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OPTIMAL CHOICE OF A STATISTICAL MODEL:
A DISCUSSION OF THE AKAIKE AND CLASSICAL APPROACHES

Abstract. Sakamoto et al. [3] have given a full account and have presented the state of art of
the Akaike approach to optimal choice of a statistical model. Two features of the Akaike theory
play a fundamental role: using the Kullback-Leibler information quantity (K-L quantity) to
measure the loss which occurs when an unknown “true” distribution is replaced by a model
distribution, and measuring the goodness-of-fit of a given statistical model by the distance
(generated by K-L quantity) of the underlying family of distributions from the true distribution. In
the paper we show that both ideas, when considered from the classical statistical decision theory
Point of view, lead to persuasive criteria of estimation and model choice.

1. Akaike loss function. Let X be a random vector with pdf f(x|8*) which
depends on an unknown parameter 6* € @. If instead of the “true” value 0* we
adopt 6@, the loss is defined as (we use the notation from [3])

(1) I*(6) = —nf[log f (t|0)] f (t|6*)dt.

A proper choice of 6 (a choice of the model f(-|0)) is that which, roughly
Speaking, minimizes I*(6).

A rationale of the above is as follows (see [3], p. 38). Consider the
Kullback-Leibler information quantity

1g; f)=E logj‘(g - f[l gj’f( ’)]g(x)dx

-With the well-known properties:

) I(g; f) = 0;

(i) I(g; f) =0 iff g(x) =f(x) (ae.).

The quantity I(g; f) may be considered as a “distance” of f from g and
someone who does not know the true g is interested in adopting f as close to
g as possible. Given (unknown) g, this amounts to minimizing the loss *(6).
Renyl ([2], p. 453) calls I(g; f) “a gain when the distribution f'is replaced by ¢”;
in our context a more adequate term is “a loss when an unknown distribution

. 9 1s replaced by the model distribution f”. Observe that, given x, f(x|6) is the
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likelihood of 6. Hence in [3] the quantity —n~'I*(f) is called “expected
log-likelihood under the true distribution f(-|0%)”.

Due to the fact that 0* is unknown and our guess f of 6* is based on the
observation X, ie., § = 0(X), the classical approach is to consider the risk of

6 defined as

r*(0) = Eo.1*(0(x)) = [1*(6(x)) f (x10%)dx,
and to find § which minimizes r*(6) umformly in 6* (if possible), to discuss the
admissible f, minimax 0, or Bayes 0, etc., depending on the aim of the study

and on some further details of the problem under conmderatmn The Akaike
theory has not been developed in this direction.

2. Optimal choice of the statistical model. Classical and Akaike approaches.
Given an “overall” parameter space @, let @, < @, k= 1, 2,..., K, represent
competing models. Under the loss (1), a “natural” procedure of the choice of
the best model would be as follows: define

IF=inf I*@, k=1,2,...,K
88y,
(the “distance” of the model @, from the true 6*), and choose k Wthh
minimizes I¥.

But, again, 6* is not known and our guess of k, say £ = £(X), is based on
the observation X. The classical approach would be: con51der the risk of
k defined as :

R*(R) = Eglliy,
and find k which minimizes R*(k) uniformly in *, or find admissible k, or
minimax &, or Bayes k, respectively. This is what one could consider as the
optimal choice of a statistical model (a family of distributions) under the given
Akaike loss function [*(0).

Observe that in the above formulation we are facing the classical problem
of constructing an optimal statistical decision procedure. The Akaike approach
is different. It may be presented as follows.

Given an observation X = x, for the k-th statistical model o,
(k=1,2,...,K) find the MLE §, defined as

0,(x) = argmax [log f (x|6)].

0y
Then calculate the “mean expected log-likelihood”

[*(K) = B 1*(0,(X)) = [ 1*(6,(x)) £ (x]0%)dx.

“The model with larger mean expected log-likelihood is considered to be the
better one” ([3], p. 60). However, 6* is unknown and the solution is not
applicable. Some new tricks are needed and these are as follows. The Taylor
expansion of [*(6) around the true value 6* yields the approximation ([3], p. 65)

*0) = l*(e*)"‘%;/’;(9“9*)-]*\/?;(0.—9*?,
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Where J, is the Fisher information matrix. Putting 6 = 0.(X) and calculating
the expected value we obtain

@ ‘*(k) = *(0%)—4E[/n(0—0%)J,/n(6—6%T].
On the other hand, for I(6) = log f (x|6) we get the following approximation
(through the Taylor expansion around 6, = §,(X); see [3], pp. 67 and 68):

[(6) = 10) —4/n(0—0)J ,/n(0— )T

Substituting 6* for § and taking expectations of both sides we get

(3) Egel(0%) = Eg /(0 (X)) —4E[/n(0* — ) J . /n(6* - 6)T].
But, by (1), Enl(0*) =I1*(6%), so that combining (2) and (3) yields

I*(k) = Egl(6, (X)) —E[/n(0* —0)J . /n(0* —6)7].
Now, if dlka denotes the dimension of ®,, under usual regularity conditions,

\/_ ©*—6)J N f @*—0)7 is asymptotically chi-square with dim, 6 d.f, so that
eventually
I*(k) = Egl(6,(X))—dim, 0

or
@)  I#(k) = Eg(l(0) — dim, 6).

