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ON THE NON-EQUIVALENCE OF TWO CRITERIA
OF COMPARABILITY OF STATIONARY POINT PROCESSES

1. Imtroduction. This note is concerned with the comparability
of stochastic point processes defined on the real line R. It seems to be
natural to define the comparability of such processes by the comparability
of the density of their points. Basic to any point process are, on the one
hand, the counting and, on the other hand, the interval properties.

Now, the density of points can be expressed in terms either of counting
or interval properties. Two stochastic point processes are said to be compa-
rable if (i) the number of points in corresponding bounded Borel subsets
of R, or (ii) the intervals between corresponding events are in relation
with respect to a certain stochastic semi-ordering. These two possibilities
of definition were proposed by D. Stoyan.

In the special case of stationary point processes one may expect,
intuitively, that these two criteria of comparability are equivalent. How-
ever, it turns out, even simple examples of stationary remewal processes
do not have this equivalence property.

2. Definitions. The basic definitions concerning stationary point
processes defined on the real line and the notation are according to [3].

Let M be the system of all local finite subsets of R. The points of
peM will be numbered, as usually,

e < B (@) S 0< 3 () < (@) < ...

Further, % denotes the smallest o-algebra of subsets of M with

the property that, for all bounded Borel subsets B of R, the mapping
hg: M—N,

ha(@) = Do (B),
k

is M-measurable.

By a stochastic point process defined on R one understands a probability
space of the form [M, M, P].
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For every te R, the shifting operator T, will be defined on M by the
formula ze T,¢p if and only if x+1te¢.

A stochastic point process [M, I, P] is said to be stationary if the
probability measure P is invariant with respect to the shift T, for every
te R.

In the sequel only stationary point processes will be considered.

Definition 1. Two stationary point processes [M, M, P;l;_1.
defined on the real line are said to be comparable (P, <, or 2, P,) if
the distribution functions

Fy ;(n) =Pi(¢: wn(§0)>t)7 t=1,2,

satisfy the relation F; ,(n) > or < F, ,(n)foreveryt > Oandforn =1,2 ...

Definition 2. Two stationary point processes [M, I, Plicye
defined on the real line are said to be comparable (P, <, or 2, P,) if the
n-dimensional distribution functions

Fn,i(t07 cey tn—l)

= Pi'o)(fp: Lo (@) < oy @1(@) — Do (@) < Tyy ooy By (@) — @y (@) < tn—1)7
i=1,2,
1)

1)
satisfy the relation F,,<or>F,,forn =1,2,..., where P denotes
the Palm measure corresponding to the sta,tlona,ry pomt process [ M, I, P,].
Two n- dimensional distribution functions # and G are said to satisfy

the relation F G if, for every measurable functional f of R™ having the
property

[(#;<y;: ¢ =1,2,...,n)=>f(®) <f(y)],
the inequality

ff )dF (z ff ) dG (%

holds (assuming the existence of the integrals (see [4])).

Therefore, definition 1 contains the comparability of the number of
points in an interval of length ¢ for every ¢ > 0, but definition 2 contains the
comparability of intervals between » +1 successive events for n =1, 2, ...

If the random variables x;(p) — ;_, (¢) are independent and identically
distributed with the distribution function A, then one obtains a recurrent
stationary point process (renewal process) [ M, M, P 4], where the prob-
ability measure P, is induced by A (see [3]). In this case definitions 1
and 2 can be written in the following forms (a) and (b), respectively:

(@) Pip €1 Pgy if, for n =1, 2, ... and for every ¢ > 0,
¢

1 —f(l — F(u))du <if(1 & (w)du = @,(1)

Go
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and
(2) FoxF*™ (1) < G*G*" (1),
where

m 4 g—gtf (1—A4(u))du,

0
and * denotes the convolution operator.
(b) Pig =, Py if, for every ¢ > 0,
(3) F(t) > G(1).

