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AN INTERVAL METHOD
FOR NONLINEAR SYSTEMS OF EQUATIONS

L. Introduction, This paper gives a new method with some modifications
of the method of [1]. This process can be used for finding solutions of
A nonlinear system of equations in a finite n-dimensional interval.

The fixed symbols are as follows: :

filx)=0,i=1,2,...,n,a<x<b,a, b, xeR"is such a nonlinear system
([)a eb(%uations, where all f: R -» R are twice continuously differentiable on

‘e, (u,x) = u+ify(x)), where ueR and u > 0;

5.0 = 1+ 1fi 9, = 1+ L 10,;

B> sup || f{ (%), == sup max ¥ 10,8, f;(4);

2 xela,b) 2 xefa,b] k j

r(u,x) = mftx %hn (4nhe,(u, x)+ g? ())* — g,(x));

Ie,r)={xeR"|x;—¢]<r;i=1,2,...,nm ceR", reR}
18 an intervaj (cube) in R" with centre ¢ and radius r (R" is canonically ordered).

2. Two theorems for characterization of the solutions.

solut;rHEOREM 1. If uy =20, cela, b] .and r(ug, €) = uy, then there are no
ons of fi(x) =0, i=1, 2,...,n, in Ic, )n[a,b].
Proof. Let a = {a,,..., «,} be a solution of our problem. If

¢={0,a;,...,0,}, c={c;,...,¢}, E=1{up, cy,..., ¢},
they

16 = @) +H(Hx =)+ 2(x = (Bx—0),
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where x,&e[a, b] imply
o+, (@) = 1o —0)+[ff a—)+- (@~ ff (Ha—o)

<> ey, €) < gi(c)|d—¢éll , +hnlld—El|lZ.
From this quadratic inequality we obtain
. 1
lé—éllo > 5o ((4nhie,(uy, )+ g?(0) > —g{0)),

1.e.,
ld—¢é|l, > r(ug,c).
And if r(uy,c) = u,, then
|6—Ell, > r(ug, ¢)= la—cl||, > r(uy, c)=>a¢l(c, r)n[a, b].

Remark. If u, > 0, then there are c,, ¢,, ..., ¢, €[a, b] such that
M

U I(c,, 1) = [a, b].

k=1

(Further on we shall show a simple construction of such a “cover-system™.) If 4o
is a “sufficiently small” positive number and ¢, is an element of c,, ..., c,, such
that r, = min{r,, ..., ry}, then ¢, is a “sufficiently short distance” to a solution
of our problem (because r(u,, c,) <u, can only be realized in a “small
neighbourhood” of the solutions).

THEOREM 2. Let o be the unique solution of our problem. Let u, > 0 and
UI(ck,.rk) o [a,b] for ¢y, ...,cy€[a, b].
If ¢,(=c) is an element of c,,...,c,, such that
r=r)=min{r,,....r,}
and r has been obtained with f; and f,(c) # 0, then

ael(c,Ar)n[a, b],
where

A 2 (nhyr + || fi( N WS (E)scal

and s, is a unit vector (to ||*|| ) in the direction c—x and £€[c, «].
Proof. The vector ¢ and the number r satisfy the equation

r = o (o + O+ L+ 17O~ (14 L1 )
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Hence
Uy + 10 = nhg* +r+r| fi(Oll,-
Since 4, > r and f {(a) = 0, we have
Ifi©)—=fi@)| < nhy® +rll fi(eill, -
If now we use
£ ()= fi@l = 1f{ (E)e—a)| = |fi(E)s.l e —all
then (f/(&)s,, # 0 since f(c) # 0)
le—all < r{nhy + I )1 f1(E)sedl-
Remark. If u, > it, (Where u, and i1, are “small” positive numbers), then
Sex ~ (C—)/llc—cll, and  fiE) ~ fi(E).
Thus the formula of Theorem 2 can be used in practice as well,
3. The method. Henceforth the function
hi(x, 6) = 05| fix)o+6, 620,

Will be used in place of the constant h; (in the formula for r(u, x)). If 6 is
S“fﬁCientIy large, then h;(x, 8) > h, for every x€[a, b] and the former remarks
are useful henceforward.
The idea of our method is as follows. First we choose an initial value u,
and make a cover-system to u, (With centres c,, ..., ¢, and radii ry, ..., 7y).
hen we define an interval

[a,P)1=1(c, inn[a,b] (r=r,=min{r,,...,ry} and c=¢)

gnd make a new cover-system to i, (< u,) and [a, b]. At this time we can
efine an interval

[a, b] = I(c, 7’ n[a, b], ...

In, this way we determine a sequence c, ¢, &, ... The description of our method
will be complete when we answer the following questions:

How are the cover-systems made to ug, i, ...

How are 4, u,, iy, ..., 4, 4, ... chosen?

foll We made the cover-system to u, and [a, b] (to @, and [a, b], ...). as
R OWs. (The construction is illustrated for n =2 by the first numerical
Xample.) Let ¢, = (a+b)/2. If

ry = r(ug, ¢;) = 0.5|b—alf .,

then the construction of the cover-system is finished (M =1). Otherwise, the set
ka, bl -1 (¢y, r,) is divided into intervals as follows: If r; < (b,—a,)/2 for a fix
k=1, 2,...,n), then we define (store up) two new intervals:
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)
et —hes oo Crpm1 =M1y Guliys .oy a,),

{erthy, ..., él.k—1+hk—1’ Cu—T1s brags s Batl
and

e —has oo Cipms =gy 7y, Grys ooy G},
Cathy, eyt by by, ..o, b1,
where
cu={a;+b)2 and h;=min{r,,(b;—a)/2}.

(The number of the new intervals is between 2 and 2n) Then we compute
r, =r(up, c;), Where c, is the centre of the first issued interval. If this interval
needs dividing (I{(c,, r,) does not cover the interval), then we store up the new
intervals after the former ones. The construction of the cover-system is finished
if an interval does not need dividing and if it was the last to be stored up. (Our
computer program stored up [a, b] and the issued intervals with their centres
and radii. The centres and the radii were stored up in the columns of two
two-dimensional blocks,)

The parameters of our method were chosen as follows:

(a) We used “correct” 8 (h,(x, &) > h, for every x€[a, b]) if we had striven
for (full) safety. Otherwise, we used & = 0 (this is only correct for fi{x) = const,
i=12,..., n)ora“mean” §. (We think § is often not an important parameter
of our method.)

(b) We used 0 <u, < |b—al, “in the case of safety” and |b—al
< Uy < 10]|b—all, otherwise. (The safety of our method is full for Uy ~ 0 (4
and u, are not needed in this case), but the number of examined points (M) can
become too large. If u, > ||b—al , then M = 1 “on the first level”, so A and #,
become very important parameters in this case. (4 of Theorem 2 is a theoretical
choice for every #,.))

(c) The formulas A = min{2, 1+100/M} and @, = u,—r supplied two
good properties in practice. On the one hand the method kept its “mobility”,
on the other hand M could not become too large on the new levels.

4. Numerical examples. Two examples are shown in this part. At first
some possibilities of the use of the method are illustrated by an elementary

example. The second example points to the quantity of computations with our
method.

(@) In the system of equations
X1 %;—8=0, xI—5x,+x,+2=0
we have
ey, %) = u+|x,x,—8|, e,(u,x) = u+ix}—5x,+x,+2|;

g,(x) = Lk [x | + x5, gz(x)=2+|2x1—5|;
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hy(x,8) =05, hy(x,d)=1;
and '

r(u, x) = max 41h (/8he;+9f —g)).
If u, is sufficiently small, then our method can be used to prove that some
{a, b] do not include solutions. For instance, let
[a, bl =[{—5, —1}, {1,1}] and u,=0.1.
Then r(0.1,{—2,0}) ~ 1.71 and we must define two new intervals:
[{—5’ 1}’ {—3'71! 1}] and [{“0'299 —l}a {Ia 1}]
Since
r(0.1, {—4.355,0}) ~ 2.14, r(0.1, {0.355, 0}) ~ 2.24,

We need not define further intervals. Here M = 3, r = 1.71 on the first level and
@, b] cannot include solutions because of r > u,.
Now, let

[a,b] =[{4, —1},{8,3}] and wu,=2.
Then the cover-system of the first level is defined as follows: -
r(2,{6,1}) =1
and new intervals are
(4, —1}, (5,3)3,  [{7. -1}, {8,3}), [{5. -1}, {7, 0},
[{5.2}, {7, 3}1;
r2,{4.5, 1}) ~ 0.75
and new intervals are _
[{4, —1}, {5,025}1 [{4, 175}, {5, 3}1;
r(2,{7.5, 1)) ~ 1.56
ad new intervals are |
[{7, =1}, {8, —0.56}1, [{7,2.56}, {8, 3}1;
r(2, {6, —0.5}) ~ 1.45;
r(2,{6, 2.5}) ~ 1.11;
r(2,{4.5, —0.375}) ~ 1.56;
r(2,{4.5, 2.375}) ~ 0.57

a .
0d new Intervals are
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[{4,1.75}, {5, 1.805}], [{4, 2.945}, {5, 3}];
r2,{7.5, —0.78}) ~ 1.47;
r(2,{7.5, 2.78}) ~ 1.66;
r(2,{4.5, 1.7775}) ~ 0.503;
r(2,{4.5, 2.9725}) ~ 0.79.

Here M = 11, r = 0.503, ¢ = {4.5, 1.7775} on the first level. If ¢ is a good initial
approximation for a fast finishing method (see [2]), then our method is
stopped. Otherwise, it continues with

[4, 5] = [{4, 0.7715}, {5.506, 2.7835})] and i, = 1.497.

(The problem has three solutions for [a, b] = R* {—1, —8}, {2, 4} and
{4.2})

(b) In the system of equations
XX, +x3—6x;,+13 =0, x}+x%+x1x2-—4 =0,
x1x3+x2x3+\/x—4——2 =0, 2x{—x,x,x,+16=0,
we have
hi(x,8)=1, hy(x,8) =15 hy(x, ) = 0.5max{2, 0.25/./x3} +8,
hy(x, 8) = 0.5max {4, [x,]+|x5], [xg|+[x,l, |x3]+]1x,]} +8.
We worked with 6 =0 and u, = 4 in four intervals [a, b]. They were
[{—2,0,1,2}, {0,2,3,4}], [{-3,1,2,1}, {1,3,4,5}],
[{-2,-1,1,4}, {2,3,3,6}], [{—4,0,1,2}, {0,4,5,6}]
Then we worked with 6 = 3 and u, = 10 in four intervals {a, b]. They were
[{—4, =3, —1,4}, {4,5,5,6}], [{-3,-2,0,2}, {3,4,4,6}],
[({—5,-2,2,1}, {3,2,6,5}]1, [{—4,0,1,2}, {2,6,5, 4}].

When we stopped the process by u < 0.01, the errors of our approximations
were between 0.001 and 0.07. (The problem has a unique solution for xe R*
and x, > 0. It is {—2, 2, 3, 4}.) The working time of a TPA1148 minicom-
puter was between 15 secs and 50 secs for our examples. The number of used
points was between 1022 and 3539. (If we cover these intervals with cubes
having edges of 0.1, then the number of cubes is between 1.6-10° and 7.68-10°.)
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