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1. Introduction. The following approximation problem has been
posed in connection with the ADI-method (see, e.g., Varga [11], p 212):
For given numbers, a natural m and a real k' (0 < k¥’ < 1), find para-

meters 7y, Tomy «--9 mm Such that

m
” T—Tijm,
T+ T,

i=1

max
k'<z<1

is the minimum.

This paper deals with the determination of the parameters r;, and
with their properties. In Section 2, the Wachspress algorithm determining
the parameters r;, for m = 27 (called, shortly, WR-algorithm) is recalled
and it is shown how this algorithm can be applied to the calculation of
the extremal points u;, of the optimum function

= T —Tim
n {D-{—ij .

i=1

It is known that the optimal parameters r;,, are expressed by elliptic
Jacobi functions. Therefore, some monotonicity properties of these func-
tions are proved in Section 3. In Section 6, it is shown that the extremal
Points u;, are expressed by similar formulas as those for the parameters
"im- In Section 7, using these and Jordan’s formulas, we give algorithms
JR and JU determining 7, and u;, for m = 2?. This new algorithm JR
determines the parameters r;, with a smaller error (*) than the W R-algorithm.
Section 6 is devoted to the examination of properties of Tim aNd ;.
The theorems of Section 3 are used here to prove the monotonicity and
the limit properties of these parameters. The modification of the algorithm
JR, given in Section 7, is characterized by a smaller number of operations
but — as it follows from numerical examples — produces a greater error.

In Section 8, known approximate methods of determining the parameters
x

(*) This is the machine rounding error arising during the computation.
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7;m are Tecalled and properties of a certain function connected with para-
meters 7;,, the existence of which has been experimentally verified by
C. Boor and J. R. Rice, are proved. At last, Section 9 gives a hypothetical
estimation of the norm of the optimum funetion, the proof of which has
failed. Only examples confirming the conjecture are given.

Throughout this paper theorems and formulas are numbered inde-
pendently in each section. If we refer to formulas (theorems) from other
sections, two numbers, separated by a decimal point, are given — denoting
the section and formula (theorem), respectively. A single number as
reference means the formula (theorem) in the same section.

This paper is the first part of [15].

2. Algorithm WR of determining parameters 7; ,» and algorithm WU
of determining parameters u; ,». The alternating direction implicit method
(ADI-method) for solving partial differential equations has been given
by Peaceman and Rachford [8]. It is one of the most effective difference
methods of solving the Poisson partial differential equation on a rectangle.
It can also be applied to an iterative solution of other systems of linear
equations with matrices satisfying some rather strong assumptions (see
Varga [11], p. 212). An important role in this method is played by accel-
eration parameters.

Let 8,, denote the set of parameters s,, s,, ..., s, ordered increas-
ingly and belonging to the interval [a, f] with a > 0. The corresponding
rational function is

m

ar r—S;
fm(m; Sm)znw_{_;"
J

i=1

As acceleration parameters in the ADI-method (see, e.g., Varga
[11], p. 212) ought to be assumed elements of such a set R,,= R, (a, f)
(a and # depend upon the matrix of the system) for which

(1) max |f,(z; R,)| = L,(a, f),

as<z<p
where

La(a, f) S min max |f,,(z; 8,)|.

S, a<z<p
We assume the elements of R, (a, 8) to be ordered increasingly
Tim < Tom < oo < Trym -

The following theorem of Wachspress (see Varga [11], p. 223, and
also Wachspress [13], p. 183) asserts the existence and uniqueness of

R, (a, B):
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THEOREM 1. There exists exactly one optimum rational function f, (x; R,,)
for which condition (1) is satisfied. The elements 71, Yomys ey Tum Of Rom
belong to the interval (a, B) and are pairwise different. The function f,, (x; R,,)
is umiquely characterized by the property that f,,(x; R,,) attains alternatively
the values L,,(a, f) and —L,,(a, B) in m+1 poinis u, of the interval [a, B]
such that a = Ugy < Upp < .o < Uy = B-

The set of extremal points u,,, is denoted by U,,(a, §). The elements
of the optimal set R,, are consequently denoted by 7,,, and the extremal
points of the optimum function by wu;,:

The determination of R, (a, 8) for any m is not easy, since — as was
shown by Jordan (see Wachspress [12]) — the optimal parameters 7,
are expressed by elliptic functions. In the case m = 2% only (see Varga
[11], p. 225, and Wachspress [12] and [13]), the simple algorithm of
Wachspress of determining 7;, is known. In all other cases, one uses
approximations.

The W R-algorithm makes use of the following property of the optimal
parameters 7;,,:

LEMMA 1 (Varga [11], p. 224). The optimal parameters r;, satisfy
the relation

af
Yim =
rm—j+ L,m

From this lemma it follows that

max T3,2m
a<z<p ][ T+ 7jm Vaﬁ<y<(a+ﬁ)/2 17 y‘*‘ram ’
where
@) l/aﬂ l/aﬁ @
2 l/aﬂ
. 1 af .
r,-m=2(,2m+ : ) '(j=1,2,...,m).
j.2m

It can be shown (see Varga [11], p. 224) that the parameters 7,
are elements of the optimal set R,, Va8, (e + f)/2). Thus, finding R,,,(a, )

is reduced to determining R (l/aﬁ (a+B) /2). Hence the algorithm WR
for m = 27 follows immediately.

Algorithm WR.
Step I. Construct the sequences {a;} and {f;} by the formulas

a = a, Bo = B,

(3)
Ay = '/aiﬂi’ Biyr = (a;+B:) /2 (t=0,1,...,p—1).
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The elements of these sequences form the interval ends obtained
consecutively after having applied p times transformation (2).

Step II. Form the elements s;, (j =1,2,...,n;n =1,2,4,...,2%)
by the formulas

S = ‘/a:pﬂp = Qp41y

(4) Smijian = Sim TV (Sm — @) (8 + at),
a1 Br—

(8) Sp—jilam = ° EorE
Snti,2n

for j =1,2,...,0; k=p,p—1,...,1; n =2°77%,

The elements s;, are those of R, (a, 8). Formulas (4) follow from the
transformation inverse to transformation (2), and formulas (5) are a con-
sequence of Lemma 1 (they can also be obtained in a similar way as for-
mulas (4)). -

The elements of U, (a, ) can be determined analogously. Let us
prove now some auxiliary lemmas. The first lemma is a modification
of a lemma given in [14] by the author.

LeEMMA 2. The element u > 0 belongs to the set {U,,,, Ugpy oo vy Upy_1 m}
if and only if

(6) D=0
uz_,r.??m e

)=1

Proof. Since the elements u;, (1 =1,2,..., m—1) are extremal
points of f,(x; R,), they are zeros of the partial derivative of that
function with respect to x. Let us calculate it. We obtain

9 (1 1
%fm(m7 Rm) =fm(w7 Rm);(w_yjm B x+7; )

m

- 2%im
= ful@; By) 2 el

o @ =T,

Thus, if » equals u;,, (i =1,2,..., m—1), it satisfies (6). The loga-
rithmic partial derivative of f,,(x; R,,) is a rational function with the num-
erator being a polynomial of (even) degree 2(m —1), having thus m —1
positive zeros. They must be the elements of {Uym, Yoms-ery U 1m)-
Hence the proof of the lemma is complete.

LemmA 3. If we U,,(a, B), then af/ue U, (a, B).