3. Counterexample. In this section some connections between count-
ing and interval properties are investigated. As mentioned above, one
might expect that P, <, P, if and only if P, =2, P,. Jacobs, however, gave
an example in [2] that the implication P, 2, P, =P, <, P, does not in
general follow. It will be shown here that also the inverse implication
(P, =, P, = P, 2, P,) is not always true.

PROPOSITION. For the distribution functions F and G defined on R* by

¥ i1,
1 ift>1,

the relation Pz =, Pig holds, although Pz and Pig are not comparable
with respect to relation <,.

Proof. Since F(1)> G(1) and F(2) < G(2), the second assertion
follows immediately from (3). It is also easy to see that inequality (1)
is satisfied for every ¢ > 0. Therefore, it remains to show inequality (2)
for n =1,2,... and for every ¢ > 0.

From (4), by simple calculations, we have

P o« F* t g gt
n(t) = e~
(1) = ¢ [(n+l)! T T ]

(4) F(it)=1—e'! and G(t) =

and -
G, *G*" (1)
1[/n n n .

=5\ + 1Tt , (t—k)] if k<t<k+1, k=0,1,...,n,
1 if n4+1<t.

The function F,+F*™ is convex in the interval (0, n). Now, since
G,*G@*™ is linear in (i,4i+1), ¢ =0,1,...,n—1, it is sufficient to prove
inequality (2) for ¢t =1,2,...,n and for te(n,n-+1).

From (2), setting ¢ = n, one obtains the inequality

(5) e”<2"(1—|—n+... +—:T)’
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which can be proved by complete induction. Therefore, inequality (2)
holds for ¢ = n. Moreover, this leads to

‘FyxF*" (1) < Gy xG*™(t)  for te[n,n+1).

Since F,*F*" is convex and @, *G*™ concave in (n/2, n), it remains
now to prove inequality (2) for ¢t =1,2,..., k < n/2. Tt turns out, by an
elementary reasoning, that even

(B F*™) (3) < (GxG™)'(1—0) for t =1,2,...,k< n/2.
Thus, since n is arbitrary, the proof is complete.

4. Concluding remarks. The same proposition can be obtained,
varying slightly the proof, for

= def ~def

for which F (0+0) = G(O +0) = 0, or for a.bsolute continuous distribution

functions being sufficiently close to F and G where F and G are given
by (4), and %, denotes the indicator of (1, + oo).

This statement simultaneously shows the difficulty of the problem
(investigated, for inscance, in [1]) of determining the interval distributions
of a stationary renewal process from its counting distributions.

For the case considered by Jacobs in [2] (where Pz 2, Py
=P(p 1 Plg is not true) further examples can be easily found. Namely, let
F and @ be distribution functions defined on R* and assume that there
exists an #,¢ Rt with F(2,) < 1 and F(2) = Q(z) for every z > x,. Then
from F(t) < G(t) for every ¢ > 0 inequality (1) follows if and only if F = G.

The author would like to thank Dr. D. Stoyan for suggesting this
problem and for his help in improving the paper.
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0 NIEROWNOWAZNOSCI DWU KRYTERIOW POROWNY WALNOSCI
STACJONARNYCH PROCESOW PUNKTOWYCH

STRESZCZENIE

W pracy rozwazono dwa kryteria poréwnywalnodci stochastycznych proceséw
I_m'nk.towYch. Dwa stochastyczne procesy punktowe nazywaja sie poréwnywalnymi,
Jezeli (i) liczby punktéw w odpowiednich ograniczonych zbiorach borelowskich prostej
rzeczywistej lub (ii) odstepy miedzy odpowiednimi punktami sa w relacji wzgledem
Peéwnego stochastycznego uporzadkowania czeéciowego.

. ‘W przypadku stacjonarnych procesé6w punktowych intuicyjnie mozna by ocze-
l‘nwa,c, ze te dwa kryteria 83 rébwnowazne. Na prostym przykladzie pokazano jednak,
Z¢ nawet nie wszystkie pary stacjonarnych proceséw odnowienia maja te wlasnosé.



