference to the Lemma let us now take into consideration the

estimator
X T,
To+8"

Let us evaluate the risk corresponding to this estimator. According
to formula (1), in view of (16) and (22), we have

w, ()
(To+ B

Using (14) and (15) we get

(22) =

R®,f) = Eo{[XTo—ﬁ(To'{‘ﬂ)r}-

To+ B 5w, ()
(To+B?

Let us remark that if 8 = 0, then R(#,f°) = 1/T,. Moreover, if

R('?’fo) =

1
sup P w,(¥) = rl for >0,

0¢®



Sequential minimaz estimalion 453

then

1

WREGT) = g3

We then have
- 1 ' - - "
R(Ty) = —— = supR(3, f°) = lim¥#(D,, f5|z) for =0
T o+ﬂ Oe® n—+00
The above consideration allows us to assert what follows:
THEOREM. Suppose thal, for g > 0,

‘, 1
(23) sup 2w, () = —.
0e® ﬂ
Then, for processes of the exponential class satisfying the above-given
assumptions and for the loss function (16), the fixed-time plan 8° = (T,, f°)
with T, for which the expression

1

e(To) + T——I—ﬂ

attains ils minimum is minimax.

Condition (23) is fulfilled, for example, for the negative-binomial
and gamma processes (8 = 1). Moreover, let us remark that for the Poisson
and Wiener processes (8 = 0) f° is an unbiased and efficient estimator of
the parameter 9 (as concerns the efficiency of sequential plans for the
exponential class of processes see [2]).
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R. MAGIERA (Wroclaw)

MINIMAKSOWA ESTYMACJA SEKWENCYJNA
DLA WYKLADNICZE]J KLASY PROCESOW

STRESZCZENIE

W pracy rozpatruje sie problem estymacji sekwencyjnej nieznanych parametréw
proceséw stochastycznych, gdy strata poniesiona przez statystyka zwiazana jest
nie tylko z bledem estymacji, ale rowniez z kosztami za obserwacje procesu. Uogél-
niajac wynik Dvoretzky’ego et al. [1] udowodniono, Ze dla wykladniczej klasy pro-
ceséw spelniajacych pewne dodatkowe zalozenia i dla kwadratowej funkeji strat
plan sekwencyjny o stalym czasie obserwacji jest minimaksowy.