Proof. Let u belong to the set {t,,,, Uspy -y Upm_1,m}- 1t follows then
from Lemma 2 that u satisfies (6). Using Lemma 1, we can transform the
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left-hand side of (6) in the following manner:

m m

jm ap [Tjm B N - Tim
Z u2irfm - 2 u? —ﬁaﬂ/r]m - _i;?; (aﬁ/’:)z—

j=1 j=1

Since af #* 0, we have

Z T A

and, by Lemma 2, af/u belongs to the set {Uim; Usmy ...y Up_; m}. The
thesis of the lemma is also true for the boundary points of U, (a, 8) equal
to a and B. This completes the proof.
We give now the algorithm of determining w,, for m = 22
Algorithm WU.
Step I. Similarly as in the WR-algorithm, construct sequences (3).
Step II. Form the elements v;, (j = 0,1,...,m; » =1,2,4,...,27)
using the formulas

Vo1 = @gy V11 = Poy
Voom = %—1y  Onon = Gy Vanom = Br_1s
VUnijon = ]n‘H/( — ) (Vint o)y Vp_jom = Vjn ‘/( @) (V3 + az)
for j =1,2,...,n—1; k=p,p—1,...,1; n = 2°7%,
The elements v, form the set U,(a,f) which is sought. The last

formula does not guarantee the numerical stability. By virtue of Lemma 3
it can be substituted by the formula

Qg1 ﬂk—l
v

Vp—jon =
n+j,2n

Which guarantees the numerical stability of one step of the algorithm
WU. For similar reasons, we use in the algorithm WR formula (5) instead
of the formula

(7) 8

n—j+1,2n = Sin _'/(sjn - ak) (sjn + ak) .

The numerical stability of the algorithms is considered in [16], where
We show that consecutive elements s;, are zeros of certain polynomials
f)f second degree from which the numerical superiority of (5) over (7)
Immediately follows.
We assume in what follows that « = %’ and g = 1. This is an ines-
Sentlal limitation. Also, we write L, (k’), R, (k') and U, (k') instead of
L, (a, 8); R, (a,p) and U,(a, B), respectively. Thus, parameters r;, and
%im are now functions of variable k'y ie. 7y = Tim (k') and w;, = u;p(K').
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3. Limit properties of the elliptic Jacobi functions. As we already
mentioned, Jordan has expressed the elements r;,, by elliptic functions.
Before presenting the formulas, we deal with the elliptic Jacobi functions
sn, cn and dn. The necessary information about these functions can be
found, e.g., in the book of Oberhettinger and Magnus [7]. In particular,
it is known (see [9], formulas 8.151.1-8.151.3) that

(1) dn(0; k) =1, dn(3K(k); k) =Vk', dn(K(k); k) =F,
(2) dn(u+ K (k); k) = k'/dn(u; k),

(3) dn(u+2K (k); k) = dn(u; k) = dn(—u; k),

where k' = V1—k?, and

wf2

dt

1
dx
-K EK k - = e —————
*) ,f V(1 —1)(1 —k2t?) of V1—k%sinlx

In addition, we know ([7], p. 31) that

(4) limK (k) = n/2,
k-0
(5) IimK (k) = oo
k—1
and
(6) limdn(u; k) =1,
k—0

limdn(u; k) = 1/cosh u.
k—1
In what follows we are interested in the function dn(u; k) with
a special form of the first argument:

uw = EK(k) for £e[0,1], ke [0,1].

Under this assumption K(k), dn(¢K(k); k), sn(éK(k); k) and
cn (&K (k); k) are real functions. Here is the first property of dn(£K (k); k)
which — as will be shown in Section 6 — decides upon the monotonicity
of the optimal parameters:

THEOREM 1. If &€ (0,1], the function dn(£K(k); k) is decreasing
with respect to k (0 < k< 1).

Proof. For ¢ = 1, the assertion of the theorem follows immediately
from the last of equations (1). Now we assume that

(7) §e(0,1).

This assumption is necessary because of the way the proof is per-
formed. The function dn(u; k) is defined as the inverse to the elliptic
integral of first kind (see [7], p. 19). We now recall this definition.
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Let
dt

® nei ) = f V- —kE)

The function u(x; k) of the variables # and k is continuous. If, for
a fixed %, the value of # changes from 0 to 1, the value of u(x; k) changes
from 0 to K (k). From (8) we determine x as a function of » and %. Then

(9) dn(u; k) £ vV1—Ka?,

where, as known ([7], p. 20), x = sn(u; k).
In the theorem we consider the case w = £K (k). Hence

(10) w(x; k) = Eu(l; k).

Therefore, under (7) we get

(11) 0 < u(z; k)< u(l; k).
Hence it follows that
(12) O<wz<l (ke[0,1)).

Remark. From Theorem 3 and formula (9) we have

lim sn(éK; k) = 1.

k—~>1"
Let
at u(w; k)

Ty ] (0<z<1).

U(zx; k)

For fixed &, it follows from (10) that U(x; k) = & = const. U(x; k)
18 a continuous function of # and % (u(1; k) # 0). Now, let us determine
its partial derivatives

g _ux(l;_k)_
(13) U.(z; k) = w(l; k)
o u(L; k)u(w; k) —u(w; K)ug(l; k)

(14) U,(x; k) = 20k ,
where
(15) uz(@; k) = _ ’

V(1 —a2?) (1 —k%x?)

3 Kt dt
(16) x; k) = | — s e e -

u;.(J? ) of (1_k2t2)l/(1_t2)(1_k2t2)
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Assumption (7), from which (12) follows, guarantees the continuity
of derivatives (15) and (16). Hence, due to the continuity of u(x; k),
it follows that derivatives (13) and (14) are continuous. From (11) and
(12) we also deduce that derivative (14) is different from zero. Thus the
function U (xz; k) = & satisfies the assumptions of the theorem on involved
functions. Therefore, we can determine x as a function of ¥ and &, and
calculate the derivative

(1) iw(k; §) = —u (15 k) u,(@; k) +u(@; k)ug(l; k)

dk w(L; k)u,(@; k) for ¢e(0,1).

Since x(k; &) = sn(£K (k); k), the local character of the thesis of
the theorem on involved functions is no obstacle. Now, we prove that
x = x(k; &) is an increasing function with respect to k. To do this, equality
(17) is transformed. From (11) it follows that u(z; k) # 0; also, we know
that u(1; k) # 0. Hence

de  u(w; k) (u,(1; k) u(v; k)
dk — ug(w; k) \u(; k) u(z; k)|
By (11) and (15), the quotient u(z; k)/u,(x; k) is positive. We write

gty =1 VA -1 —kt%), h(t) = k?/(1—K%e?),

(18)

a= fg(t)dt, b= fg(t)dt,

¢ = flg(t)h(t)dt, d = [ g)h()dr.

Now the expression of (18) in parentheses can be written as

(19) c+d iz ad—be .

a-t+b " a a(a+b)
The funection h(f) is continuous and increasing for 0<t< 1/k®
(k€ (0,1]). The function g(f) does not change its sign in the interval
[0, 1). Applying the theorem on the mean value for integrals, we obtain

c=h{t)a O<t,<2a),
d="~h()b (x<it,<1l).

The integrals a, b, ¢ and d are positive for ke (0, 1). Hence from (20)
we have

(20)

ad = abh(t,) > abh(t,) = bec (ke (0,1)).

Thus we have proved that expression (19) is positive. Hence it follows
that derivative (18) is positive, i.e. that the function # = x(k; &) is in-



Optimum rational function 285

creasing with respect to k for &e (0, 1) and ke (0, 1). By virtue of definition
(9), we conclude that the function dn (K (k); k) is decreasing with respect
to k for ke (0,1). This completes the proof of the theorem.

Remark. As it was mentioned in the proof, the function # = z(k; &)
is equal to sn(&K(k); k). It has thus been proved indirectly that, for
£e(0,1), the function sn (K (k); k) is increasing with respect to %
(0 < k< 1). On the boundaries of the interval this funection is constant
(sn(0; k) =0, and sn(K(k); k) = 1). This fact, as well as the thesis of
Theorem 1, were known earlier (see, e.g., the graphs in the book of Jahnke
and Emde [4], p. 98). However, the author could not find a published
proof of this property of elliptic functions in the literature.

Here is a generalization of Theorem 1:

THEOREM 2. If ne[0,1], the function

. ar dn(EK (k); k)
tk; &)= dn(nK(k); 70)

of the variable k is in the interval (0, 1) strictly increasing for 0 < &<
and strictly decreasing for n < & < 1.

