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Abstract. Let G be a connected graph not necessanly finite and let we V(G). An induced
Subgraph Q,, of G is called a quasi-component of G with the control point w if the following two
conditions are satisfied:

1° weV(Q.);

2 Yw, eV (Q.) VxeV(G\V(Q,) ((w,, X} E(G)=>w, = w).

“In this paper we find several properties of quasi-components.

A partition P of V(G) is a g-partition of the graph G if every class of P induces a quasi-

_Somponent of G. We prove that the set £, (G) of all g-partitions of G is a complete lattice with
Tespect to the relation < defined similarly as for all partitions. Moreover, the supremum in
2, (G) coincides with that in the sét #(G) of all partitions of G but the infimum may differ from
that in 2(G). We give an explicit form of the infimum.

1. Quasi-components of a graph. We consider only simple graphs not
Decessarily finite. If G is a graph, we denote by V(G) the vertex set of G, and
by E(G) the set of all edges of G. If S = V(G), we denote by (S) the
Subgraph induced by § in G.

Let G be a connected graph. An induced subgraph Q of G will be called

a quaSt-component of G if there exists we V (Q) satisfying the following condi-
tlon

Vw e V(Q) Vxe V(G)\V(Q) ‘({wl,. x}eE(G)=>w, = w).

The vertex w will be called a control point of Q. We have:
(i) Every connected graph G is a quasi-component of G with an
arbitrary vertex as its control point.
(i) If ve V(G), then the subgraph ({v}) is a quasi-component of G.
(iii) Let Q be a quasi-component of G and Q # G. Then there is exactly
One control point of Q.
If Q # G, then Q will be called a proper quasi-component of G, and Q will
called improper otherwise. If Q is a proper quasi-component of G and w is
its control point, thén we write w = c(Q).
The term “control point” can be clarified as follows. Suppose we have
Some area Q and we want to control it. Then the best situation will be if
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there is a fixed point w such that every path out of Q goes through w and
every path into this area goes through w; e.g., we have a counter showing
how much electric energy comes into a factory or into a flat.
Vs
V2
V3 v

e

4!

Fig. 1

ExampLe 1. In the graph in Fig. 1 we have the following quasi-
components:

o} for ie{l, 2,..., 7},

{o1, v, 03}, <{”1, 92, v3, U4}) ({04, Vs, Vg, 7}

<{039 Ugs oees lJ-,}), <{01, U, .. v'l}>

Quas1-components have some further properties. Namely, we get

LEMMA 1. Let Q be a proper quasi-component of G, w = c(Q) and let
ueV(Q), ve V(IGI\V(Q). If u = v, vy, ..., V,—4, U, = v is a simple path from u
to v, then there exists ioe {0, 1, ..., n—1} such that v;, =w, v;e V(Q) for j
=0,1,...,i and v;e V(G)\V(Q) for j=is+1,...,n '

Proof. The lemma follows from the assumption that w is the control
point of Q and from the fact that the path u, v, ..., v is simple, so it goes
through w only once. '

LemMA 2. Every quasi-component Q of a connected graph G is a connected
subgraph of G.: _

Proof If @ =G or |V(Q)| = 1, then the lemma holds trivially. Let Q be
a proper non one-element quasi-component of G, w=c(Q), and let
uy, u,e V(Q), u; # u,. Hence there exists ve V(G)\V(Q). Since G is con-
nected, by Lemma 1 there exist two simple paths

Uy =g, -evs Vig—15 W5 Vg4 gs -+vs Up = D,
Uy =1V, ..., v}o_l,w v0+1,... Vpy =0
such that |
o vieV(Q) fori=0,1,....00;j=0,1,....J0
0, G VIG\V(Q)  for i =ig+1, ..oy m5 j=jo+1, ..

Thus u; = vy, ..., iy—15 » Vjg—1, +--» Vo = Uz is @ path connecting u, and #:
whose all vertices belong to V(Q).
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Let us recall that a vertex v of a connected graph G is an articulation
Point if the subgraph (V(G)\{v}) is not connected. A subgraph B of a graph
G is called a block if B is a maximal connected subgraph of G and contains
10 articulation point of B. If |V(B) > 2, then B is a block iff every two
Vertices of B belong to a simple cycle of B (see [3]).