Unfortunately, I*(k) still depends on the unknown 6%, and the choice of
k minimizing *(k) is impossible again. What Akaike proposes, and what seems
to be the weakest point of his approach, is to take /(d,)—dim, 6 instead of I*(k)
(a heuristic justification lies in formula (4)) and to choose the model @, (k =1,
2,..., K) for which this quantity takes on the minimal value. More exactly,

AIC(k) = —2(I(6,) —dim,(8))

is considered and the model with the maximal value of AIC(k) is accepted. In
the Akaike theory, the AIC is typically applied to a family of nested models

0,c0,c...c6,cO
such that '
0=(0,,0,,...,00€0, if O =0i1,=...=0,=0;
then dim,6 = k, and AIC(k) = —2I(§)+2k.

3. A discussion of the Akaike loss function. Let us consider the loss function
(}) in a more detailed way. A heuristic justification for choosing this function
lies in the properties of the Kullback-Leibler information quantity

' 1
1(6; 6*) = [[log £ (:16*)1 f (¢|6%)dt +1*(6),

hence we return to considering 1(0; 6*) instead of I*(0).
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1. Suppose that {f(x|6), 6eR'} is a family of densities on the real line
indexed by a real-valued parameter 8 such that f (x]0) = f(x—0) for a given
density f (location family). Then

o 70
10:0% = | tog 72 gy

which depends on @ and 0* through the difference § —6* only. This, of course,
is an advantage of the Akaike criterion I(0; 0*).
For example, if

f(x16) = (/2n) *exp{—(x—6)*/2},

then
100; 6*) = 40— 6%

and the Akaike optimal solution of the estimation problem is identical with
that with the mean square error of estimation as the criterion.

2. Let {f(x|6), e R}} be a scale family of dlstnbutlons
S (x16) = 071 (x/6)

for a given density function f. Then

1(6; 6*)_=1'og%+j(l f(Jt;’E‘:/B))f(t)dt’

which depends on 0 and 6* through the ratio 6/6* only. This should be
considered as a rather natural property of the loss of the estimation of a scale
parameter (see, e.g., [1], Section 3.3). For example, if

f(x|6) = [6°T (g)] " x*" exp{~x/0},

g known, 8 > 0 to be estimated, then the Akaike criterion leads to the loss

% *
I1(6; 6%) = q(%—— log% - 1).
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 Fig. 1 " Fig. 2
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This very attractive loss function in estimating a scale parameter is shown in
Fig. 1, where I(8; 0*) is considered as a function of the model value 6 under
a fixed true “value” 6*. :

3. The advantage of the Akaike loss function is not restricted to location
and scale models only. Let us consider estimating € in the binomial distribu-
tion

£(t10) = (':)0'(1—9)"*', t=0,1,...,n 0<0<1.

Now we obtain (Fig. 2)

6* 1-0*
16;0%=n 9*log?+(1—0*)log =0

which is a convex function of 8, given 8*, equal to zero iff 0 = 0*, and tending
to infinity if 6 approaches 0 or 1. This again gives a very persuasive loss
function in estimating the binomial parameter, more reasonable than the
quadratic loss function typically applied.

4. Choice of a model. An example. Consider the regression
x=at*+bt+c+¢

with & distributed normally N(0, ¢2), and suppose that one should decide if the
coefficient g is “practically” zero (say, |a|] < ¢ for a suitable ¢), or it is positive
(a > &), or negative (a < —¢). To avoid too many technicalities suppose that all
other parameters, including o2, are known. Then, after a suitable nor-
malization, the problem is to consider 3 random variable X distributed
normally N(0*, 1), * unknown, and to choose one of the models

0,={0:0<—¢}, ©,L{0:10<e}, ©O;=1{0:0>¢}.
Under the Akaike loss function we obtain

{0 if 0* < —¢,

* . 3 * — 1 Lo p* =
If = inf I*(0) = inf {3(0—6%)} = 10+ if 0% > —e,

8< —¢ 0< ~¢

10* +¢  if 0* < —e,
x=140 if 0% < e,

1O*—e? if 0* >,

o - it o* <,
=10 if 0% > .
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As decision rules, it is natural to consider the follbwing functions of the

observation X:
1 if X< —¢,
kLX)=<2 if|X|<ec,

3 fX>c,

where ¢ > 0. Then the risk R*(k), considered as a function of the true value 0%,
is given by the formula '

(H(0*+ 0 [P(c—0%)— B(—c—0%)] +3(6* —e[1 — B(c—0%)]

if 9% < —é,
R*(k) = < 4(0% + £/ (—c— 0%)+ 1(6* —6)*[1 — B(c— 0%)]
' if 6% < &,
| 3(0* + 7 D(— c— 0%)+- (0% — &2 [B(c— 0%)— B(—c— %]
if 6% >¢,

0.20

0.10

Fig. 3~

where @(°) is the cdf of N(0, 1). The risk function R*(k), for ¢ = 1 and ¢ = 3,
1 and 2, is outlined in Fig. 3 (the function is symmetrical around zero). One can
casily observe that in the class {k,: ¢ > 0} of decision functions the one which
minimizes, uniformly in 6*, the risk R*(k)) does not exist; an “optimal” choice
of ¢ or k needs a further discussion which lies beyond the aim of this paper.
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