Proof. Introduce the auxiliary notation
r(z) = dn(zK (k); k).
Calculate the derivative of t(k; &, ) with respect to k:

r(n)r(§) —r(&)re(n) _ (&) (Tk(f)_ _ rk(’?)).
r*(n) 7(n)

(21) it(k; §,m) =

ok r(§) r(n)

Remark. The existence of the derivatives 7.(&), 7.:(&), etc. follows
from the formulas given by Cayley in the book [3], p. 102. The author
did not succeed in proving the theorem directly from these formulas.

Now, consider the function

s(k; 82 T2

€ [0 ke .
r(2) (£€[0,1], ke (0, 1)) _,

The derivative of this function with respect to & equals

0 (&) 7re(§) — 1 (§)7e(€)
(22 —_— . F— .
) Py s(k; &) 72 (8)

It is known (see [7], p. 21) that

d
—‘Edn(u; k) = ——]/(1—dn2(u; k))(dn®(u; k) —k").
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Whence for w = £K (k) we have

(23) e —K (k) ]/(1-—7'2(5))(1— rz(g))’

We know from Theorem 1 that, for ke (0, 1), the function r(£) for
£e(0,1] and the function r(1)/r(&) = r(1 — &) for &£ [0, 1) are decreasing
with respect to k. The function K (k) is increasing. Due to this, expres-
sion (23) is a decreasing function of &k for &¢ (0, 1). Hence

r(§)re (&) —71e(6)1i(£)

(24) T <0 for & ke (0,1).
~ Caleulate now the derivative ry (). We obtain
(25)
ral8) = — - Ky (=P () —ri (18] + V(l—w(i)()’(?p—(ii(l—s)) ,
where

¢(&) =7(&) (&) (1 —r2(1— &) +r(1— &), (1 — &) (1 —r2(&)).

We know from (9) that r(£) = V1—k%x(k; £). By virtue of (17),
the derivative z; is continuous and so does the derivative

_ —ka(k; &)(x(k; &) kay(k; &)

’/1—’02-’1}'2(7‘;; 5) (k7 55 (071))‘

(26) 7 (£)

Therefore, ¢(£) is a continuous function of & and k. For k, £¢ (0, 1),
the denominator of the right-hand side of (25) is different from zero.
From this it follows at last that derivative (25) is continuous for &e (0,1).

Now we investigate the continuity of the partial derivative r,.(&).
From (26) we obtain (for simplicity, the arguments of the functions are
omitted)

@27 1. = (1 — K22%) [kwe (@ + kary) + kx (@e + kaye) ] + B alxe ( + k)
k& . o D— S .
(1—k2*)V1— ko

From the proof of Theorem 1 we know that x = z(k; &) is determined
by the formula

dt

e = 0 .
)(1—E*t7)

B(r; &, &)= EK (k) — f Vi
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The partial derivatives of the function @(x; k, £),

o, = K(k), &, =-1V1-2))(1—Fd),

dK _f’” kt2dt
1—KBEVI-8)(1—ke)

0

are continuous for £e [0, 1) (see (12)) and so do the derivatives

x, = KV (1—a?) (1K),

T

dK
(28) a = |65 —of

kt* dt
(1—RE&)V (1 —2) 1 — k)
From (28) we calculate the derivative x,:
dK ka?

it = (W TR R A—) ()

]l/(l—wz)(l—kza;z).

)V(l—wz)(l—kzmz) +

+(5E“f ki dt ) —wz(1+ K — 2K a?)
dk A—V1-)A—ke) | Vi—-@)(1—Fa)

0

Hence the derivative ;. is also continuous for &e[0,1).

In this way we have shown that derivative (27) is continuous for
£e[0,1). It equals, therefore, derivative (25). Hence the left-hand side
of (24) is equal to the right-hand side of (22). Thus it follows that s(k; £)
is a decreasing function of & for £e(0,1). Now, from (21) we have the
following inequalities:

t(k; £,m)>0 for 0 < &< 9,

(29)
(k; £,7) <0 for n< &< 1.

For £ =0 and & =1, we get
t(k; 0, 7) = 1/dn(nK (k); k) ne(0,1],
t(k; 1,7m) = k'[dn(nK (k); k) = dn((1—9)E(k); k)  ne[0,1).

So, from Theorem 1, the thesis of Theorem 2 follows for & = 0 and
¢ = 1. For all other values of &, the thesis follows from (29). This completes
the proof of the theorem.

Remark. For = 0, Theorem 1 is a consequence of Theorem 2.
We have, however, proved Theorem 1 first, because it is needed in the
Proof of Theorem 2.

In this paper we are dealing only with the limits ¥ -1~ and ¥ —0*.
The investigation of the limits k —0 and % —1 is possible, however, for
the investigation of the properties of the optimum rational function,
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this is not necessary. We prove now a theorem which enables the calcula-

tion of the limit 1im+rjm.
. k’'—0
THEOREM 3. For £¢(0,1], limdn (6K (k); k) = 0.

k-1~
Proof. The majority of the known series expansions of the function
dn(u; k) is fast convergent for k¥ ~ 0. We are investigating the limit
for k¥ — 1, therefore, it is more convenient to replace the modulus of %

by its complementation k' = ¥1— k2. To do this we apply the imaginary
J a,cobi'transformation (see [7], p- 24) to the function dn(u; k). We obtain

s oy - D05 E)
(50) ) = Gy )

It is known (see [9], formula 8.146.13) the expansion

31 dn(u; _)_
(31) cn(u; k)
__r [ 1 —42(—1)"——q2:cos((2n—1) ur )]
2K (1) Leos(un/2K (k) &= 14 gt 2K (k)
'im LI P
eEm | T2 T
where ([7], p- 20)
(32) g = exp(—nK(k)/K(k), 7t =iK(%)Kk).
Let
(33) w =iEK(k), £e(0,1).

Series (31) is convergent for arguments (33) and for the complementary
modulus k', since

| T |
im -
|

1nK (k)| =« : K(k)y = T K (k)
MOKE) |2 KE) 2 T2 KW

' dn(itK (k); k)  ® 1
(34) dn{sK(k); K en(itK (k); k') 2K (k) [cos(ian(k)/zK(k’_)') -
O, ¢ ienK(k)
—4"—1 (—1) I;E,‘én*_*T COS ((2%—1) —2K(k') )],

where (see (32))
(35) q' = exp (—nK(k)/K(k')).
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From (35) we obtain the relation —Ing’ = =K (k)/K (k') which implies

(36) Co8 ((Zn—l)%%) = cos(—(2n—1)i—§ lnq')

2

Therefore, formula (34) can now be presented in the form

1 , ,
= cosh ( — (2n—1) émqr) —_ (q &(2n—1)/2 +q —5(21:—1)/2).

1€/2 e
(37) dn((E (k); k) = T (Zq 42(—1)”bn) (£ (0, 1)),

2KE(K)\1+4% .
where
b — 1+q£(2n_1)_ "(1—¢&/2)(2n—1)
n = 1+q'(2n—l) .
It is known (see [7], p. 31) that 0 < ¢’ < 1 and
(38) lim ¢’ = 0.
k—>1—
Thus
lim b, = 0.
k-1~
The series >  (—1)"b, converges uniformly since

n=l1

[ ] o0
by<2 ) gU=N-N oo,

Now it follows that

lim j(—l)"bn j(—l)" Iimb, =0.
=1

In addition, from (4) and (38) we have

'&[2

lim-—1 - =0 and limK(k) =~
k—>1— 144 k—>1— 2
We have shown in this way that both components of the right-hand
side of equality (36) tend to zero for k —1~. For £ = 1, the thesis of the
theorem follows immediately from the last of equalities (1), which completes
the proof.
Similarly as Theorem 1, the thesis of Theorem 3 was known earlier
(see the graphsin [4], p. 98). The author did not, however, succeed in finding
4 published proof of it.

Let us consider now the limit properties of the function

Indn(£K (k); &)/Indn(yK (k); k).
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In view of Theorem 3, for £ —~17, this function is an expression of
type oo/oco. Its limit will be stated in Theorem 4. In Section 8 we shall
investigate the relationship between this theorem and the approximate
formulas for 7.

THEOREM 4. If £e[0,1] and ne (0, 1], then
Indn(¢K (k); k) &

o ndn(pK(k); k) 7

Proof. Similarly as in the proof of Theorem 3, we use Jacobi’s imag-
inary transformation (see (30)) for the function dn(u; k). The well known
expansion of the logarithm of en(u; k) (see [9], formula 8.146.21) is

) 31 q" ., hTU
—4 Z B — ] | 1) )
k) i n 1-+(—-1)"¢q" 2K (k)

1 s k) =1
(39) nen(u; k) ncos Ve

lmTK%l< lmT,

where ¢ and 7 are given by (32). It is known (see [7], p. 31) that

limen(u; k) =cosu and limK(k) = =/2.
k—ot k-0t

From (39) it follows, therefore, that the behaviour of Incn(u; k)
for k — 0" is determined by the first component of the right-hand side, be-
cause the second one tends to zero. Let

(40) u =1iEK(k), £&e[0,1).
Now
(,m v | Ii ifK(k)i _ EK(k) —ime — K (%) _
K (k') K (k') K (k') K (k')

Thus expansion (39) holds for arguments (40) and for k’. Therefore,
from (39) we have

Incn (i£K (k); k')

o 1 q" an( K(k) =
% 1+(=1)"g™ K(k') 2

This and (30) give, for arguments (40),
(41) Indn(£K(k); k) = Indn(iéK (k); k')—Incn(iéK (k); k')

K(k))
WA

. . K (k) TL')
+ E oA sine =
4 n 1—}- )" '” S (zEn K(k') 2 )

) (£<[0,1)).

= Indn(i¢K (k); k') — lncos(
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From (6) it follows that

lim dn(u; k') = 1.
k'—o+

From what has been stated before we have

1m —
k’—>o+;:{ n 1l4+(—1)"¢q

K(k) 2

T sin2 (i.fn

K (k) Tt)

Now, it can be deduced from (41) that

_ Indn(EK(k); k) . —Incos(is(K (k)/K (k'))(m/2))
(42) lim = lim ,
k- Indn(n K (k); k) w—o+  —Incos(iy (K (k)/K (k') (=/2))
£e[0,1), ne (O’ 1).

It is known that, for sufficiently small %/,

g = (k'[4)*(1+o(k")).
Hence from (36) we obtain, for » =1,

COS(. ™ K(k)) =% 1+ (K'[4)*(1+40(K")

I EW) (6 4L+ o (%)

This and (42), for £e[0,1) and %e (0, 1), give
. Indn(&K (k); k)
“3)  m S (k); B
In2 —In(1+ (k'/4)*(1+o(k")))+ £ln(k'/4) +In(1+o(k) ¢

= lim = —.

k-0t In2 —In(1+ (k'/4)" (14 o(k"))+ nIn(k'/4) +In(1+o(k")) 7

It remains to prove the theorem for

1° & =1, 7¢(0,1);

2°6=1,97=1;

3° £e(0,1), n = 1.

The proof in cases 1° and 3° is similar. For £ =1, we have
Indn(K (k); %) = Ink’. Hence, from (43) it follows

_ Indn(E (k); 4
k-1~ Indn(nK (k); k)

. Ink’ 1
= lim — 3 _

kot 102 —In(1+ (k'/4)"(1 + o(k')) + nln(k'[4) + In(L +o(k)) 7
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The proof in case 3° is similar. On the other hand, for & =75 =1,
we have
Indn(K (k); &
g RAR(E(R); B)
k-1— Indn (K (k); k)

which completes the proof of the theorem.
We investigate now the behaviour of

Indn(£K (k); k)/Indn(nK(k); k) for k —0%.

We know from (6) that this function is an expression of type 0/0.
The calculation of its limit will allow us the determination of

dr,
lim /2.
k'—1— ar’

THEOREM 5. If £€¢[0,1] and ne (0, 1], then

. Indn((K(k); k) sin?(&w/2)
kot Indn(nK (k); k) sin(yw/2)

Proof. It is known (see [9], formula 8.146.22) that
(44)

Indn(u; k) — —82 I sin2{@n—1)——T),  |im—|<imr
e i 2m—1 K(k) 2) K ’
where
q21l—1
(45) I = { gD

and q and = are given by (32). The expansion of ¢ with respect to % is also
known (see [7], p. 18):

=Tl )

Hence, for sufficiently small %k, we obtain

k 2
(46) g = (Z) (140 (k).
. - ’ . 3 ‘
We investigate now the behaviour of the coefficients of (45) for
k—0*. We have, for sufficiently small z,

T z(1+o(x)).
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Thus, for sufficiently small ¢ and for z = ¢**~!, from (45) and (46)
we have

2(2n—1)
(47) a, = qz"‘l(l—}—o(qz"*l)) = (7142) (1+o(k)) = o(k*73).
Let
(48) u = EK(k), &Ee[0,1].
Now
im—u— = [im¢| = 0< imv =M.
K K (k)

It follows that series (44) converges for arguments (48). Thus
from (47), for sufficiently small ¥ and for arguments (48), one obtains

2
Indn (€K (k); k) = —8&) (l—i—o(k)}sinz(ég)—l—o(ks)\.

Hence, for e [0,1], ne(0,1], we have

Indn(£K (k); k)
Indn(nK (k); k)

_ (—k*/2)(1+o0(k))sin® (éx/2) +o(k*) (L4 o(k))sin®(£m/2))+ o (k)
(—k%/2)(1 + o (k))sin® (ym/2) + o (K°) (1 + o(k))sin®(n=/2)) + o (k%) ’
from which the thesis of the theorem follows immediately.
Theorem 5 will be used not only in the investigation of the limit

behaviour of the elements of the sets R, (k') and U, (k') but also in the
proof of the experimental research described in [2] (see Section. 8).

4. Jordan’s formulas and the determination of the elements of U,,(%')
for an arbitrary m. It is known [12] that R, (k') can be determined by
Jordan’s formula

(1) Tim =dn[(1——£)K(k); k] (j =1,2,...,m).
2m

As usual, let ¥’ = V1—%®. Formula (1) guarantees that R, (k') is
ordered increasingly. Wachspress (see [13], p. 192) has shown that the
following problem of Cauer (see [7], p. 105) can be reduced to the problem
of finding the optimum function satisfying (2.1) with

1—1¢2
(2) k=
14122
by substituting
1 2

9 — Zastosow. Matem. 14.2
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CAUER’S PROBLEM. For a given real ¢t (0 <?< 1) and a natural m,
find optimum parameters a,, a,, ..., a,, such that

IY ]

J

max
o<zt

be the minimum.
Oberhettinger and Magnus ([7], p. 153) give the optimum a; as

29 -1 )
(4) a; =tsn( gm K (12); t*) W=1,2,...,m),

and the set of extremal points of the optimum function in Cauer’s prob-
lem z; as
(3) Z; = tsn (J—

K (82); t2) (j=0,1,..,m).
) m

Wachspress obtained (1) from (4) by using substitution (3) and Lan-
den’s transformation. The same leads to the following

THEOREM 1. The elements of U, (k') are given by

m—j
m

(6) ujm=dn( K(k); k) (j=0,1,...,m).

Proof. Parameters (5) form an increasing sequence. Now, let us
apply substitution (3) to formula (5). Since the set U,, (k) is increasingly
ordered, we obtain
1—z;  1—t%sn®((j/m) K (#3); t?)

]

m—j,m — 1—|—zf - 1+t2sn2((j/m)K(t2); tz) .