Lemma 3. If Q is a proper quasi-component of G, w = c(Q), B is a block of
G ;nd V(B)nV(Q) # @, then either V(B)nV(Q)={w} or V(B)nV(Q)
= V(B). - -

Proof. Since Q is a proper quasi-component, |V (G)| > 1 and |V (B)| > 1.

If V(B)nV(Q)= {u}, then there exists veI'(u) N V(B). Thus u=w.

Let ([V(B)nV(Q)| > 1. Then there exist u,, u,e V(B) " V(Q) such that
Uy % u,. If |V(B)| = 2, then the proof is completed. Let |V (B)| > 3. Assume
that_ ve V(B)\V(Q). Then u, #w or u, # w. Let u, # w; the proof in the
Other case is analogous. Since u,, ve V(B), there exists a simple cycle C in B
Such that u,, ve V(C). The cycle C must be of the form

Uy = Vg, Uy ooy Vgy U, Ugggs ooes Upy Uy

S_lnce C is simple, each of the paths u,, v,, ..., 5, v and u,, v,, ..., V44, v IS
Simple. By Lemma 1 and by the assumption that u, # w, the control point w
Must occur among the vertices vy, ..., v, and among the vertices vy, 4, ..., U,.
ience C is not simple, a contradiction. Thus the condition ve V(B)\V(Q)
®ads to a contradiction and, consequently, ve V(B) 0 V(Q).

‘CoroLLARY 1.-Every quasi-component of a graph G is either a one-element
8"bgraph of G or a connected union of blocks of G.

LEmMA 4. Let Q and Q' be proper quasi-components of a connected graph
> Where

VO\V(@)#0 #V(QI\V(Q) and V(QNV(Q)+#0O.

Then c(Q), ¢(@)e V(Q) N V(Q).

N . Proof. Let u; e V(Q)\V(Q), u,e V(Q)\V(Q), and ze V(Q) n V(Q"). Since

Q i connected, there exists a simple path L from z to u; whose vertices
long 0 V(Q). By Lemma 1, the control point c(Q’) belongs to ¥V (L). But
@) = v(Q), so

c(@)eV(Q) N V(Q).
"nalogously, c(@)e V(@) n V(Q).
the Theorem 1. If Q and Q' are quasi-components of a connected graph G,
M QU Q' is a quasi-component of G iff '

ViQ)nv(@Q) 0.

'Moreover, if QuQ' is a proper quasi-component of G, then
- P (QuQ) =c(Q) when Q= Q, |
2 c(QuQ) =c(Q) =c(Q). when V(Q\V(Q) # @ # V(Q)\V(Q).
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Proof =.If V(Q)nV(Q) = @, then Q UQ’ is not a quasi-component
since it is not connected (see Lemma 2).

<. If one of Q and Q' coincides with G or QuQ’' =G, then the
statement is obvious.

fQcQ and Q' # G, then Qu Q' =@’ and c(QuU Q') = c(Q). Assum¢
that

QUQ'#G and V(Q\V(Q)#0 # V(Q')\V(Q)-

By Lemma 4, ¢(Q), c(Q)e V(@) NV (Q).

Let se V(G)\V(Q u Q'). Take a simple path L in'G from z to s. Let L b¢
of the form z = vy, vy, ..., v, =s. By Lemma 1, ¢(Q), c(Q)e V(L). Let ¢c(Q)
=v;, ¢(Q) = v;. If i <}j, then ¢(Q') = v;¢ V(Q), by Lemma 1. This contradicts
the fact that

c(@)e V(@) N V(Q).

Analogously, if j <i, then ¢(Q)¢ V(Q'), a contradiction. Thus ¢(Q) = c(@)
LEmMMA 5. If Q and Q' are quasi-components of G and

V@) nV(Q)+ 9,

then Q N Q' is a connected subgraph of G.

Proof If [V(Q) N V(Q) =1 or one of Q and Q' coincides with G, the?
the statement is obvious by Lemma 2. ,

Let Q and Q' be proper and z,, z,€ V(Q) N V(Q), z, # z,. