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A. SZUSTALE WICZ (Wroctaw)

ON A VARIANT OF THE MATRIX TRANSFORMATION METHOD FOR
APPROXIMATE SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
OF SECOND DEGREE

This paper presents a variant of the matrix transformation method
(1), which allows a transformation of a partial differential equation of
second degree (4) into » independent ordinary differential equations.

In the presented variant of the matrix transformation method (n X n)-
~matrices of the form

0700 ...0
s07r0...0

(1) T=8o0so0r..0) 78>0,
0,.00380

are used.
Eigenvalues of the matrix (1) are of the form

in .
(2) A; = 2Vrscos ] (t=1,2,...,n).

The eigenvector corresponding to the i-th (¢ =1,2,...,n) elgen-
Value (1) A, is the i-th column of matrix P,,, = (p;), Where

=(l/;‘_)n—i_(l/;)i—18in i .

n+1
-_——
() Eigenvalues #; (i = 1,2, ..., n) of the matrix
tr00..0
str0..0
T)y=Q40str .. 0
0..00s¢ b

can be expressed by 7; = ¢+ 4;, where 4; ({ = 1, 2, ..., n) are defined by (2). These
eigenvectors are equal to those of (1).
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The inverse matrix of P is P~' = PTE,, where PT iz the transposed
matrix of P, and B, = [d,, d,, ..., d,] is the diagonal matrix in which
d; = 2r"""s'~%/(n41). Thus

(3) T = PAPTE,,

where A = [, 4;,...,4,] is the diagonal matrix of eigenvalues.

The partial differential equation of the function # = u(z, y), which
may be reduced to » independent ordinary differential equations, is of
the form (2)

0% 6u
@ |+ g | +0x0) g2 +as@u =1, )
with boundary conditions on the lines ¥y = ¢, ¥ = d, and boundary or
initial conditions on the lines # = a, z = b.
Let us divide the sector {c, d) into n-}+1 equal parts determined by
the points ¥, = ¥+ &k (k¥ =1, 2, ..., n), where

h=(d—c)/(n+1), Yo=2¢ Yp41 =ad.

We approximate the partial derivatives du/dy and 0%2u/dy® by the
difference quotients

ou U1 Ug—1 Uge1— Uy
— ~N————" o ——,
0Y |yy, 2h h
Y |ymy, ~ B2 )

where w;, = u(®) = u(w, Yx)-
Now, approximating equation (4) on the straight lines y =y,
(k =1,2,...,m) by the equation

" Y1 — 20+ U Yt i
- ao(w)uk-l-al(w)[cl k41 h: k=1 o k+12huk 1]+

+ @3 (@) w+ ag (%) w, = f ()
we obtain a system of » difference equations. Putting
(6) 2¢,+he, =7, 2¢,—he; =3
we write equation (5) as
(7)
& (@), +

;;,) [P 1+ 8ty 1+ o (@) up - | a3 (2) — ;:( ) ] u, = fi ().

(3) The equation may have an analogous form with respect to the variable y.
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Let us define linear operators for the function v(x) as follows:

2¢,0,(2) ] 0
’

Av = ay(2)v"' + a,(x)v' + [a3(w)— x

By = —;}'L—z a,(z)v.

Then equation (7) takes the form
(8) Aup~+ Blrugyy + 8,1 = fi ().

Now, writing equation (8) explicitly we obtain the system
( Au,+ B[ru,] = fi(®)— B[su,],

Auy+ Bsuy+ru;] = fo(2),

(9) { .........................
Au,_;+ B[sty, o+ 1u,] = foa(®),
\ Au,+ B[su,_;] = fu(®)— B[ruy,,].

The boundary conditions on the straighti lines y = ¢ and ¥ = d should
be such that it were possible to calculate approximate values of the right-
-hand sides of the first and last equations.

Let us denote the right-hand side of the i-th equation in (9) by w;(x)
and let us define the vectors

u(@) = [uy (), u(@), ..., uy (2)],
w(z) = [wy(x), wa(x), ..., wy(2)].
Now we are able to write the system (9) in vector form
Au(z)+ B[Tu(x)] =w(2),
Where T is defined by (1). Applying (3), we have
Au(x)+ B[PAPTE,u(z)] =w(x),

and hence, multiplying on the left-hand side by P E,, we have
A[PTB,u(z)]+ B[APTE,u(2)] = PTBaw(x).
Introducing now vectors
(10) U(z) = PTEu(z), W(2)=PTEBw(@),

We obtain the system of » independent ordinary differential equations
for the functions U,(w).

After solving the new system and making use of (10) we determine
the vector u(ws) from the formula u(x) = PU(x). The number n cannot
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be chosen arbitrarily. The numbers r and s in the matrix T should be posi-
tive to guarantee real eigenvalues. Thus, on the basis of (6), the following
conditions are to be staisfied:

2¢,+hey >0, 2¢,—he, >0.

If ¢, # 0, then assuming that ¢; > 0 (if ¢; < 0, then we may multiply
equation (4) by (—1)) we have h < 2¢,/|cy|.
Since » = (d—¢)/(n+1), we have

d—
s (@0l
2¢,

If we approximate du/dy by the quotient (u;,,— %,)/h, the conditions
are as follows:
¢+ he, >0
¢ >0.

If ¢, >0, then n is arbitrary, and if ¢, <0, then & < ¢, /|eq, and
hence
. d—e)c

J(@—oles
Cy

n 1.
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A. SZUSTALEWICZ (Wroclaw)

WARIANT METODY TRANSFORMACJI MACIERZOWEJ DLA PRZYBLIZONEGO
ROZWIAZYWANIA CZASTKOWYCH ROWNAN ROZNICZKOWYCH DRUGIEGO
RZEDU

STRESZCZENIE

Przedstawiony zostal wariant metody transformacji macierzowej, podanej w [1],
ktéry pozwala przeksztalcié czastkowe réwnanie rézniczkowe postaci (7) do ukladu n
niezaleznych zwyczajnych réwnan rézniczkowych. W wariancie tym wykorzystywane
83 macierze kwadratowe postaci (1) oraz ich wartoéci i wektory wlasne.