U

Landen’s transformation (see [7], p. 4 and 23) is recalled now:

dn((1+k)u; fi’;)= i;:?:ﬁ:g: Z;, K(%‘%) — 1+ k) E (k).
Hence

Upp i = dn((1+tz)—7%1f(t2); Tit?) ZdD[%K(lj—ttz); 1i—tt2].
From (2) we have

therefore,
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The thesis of the theorem follows easily.
A new proof of Lemma 2.3 can be obtained from Theorem 1 (assuming
a =k'" and f =1). Namely, from (3.2) we have
m—j

u,,,_,-,m=dn[(1————)1f<k>; k]=—----»- ’ R—_—
m dn(—((m—j)/m) K (k); k)  tm

The assumptions can easily be removed by an appropriate substitu-
tion of variables.

5. Algorithms JR and JU of determining sets E (k') and U, (k).
The determination of the exact values of 7, and w,, for an arbitrary m
from (4.1) and (4.6) is troublesome. In practice, one usually replaces
these formulas by some approximate expressions derived from the series
expansion of dn(&K (k); k) with respect to powers of k’. Simple analytie
formulas can be obtained in the case m = 2% only. This fact is a con-
sequence of the following

THEOREM 1. The elements of the sets R, (k') and R, (k') are related
as follows:

o VB, K
(1) ’)'m_;_j’zm - (_z_— i“"? )( o —) (.7 = 1’ 27 . ’m)7
jm
ro k2 V(A — k) (%, — k) \
2)  Tmojirem = ( I Tir m L (j=1,2,...,m)
jm

Proof. It is known (see [7], p. 21) that

dn(2u; k)+k*en(2u; k) + k'
14+dn(2u; k) |

From the identities (see [7], p. 19)

sn2(u; k)+en*(u; k) =1 and  dn?*(u; k)+kZsn?(u; k) =1,

(3) dn2(u; k) =

for double u, we obtain the following

k2—1+dn2(2u; k
(4) en(2u; k) = :t]/»- T ;( u; k)

As it is known (see [9], p. 325),
(5) dn(2K —u; k) =dn(u; k) and cn(2K—u; k) = —en(u; k).
Let

1 2j—1
(6) v=-2-(1- ;m )K(k) Jj=1,2,...,m).
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We have cn(2v; k) > 0 (see [7], p. 22). From (5) for (6) it follows
that formula (4) is equivalent to the following two ones:

1 A2 2
() cn(2v; k) =%l/k —1+dn?(2v; k),

(8) cn (2(K—v); k) = —%l/k2—1+dn2(2(K—'v); k)

1
= —%Vk2—1+dn2(2v; k) .

It follows from (4.1) that dn(2v; k) = r;, for arguments (6); thus
the substitution of (7) into (3) for v = v leads to the expression

Tim+VE —1 472, +k°
147,

on the right-hand side, and to 73,,;,, on the left-hand side, since

1 (1_ 2j—-1) 4 2(m+j)—1

TZ— 2m

4m ’

which immediately implies formula (1), because k> —1 = —k'%. For
u = K —v, the function en(2%; k) in formula (3) can be replaced by the
right-hand side of equality (8). The right-hand side of (3) is then equal to

Pim—VE2 — 1472, + &?
147y,

’

and the left-hand side equals 72,_;.,,, since

2(m—y-|—1)—1) .
4m

K——v:(l—

From this we are lead to formula (2), and the proof is complete.
Knowing the function f,(x; R,), due to Theorem 1, it is very easy

to construct the function f,,,(z; R,,). Since k’, V&' and 1 belong always
to the set of extremal points, it is easy to ecompare the norms of f,,(z; R,,)
and fzm(w; -R2m)'

Similarly as formula (2.7) in the WR-algorithm, formula (2) does
not guarantee the numerical stability of one step of the algorithm JR,
and, therefore, the elements 7, 5,,, 72 9y - - -y 7, 2m OUght to be determined by

K )
(9) Tigm = ————— (J =1,2,...,m).

j2m
sz—j+l,2m
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In a forthcoming paper [16] we show that the determination of the
elements of R,,, is equivalent to the determination of the zeros of a certain
trinomial. This fact exhibits the known numerical defects of formulas
of type (2).

Algorithm JR. It follows from formula (4.1) and from proper-
ty (3.1) that

R, (k') = {dn (3K (k); ¥)} = {VF'}.

If r,, is known, the elements of R,(k’) are determined by (1) and (9).
To obtain thus the elements of R, (k') for m = 27, it is necessary — with
the aid of (1) and (9) — to find in sequence the elements of R,(k'), R,(k'),
eevy By (k') and R, (k'). This method is used in the following ALGOL-60
procedure:

procedure JR(p, k, r);
value p, k;
integer 7;
real k;
array r;
comment procedure JR places in the array r{1: 2} p] the elements
of the set R, (k) for m = 2}p in increasing order;
begin
integer ¢, j, m;
real rj, k1, k2;
k1:=(1.0—Fk)x(1.0+k);
k2 :=Fk x k;
m:=1;
r[1] : = sqri(k);
for ¢ :=1 step 1 until p do
begin
for j:=1 step 1 until m do
begin
1y =rljl;
r[m 3] :=sqri((rj + k2 4 sqrt(kl X (r) — k) X
(rj +))) /(1.0 +15))
end j;
m=m-+m;
for j:=m = 2 step —1 until 1 do
r(j] = kfr[m +1—j]
end ¢
end JR
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The elements of the sets R, (k') and U, (k') are expressed by similar
formulas (see (4.1) and (4.6)). These similarities are discussed in details
in Section 6. Here we give only formulas similar to (1) and (2).

COROLLARY. The elements of the sets U, (k') and U,, (k') are related
as follows:

_ ( Uj + B2+ V(1 B%) (U — §) )’
Ui+ 52—V (L — &%) (uf, — %) |1
1+uy,

(10)/ um+_1'.2m
(3=0,1,...,m).

(11) Um—j2m = (

For the same reasons as before, formula (11) is replaced by
k' )
(12) Um—jam = (3=0,1,...,m).
um+j,2m
For j = 0, formulas (10), (11) and (12) are identical, since uy, = k'
and u,, 5,, = VEk'. The derivation of these formulas is similar to the proof
of Theorem 1. Arguments (6) are to be replaced by arguments

_i_3 .
'u_2(1 m)K(k) (j=0,1,...,m).

Therefore, the proof of the corollary is omitted. For m = 2?7, formulas
(10) and (12) lead to the algorithm of constructing U,,(k').

Algorithm JU. It follows from (4.6) and (3.1) that U,(k') = {k', 1}.
The elements of U,(k') can now be easily determined by the use of (10)
and (12). To obtain U, (k') for m = 2?, use of (10) and (12) allows the
sequential construction of U,(k'), U,(k'), ..., Upnu(k') and U,(k’). The
procedure description in ALGOL-60 is the following:

procedure JU (p, k, u);
value p, k;
integer p;
real k;
array u;
comment procedure J U places in the array u[0 : 21 p] the elements
of the set U, (k) for m = 2+%p in increasing order;
begin
integer m, i, j;
real k1, k2, uk, uj;
m:=1;
if p 0 then
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begin
kl:=(1.0—Fk)x(1.0+k);
k2:=k xk;
uk : =wu[1]:=sqrt(k);
m:=2;
for i:=2 step 1 until p do
begin
for j:=m—1 step —1 until 7 do
begin
uj : =ulj];
Cu[m+7] c=sqrt ((w) + k2 +sqrt (k1 x
(4 — R) (] -+ F))) (1.0 + u))
end j;
u[m] : = uk;
m:=m+m;
for j:=m — 2—1 step —1 until 7 do
uj] : = kju[m —j]
end ¢
end p + 0;
u[0] :=k;
ulm] := 1.0
end JU

Remark. The elements ugs,, %, and u,,,, are not determined
by (10) and (12) but directly by %gg, = k', Uy an = VE and 4y, ,, = 1.

In a forthcoming paper [16] a detailed analysis of the errors of the
algorithms WR and JR is performed. This analysis concerns also the algo-
rithm J U. The algorithm calculates the alternans of the optimum function
with great accuracy. This allows a practical verification whether the
algorithms WR and JR give good approximations to the optimum function.
The algorithms JR and J U require a greater number of calculations than
the algorithms WR and WU, however, one obtains indirectly all sets
R, (k') and U, (k') for n being a power of 2 smaller than m (see [16]).

6. Relations between R, (k') and U,,(k'). Monotonicity of parameters
Tim and wy,. Paper [14] contains remarks about some analogy between
the optimum rational function f,,(x; R,) in the limit case ¥’ —1~ and
the Chebyshev polynomials T, (x). Now we deal with another property
of the sets R, (k') and U, (k') which also is characteristic for the sets of
Zeros and extremal points of Chebyshev polynomials T,(x) (the para-
Ieters 7;, correspond to the zeros of the polvnomial T,,(z), and u;, to
the extremal points).
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THEOREM 1. For an arbitrary natural m and a real k' (0 < k' < 1),
we have

Usm (k') = By (K')V Up (K').

Proof. Introduce the auxiliary notation

(1) djm=dn(—2—]"7K(k); k) (j=0,1,...,2m).
From (4.1) and (4.6) it follows that
Tym = OGom_sjsrm (3 =1,2,...,m),
Uim = Qo _3im y=0,1,...,m).

Now, we have

Ugj 0m = Qi sjom = d2m—2j,m = WUjm»
Tyj_1,0m = Qym—sji2.am = Fom—2j1,m = Tim»
from which the thesis of the theorem follows.

COROLLARY. For m = 2%, the set U,, (k') is the sum of all sets R, (k’),
where n 18 a natural power of 2 smaller than m, i.e.

U, (k') = Uy(k') UR, (k') URy(K') UR,(K') U ... UR.__(K').

2P—1

This formula follows immediately from Theorem 1. This fact can
be illustrated graphically as follows:

11
712 Uy Voo
"1 Uy T34 Uy T34 Uy T4

¥1g Uyg Tag Ugg T3g Uzg Tyg Usg T'sg Usg Teg Ugg V73 Uqg Tgg

The quantities occurring in the same column are identical, e.g.
T12(K') = Uy (k) = uge (k).

Let us state now a property of the auxiliary sequence d;, defined
by (1).

THEOREM 2. For an arbitrary natural m, the elements d, satisfy the
recurrent relations

(2)
2(1 — k?)d,,, d; :
G pom = 1_k,2_(1_d§m’;‘(1”"_dﬂ —diym (=1,2,...,2m—2),

where
2(1 - k,2)d§m
1—k2—(1—-d,)?

dom 21’ d 1m :dlm7 d2m=
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Proof. From the formulas given in [7], p. 19 and 21, it is easy to
derive the following equality:
2k*dn(w; k)dn(v; k)
k*—(1—dn*(u; k))(1—dn®(v; k)

(3) dn(u+v; k)+dn(u—ov; k) =

Let v = jK (k)/2m and v = K (k)/m. In accordance with (1) we obtain
now formula (2) from formula (3). The expression for d,,, follows from (3)
for w = v = K(k)/2m. All other equalities follow from the properties
of the elliptic function dn(u; k) (see Section 3), which completes the proof.

The following simple corollary can be obtained from Theorem 2:

Given d,,, = 7., all remaining elements of the sets R, (k') and U,, (k')
can be obtained directly from (2). Thus, for any m, it suffices to know only
one element (7, or 1, = k'|r,,) to determine the sets R, (k') and U, (k').

This fact will be used in Section 7 to modify the algorithm JR.
It follows from formulas (4.1) and (4.6) that, for fixed j and m, the
parameters 7, and u;, are functions of the variable k’. The following
theorem states the properties of this function:

THEOREM 3. 1° The parameters v, = (k') (j =1,2,...,m) and
Ujp, = Ui (k') (j =0,1,...,m—1) are increasing functions of the
variable k'.

In addition, they have the following limits:

2° lim 7,,(k") = lim w;_, (k') =0 (j=1,2,...,m);

k'—o0t k'—o+
d 1

Q0 ' 2.7—] .
3 .lj,llr]_dk' ,m(k)Z—z—(l-l-COS om ‘n:) (3=1,2,...,m);

d 1 J .
4°k11_21» T Uim (k') = 2—(1+coszn) () =0,1,...,m).

Thus limits 3° and 4° are equal to the zeros and extremal points of the
m-th Chebysmhev polynomial in the imterval [0, 1].

Proof. Part 1° of the theorem is a simple corollary to Theorem 3.1.
Now dn(£K(k); k) for £¢(0,1] is a decreasing function of the variable k.
In our case,

: 2j—1
(-521— ],) (1) =1, 2, y M)
2m
(4) or
_ J ) , ]
E=1-—-"- (j=01,...,m—1);

thus ¢ belongs to the interval (0, 1]. Part 1° follows immediately since
k=y1_ 77
1— k2.
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Let r(£) =dn(£K(l/1—k’2); l/l—k’z). We know from (3.6) that
lim r(&§) = 1.

k-1~
Since (1) = k', the application of de I’Hospital’s rule gives
Inr(§) . r(1) dr(&) 1 i dr(¢&)

() Im W) e wE) A ar()jdk etk

In view of Theorem 3.5, we have

Inr(§) _ . Inr(g)
ko1— Inr(1)  goe+ Inr(1)

= sinzfi =i (L —cosér).
2 2

Since in our case ¢ is of form (4), parts 3° and 4° of the theorem follow
immediately from the above. Part 2° is a simple conclusion from Theo-
rem 3.3. Thus the proof is complete.

Parts 3° and 4° of the theorem have been published without the proof
by the present author in [14]. The truth of these formulas was motivated
there with the limit properties of the optimum function. Now we have
an exact proof.

We know that the parameters 7;, increase with increasing k’; let
us now investigate how behaves the quotient 1, /r;,.

Let

2j—1 2¢—1

s=lm s 1=

(< 3).
Now, the quotient
(6) dn(¢K (k); k)/dn(nK (k); k)

is equal to the function t(l/l—k’§; £, n) from Theorem 3.2. Since & < 7

and k¥ = l/l—k’z, quotient (6) is a decreasing function of the variable
k', and, therefore, r;, must increase more rapidly than r;, for k'—1".

7. Modification of the algorithm JE. For m = 27, it is easy to deter-
mine dy,, = 7,,,. As it is known, r,;, = V%'. Generally, from (5.1) we have

ry R V(A=K (5 -k }
31,21 =2 1+7'jj £ - (1 :1’2’4’.”’217 1)-

If 7,, are determined, Theorem 6.2 can be used to evaluate
all remaining elements of R, (k') (for j =1,3,5,...) and U,(k')
(for j =2,4,6,...). In reality, it suffices to calculate one half of the
elements from (6.2), and the remaining ones from (5.9) and (5.12).
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The following procedure MJR is a realization of this modified algo-
rithm JR:

procedure MJR(p,k,r);

value p, k;

integer p;

real k;

array r; i

comment procedure MJR places in the array r[1:24%p] the
elements of the set R, (k) for m = 21p in increasing order;
begin ‘

integer j, m, m2;

real k1, k2,d1,d2,d3, d4;

m:=21p;

ml:=m-+— 2+1,

k1:=(1.0—Fk)x(1.0+k);

k2 :=kxk;

dl :=sqrt(k);

for j:= 1 step I until p do

dl:= sqrt((d1 + k2 +sqrt(k1 x (d1 —k) X (d1 +-k)))/
(1.0+4d1));

r[1]:= k/dI1;

d3:=r[m]:= dl;

d2:=(1.0—dl)x (1.0+dl),

k2 :=ki+kl;
d2 :=k2xdlxdl/(kl—d2xd2)—1.0;
k2 := k2 xd2;

d2 := (1.0—d2) x (1.04a2);
for j :=m — 1 step —1 until m2 do

begin

a4 :=r[jl:= k2 xd3[(k1—(1.0—d3) x (1.0+d3) x
d2)—di;

dl := d3;
d3 := d4;
r(m+1—j] := k[d4

end j

end MJR

_ The elements of the set U,, (k') for m = 2? can be determined in a sim-
ilar way. The algorithm MJR requires a smaller number of calculations
than the algorithm JR; it gives, however, a greater error.
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8. Approximate methods of determining the elements of R, (k).
Peaceman and Rachford have proposed to calculate the parameters 7,
from the approximate formulas (see [11], p. 226)

i = KD (5 =1,2,...,m).

J

Wachspress ([1], p. 212) has given the formulas

= E0mD (5 =1,2, ..., m).

It is easy to verify that

P w
Tjm—1 = Vim > 7’:-11’7"_1.

The parameters 75, and r}, are decreasingly ordered. The optimum
parameter 7,,_; ., , can be represented in the form ('Y, where

Inr, ;i im
7= Ink’

Hence, it follows from Theorem 3.4 for k' ~ 0 that f ~ (27 —1)/2m;
therefore, 7, is an approximate value of 7,_;,, . On the other hand,
the parameter r},, is equal to an approximate value of the extremal point
um—l—j,m—l'

It has been shown in [1] that Wachspress parameters result in a better
convergence of the ADI-method than Peaceman’s parameters. These
results have been confirmed by Lynch and Rice in [5]; the authors have
observed, in addition, that the ordering of the elements of R,,(%’) plays
here some role. It appears that the smallest elements of R, (k') have the
greatest influence on the reduction of the initial error of the solution of
the system of linear equations.

In practice, instead of constructing an optimum function of high
order, one applies, cyclically, a smaller set of optimal parameters. It
is then possible, as was shown by Samarskii in [10], p. 461, to determine
an approximate rational function which, used cyclically, gives (with ac-
curacy up to some factor), for k'— 0, the same rapidity of convergence
of the ADI-method as that of the optimum function. From the point of
view of the ADI-method, this simple algorithm, proposed by Samarskii,
is very useful though the norm of this function is not minimal.

Before Jordan gave formula (4.1), Boor and Rice [2] tried to find
such a formula in a experimental way. Namely, they posed the hypothesis
that there exists a function f(y; k) such that the elements 7}, and uj,
belong to R, (k') and U, (k'), respectively, and

(1)

B
|
<
=]
®
5
=
| |
|
~
—
. |m
.
I J
[
| §
|
lb—*
=
~—
[e—
B
=
=]
~ 1



Optimum rational function 305

where
1° f(y; k') is a decreasing function of the variable k" for ye (0, 1),
2° f(y; ¥') = —f(—y; ¥'),
3° f(0; k) =0, f(1; k') =1,

4° f(y; 1) = sin(yx/2), lim f(y; k') = v.
k'—0+

Jordan’s formulas confirm the hypothesis of Boor and Rice. The
following theorem holds:

THEOREM 1. The function

Indn(((1— &)/2) K (k); k)

’ _d_t _
@ J& k) =1-2 Indn (K (k); k)

where k' = V1 — k2, has the following properties:
(i) f(0; k') =0, f(15 k') =1,
(ii) f(&; k') = —f(—=§&; k'),
(iii) lim f(&; k') = &,
kK—ot
(iv) lim f(&; k') = sin(én/2).
k'—»1—

Proof. Let £ = 0. From (3.1) we have then

Indn (K (k)/2; k) InVk'
0; k) =1—2 =1-—2 = 0.
7(05 &) Indn(K (k); k) Ink’
For & =1, we have
Indn(0; k) ,
;) =1—2 —oi—— = 1.
1id; ¥ indn(K; k)

Property (i) is thus proved.
From the definition of f(&; k') and from (3.2) we obtain

Indn ((1 + £)/2) K (k); k Indn((1—(1— £)/2)K;
F—tk) —1—2 n n(( + &)/2) K (k) )= _2P n(( (1—£)/2)K; &)
Indn (K (k); k) Indn(K; k)
lnk’—lndn(((l—&)/z)]f; k) ,
- In¥ = U Y,

Which completes the proof of property (ii).
It follows from Theorem 3.4 that, for &[0, 1],
(3)
Indn(((1— &)/2) K (k); k) 1—¢

lim f(& k') =1—21i =1-2 = &
k'~»o+f(6’ ) ;._I,III3 lndn(K(k); k) 2 d
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For negative values of &, using (2) and (ii), we have

lim f(&, ¥) = —lim f(—& ¥) =& (§e[—1,0]).
k>0t k'—0+
From the above and from (2) property (iii) follows.
Property (iv) is a simple conclusion from Theorem 3.5. Namely, for

£e[0,1], we have

lndn(((l— /2)K 5 k) =1-— Zblnz(—_é TC)

li s kY =1—21
im f(&; k) im o

ko1 koot Indn (K (k); k)

1 T . T
—cos(( 5)2)_sm§2-

For (e[ —1, 0], the reasoning is similar, which completes the proof
of the theorem.

We have proved in this way that funection (2) satisfies conditions
2°-4°, The author did not succeed in proving the monotonicity of function
(2), i.e. in proving property 1°. Numerical experiments have confirmed
the conjection that

at Indn (6K (k); k)
~ Indn (K(k); k)

g(&; k (§<[0,1])
is a strictly decreasing function of k' for 0 < & < 1/2 and that it is strictly
increasing for 1/2 < £ << 1. It follows from this that

1—
f&; ¥) =1—2g(—2—§; k) (£¢(0,1))

is an increasing function of %', which contradicts the hypothesis of Boor
and Rice (probably, there is a misprint in their paper). Our conjection
is confirmed by the fact that ¢ < sin(én/2) for £e (0, 1); thus, it
follows from (iii) and (iv) that the limit of f(&; k") for k'—1~ is greater
than that for k'—07.

It remains to test the relation of parameters (1) with r;,, and wu;,.
It appears that

* *

Yim = Ym—j+1,m and Uim = Um—j+1,m-

A verification of these formulas is simple. We have

= Vi exp[_f(2’71®?ﬁ k’) 1n1/'1?] = dn(—%«K; k)

kl
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Similar transformations have to be performed for the second formula.
Thus we see that parameters (1) are decreasingly ordered and belong to
the sets R, (k') and U, (k').

9. Estimation of the norm of the optimum function. Let I, (k')
denote the norm of the optimum function

,. df
Lm(k ) = max lfm(w7 Rm)|°
k'<z<1 .
This norm can be estimated by using the approximations of elliptic
functions (4.1). If we have at our disposal only certain approximations
*;m Of the optimal parameters, it is interesting to know how much the

norm of f, (x; R,) differs from that of the optimum function, and how
to estimate the norm L, (k') when only the values of the approximate
function are known. These questions are answered by the following
theorem:

THEOREM 1 (Wachspress [13], p. 182). If the function f,(x; R™)
18 continuous in the interval [k, 1] and assumes the non-zero values w,, w,,
Wy ..., W, With alternating signs at the points k' <z, < v, < ... <2, <1,
then

L, (k') > min |w,.
o<is<m

Not only the functions f,,(z; R,) have such a property. Theorem 1
holds for a wider class of rational functions used in uniform approximation
(see [6], p. 138).

Numerous numerical experiments lead to the following hypothesis:

If the function f,, (x; lém) is continuous in the interval [k', 1] and as-
sumes the non-zero values wy, Wy, Wy, ..., W, with alternating signs at
the points k' < xo< 2, < ... < &,, < 1, then

) Lop(W) > = min (jo,_y] + ;).
Iism

In the case of uniform polynomial approximation such a theorem
has been proved by Remez (see [6], p. 80). The truth of the above-given
hypothesis is shown by numerous examples and the properties of the opti-
mum rational function f,(z; E,) approximating zero, similar to those
of Chebyshev polynomials. Inequality (1) can be proved only for m = 1.
The details are omitted here. We give only some examples. Approximations
of the optimum rational function are obtained by algorithms JR, MJR
and WR. The values of all these functions have been evaluated at the points
of the sets U, (k') obtained by algorithms JU and WU. Algorithms JR
and JU give good approximations of both the function and its alternans.
We can thus safely assume in the majority of cases that E(JR) ~ L, (k'),
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where E(JR) denotes the value of the right-hand side of inequality (1)
for the function f,,(z; RJ,) at the points of UJ,,. Let us use similarly
the symbols E(MJR) and E(WR). The examples are given in Table 1.

