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ON AN INTEGRAL INEQUALITY
CONNECTED WITH HARDY'S INEQUALITY

Let F' denote the class of functions f = f(t), defined and absolutely
continuous on the interval [—1,1], satisfying the conditions f(—1)
=f(1) = 0 and such that

(1) fl P*fidt < oo

Where p = (1—#)" "2 f = df/dt and a is a positive number. We shall
Prove the following

THEOREM If feF and

(2) [ p***f fodt = 0,

Where f, = p='=% | then the following inequality holds true

1 1
(3) b [ A< [ pftar
-1 —1
With 4, = (14 a/2)’ for 0 < & < 4 and A, = 3a—3 for a > 4. The coeffi-
Ctent A, in (3) cannot be enlarged. Moreover, for 0 < a < 4, there is equality
W (3) for f =0 only.
If condition (2) is rejected, then we have

1

(4) (1+a) [ p*Hfrat< [ p*fdt

~1

for any feF and there is equality in (4) for f = const f, only (see [2]).
The reason for considering the additional restriction (2) is motivated

:y Some problems of approximation in the theory of differential equa-
ions.
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Proof of the theorem. We introduce a new independent variable z
and a new function 4 = %(x) which are connected with ¢ and f by the
relations

(5) t = thz/2, f=(ch2/2)"u, a=1+a/2.

As a result of simple calculations we get the identities

1 (o]
(6) Ji= [ p*fd =12 [ wde = 1/2|ul
-1 —o00

and

(oo]

1
(1) Ja= [ pf'at =200 IP+ & ulP+e(l—a)2 [ (cha/2)*u’da,
-1

— 00

where ' denotes differentiation with respect to the variable x and || || is
the standard L,(—oo,00) -norm. When deriving (7) the relation (th/2)u,
—0 as £ — -+ oo is to be used which, on the other hand, is equivalent to the
relation p®*%f* -0 as ¢ — +1, established in [2]. The function u is ab-
solutely continuous on any finite interval of the real line and, due to (7),
the norms ||u|| and |j«’|| are finite. The class of all such functions will be
called U.

Let #eCy(—o0,00), i.e. u is twice continuously differentiable and
vanishing outside of a segment of the wx-axis. For such » the integral
J, may be expressed in the form

(8) Jy = 2(Lu, u)+ o*/2 |lulf,
where
(9) Lu = —u' 4+ a(1—a)/4(chz/2) 2u

and ( , ) denotes, as usually, the inner product in L,. The second order
differential operator L, if considered on C,, is symmetric and it may
be extended to a selfadjoint operator L, with a domain D(ZL,) = U. Its
spectrum has been studied by Titchmarsh [3]: it consists of a conti-
nuous part which is identical with the positive semiaxis » > 0 and of
a point spectrum whose points », lying on the negative semiaxis » < 0
are given by

(10) #p = —(af2—1/2—7)", r=0,1,...,[e/2—1/2]

and [B] denotes the integer part of g.
Consider the smallest eigenvalue x», = —a’/16 and corresponding
eigenfunction %. They satisfy the relation

(Lot %) = so|%||"
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which is equivalent to J, = (2%, o*/2)||#|* = (1+ a)J,. The last equality
is identical with (4), where the < sign has been replaced by the = sign
and where f =5’ = (chx/2)"°. However, the only function of class F
for which there is equality in (4) is the function const f,, therefore, due
to relation #eU, we have f = const f,, and % = const u,, where
%y = (chz/2)™% is the only eigenfunction of L,, corresponding to the
eigenvalue x,.

Let us now remark that it suffices to prove our theorem for functions
JeCy(—1,1) only and then apply the standard limiting procedure. When
working with corresponding functions ue U, we can restrict ourselves
to the class ¢, (— oo, oo).

Assume ue(Cy(— oo, 00). The orthogonality condition (2), when
expressed in terms of x and u’s, takes the form

(11) (%, ug) = 0.

We make now use of spectral representation of the operator L,. Due
to (11), we have

(12) (Lo, w) > pllulf

fOT any #e(C,(— oo, co) where y is the point of the spectrum of L, which
18 different from and nearest to xp, i.e. p = 0 for 0 < a4 < 4 and u = %,
= —1/4(a—3)* for a > 4. Due to (8) and the identity L,u = Lu for
UeCy(— oo, co), the inequality (12) may be written as J, > A,J1, A4
= 4p+d® fe(Cy(—1,1), which is the desired inequality (3).

Now for 0 < a < 4, u = 0 is a point of the continuous part of the
Spectrum and there is no function other than zero for which there would
be equality in (3) with both integrals convergent. If a > 4, then y = »,
a»Il(_l an eigenfunction corresponding to this eigenvalue turns (3) to equality.
This completes the proof of the theorem.

A particular case, @ = 1, will be considered now under the addi-

tional assumption that feF is an even function. In this case inequality (3)
has the form

(13) 9/¢ [ pfrat< [ pfa

-1
and the orthogonality condition becomes

(14) [ p’fat = o.

We shall show that in this particular case our theorem is equivalent to
Hardy’s theorem [1].
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We shall make use of the identity

1 1 1
(15) [ pfrati—2 [ pf*ar = [ p~*R*at,
~1 1 1

(see [2], formula (11)), where i = p*f with feF. Let {T}}, k = 0,1, 2, ...,
denote the system of Chebyshev’s polynomials. Denoting by a; and b,
coefficients with respect to {T:} of functions h and p~2h resp., i.e.

1 1
nag = [ phTodt, ma,=2 [ phTydt,
—1 -1
(16) 1 1
why = [ pT'hTodt, wh=2 [ p~'hT.dt,
—-1 —1

we have, due to Parseval’s relation,

1

I, =2/r f phidt = 2a5+ Za,i,

-1 Ie>1

1
I,=2/n [ p*hdt =25+ D bi.
-1

k>1
We have also the following identities
(18) a; = 2by, 2 = (k+1)ap 1 — (h—1)ay_,

for k¥ =1,2,... These identities follow simply when performing inte-
gration by parts in (16). Due to relations (18) we can express the coeffi-
cients a; in terms of b;.

The orthogonality condition (14) is now equivalent to a, = 0. We
have also relations o, = a; = ... = 0 and b, = b, = ... = 0 implied. by
the assumption & to be an even function. If we now put fi = bor_,,
By = p1+...4+ Br we ean then rewrite I, and I, in the form

(19) I = D (Bufky, I,= D pi.

k>1 k=1

According to Hardy’s theorem we have I, < 4I, if only not all 8, are
zero; here the coefficient 4 is the best one. The inequality (13) is now an
immediate consequence of the identity (15). Conversely, Hardy’s theorem
follows simply from inequality (13) and identity (15) expressed in terms
of ﬂk-

The above arguments may be modified so as to apply to the general
case considered in our theorem, however, a generalization of Hardy’s
theorem is then needed. We hope to return to this problem elsewhere.
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