TABLE 1
m | k E(JR) E(MJR) E(WR)
2 .999 | 312 812 769 42,,— 7 312812769 41,4— 7 312 812 771 21,0— 7
2 .8 .155 281 375 17— 2 155 281 375 17— 2 155 281 375 17— 2
4 | .8 | .120561527370—5 | .120561 527 32;0—5 | .120 561 526 85,0— 5
8 .8 .726 754 093 71;9— 12 .726 754 088 5519 — 12 .726 750 769 60,,— 12
8 .0l .446 726 834 67— 4 .446 726 834 26,,— ¢4 .446 726 834 32,,— 4
16 | .01 | .99782432379,,—9 | .997 824 272 29,0— 9 | .997 824 201 54,9— 9
16 | .5 172 377 697 71— 16 172 377 682 21,,— 16 172 253 790 39,5— 16

In all but the first examples given in Table 1 the values of E(JR)
are greater or equal to the values of ¥ (MJR) and E(WR). This fact indi-
cates that inequality (1) is true. In the first example neither f,, (z; RJ,,)
nor f,,(x; RW,,) represent a good approximation to the optimum function.
Therefore, the inequality E(JR) << F(WR) is not in contradiction with
the hypothesis. The calculations for the first example have been repeated
with double accuracy. They lead to an optimum function with the norm

E = .312 812 773 672,,— T

which is greater than E(JR), E(MJR) and E(WR); this is in accordance
with the cohjecture.

From the point of view of the ADI-method, the use of the rational
function determined by the algorithm WER is not much worse because
its norm is at most two times greater than that of the function obtained
by the algorithm JR. The greatest defect of the algorithm WER is the ap-
pearance of negative expressions under the square root, which does not
enable the construction of the rational function.

In the forthcoming paper [16] we are dealing with the analysis of
the errors obtained in algorithms J R and Wachspress’ algorithm. In a theo-
retical and experimental way, the numerical superiority of the algorithm
JR over the Wachspress algorithm is proved.

Acknowledgement. My sincere thanks are due to Dr. Stefan Paszkow-
ski from the Computing Centre, the University of Wroclaw, for his help
and valuable suggestions during the preparation of this paper.
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KRYSTYNA ZIETAK (Wroclaw)

KONSTRUKCJA I WLASNOSCI OPTYMALNEJ FUNKCJI WYMIERNE]
STOSOWANEJ W METODZIE ADI

STRESZCZENIE

W zwigzku z metoda naprzemiennych kierunkéw (metoda ADI) postawiono
Dastepujace zadanie: )

Dla danej liczby naturalnej m i rzeczywistej k' (0 << k' <C 1) znalezé takic para-
metry 71, Tams +oor Tmm, dla ktérych

m

— Tim l
max I I ——
T+ Tim |

kM <<r<g
< 1 j=

10 — Zastosow. Matem. 14.2
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jest najmniejsze. Z twierdzenia Wachspressa wynika, ze parametry r;, sa okreslone
jednoznacznie i 83 parami rézne. Niech Ry, (k') i Uy, (k') oznaczaja odpowiednio zbiory
uporzadkowanych rosngco parametrow rj, = 7jpm (k') i Ujm = wjm (k'). W pracy zajmuje-
my sie wlasnosciami i konstrukcja optymalnej funkecji wymiernej

m

fmos Ry = [[ 222

j=1 Tt 7im

Funkcja ta ma m + 1 punktéw ekstremalnych wjp, (' = uop < wym < ... < Umm =
= 1), w ktérych przyjmuje, z naprzemiennymi znakami, maksymalng co do modulu
warto§é. Poniewas we wzorze Jordana (4.1) na parametry rj,, wystepuje funkcja elip-
tyczna Jacobiego dn(u; k), w praktyce wyznacza si¢ parametry 7j, dla dowolnego
m z wzoréw przyblizonych (patrz § 8). Jedynie dla m = 2P znany jest prosty algorytm
Wachspressa (WR) wyznaczania parametréw 7jm- Przypominamy go w § 2. Ponadto
pokazujemy, jak-ten algorytm mozina zastosowaé do wyznaczania parametréw Ujm
dla m = 2P, Aby zbadaé np. graniczne wlasnodci parametrow 74y, i wjy, W § 3 zajmujemy
si¢ funkcjami eliptycznymi. Dowodzimy m. in. (patrz twierdzenia 3.3, 3.4 i 3.5), ze

limdn(£K (%); k) = 0 (&< (0, 11),
k—>1—

lndn(¢K (k); k) & :
por-Tndn(rE(B); &) o SO D01,

Indn(§K (k); k) sin?(£n/2) -
klfﬂ Indn(yK (k); k)  sin?(nm/2) (€€ 0, 1], 7<(0, 1]).

Wykazujemy réwniez, ze funkcja dn (&K (k); k)/dn(nK (k); k) jest monotoniczna
(patrz twierdzenie 3.2).

W § 4 dajemy wzoér na parametry uj,, (patrz twierdzenie 4.1), otrzymany przez
transformacje Landena z wzoru (4.5) na ekstremalne punkty optymalnej funkeji
wymiernej z zadania Cauera.

Algorytm WER ma zle wlasnosci numeryczne — zawodzi dla ¥’ ~ 1 lub dla m
duzego. Dlatego jednym z celow pracy jest opisanie innego, numerycznie stabilnego
algorytmu (§ 5). Algorytm ten (JR) jest prostym wnioskiem z twierdzenia 5.1, w kto-
rym opisana jest zalezno§¢ miedzy elementami zbioréw R, (k') i Ry, (k') (patrz wzory
(5.1) i (5.2)). Analogiczne zwiazki spelniaja elementy zbioré6w Uy (k') i Usp (k') (patrz
wzory (5.10) i (5.11)). Odpowiedni algorytm oznaczamy przez JU. Dla zapewnienia
numerycznej stabilnodci, wzory (5.2) i (5.11) zastepujemy wzorami (5.9) i (5.12)-
Przedstawione w § 5 dwie procedury w Algolu 60 realizuja stabilng wersje algorytmow
JR tJU. ' ‘

W § 6 zajmujemy sie wlasnoéciami zbioréw R,, (k') i U, (k’), analogicznymi do
wlasnoécei zbior6w zer i punktéw ekstremalnych m-tego wielomianu Czebyszewa Ty, ()
(patrz twierdzenie 6.1). W twierdzeniu 6.3 dowodzimy monotonicznoéci parametrow
7im 1 Uj, oraz wyznaczamy granice parametré6w 1y, i ujn, dla k'— 0%, a takze granice
ich pochodnych dla k'—1-.

Algorytm JR wymaga prawie dwukrotnie wiecej dzialan niz algorytm WRE.
W § 7 dajemy modyfikacje algorytmu JR, ktéra wymaga mniej dzialan. Numeryezny
eksperyment wykazal jednak, ze ten zmodyfikowany algorytm wyznacza parametry
Tjm % nieco wiekszym bledem.
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Jak juz wspomniecliSmy, parametry 7j, dla dowolnego m oblicza si¢ z wzoréw
przyblizonych. R6znymi wersjami tych wzoréw zajmujemy si¢ w § 8. Dajemy réwniez
dowdd istnienia i wlasnoéci funkeji f(y; k’), takiej, ze parametry wyrazone wzorami
(8.1) nalezg do zbioréw Ry, (k’) i U,y (k’). Istnienie tej funkeji i jej wlasnodei zostaly
dodwiadczalnie stwierdzone przez Boora i Rice’a. Ich spostrzeienia sa przez nas
potwierdzone (patrz twierdzenie 8.1).

W koricu §9 dajemy hipotetyczne oszacowanie normy optymalnej funkeji
wymiernej (patrz wzér (9.1)). O stusznosei tej hipotezy swiadezg liczne do§wiadezenia
_numeryczne. :



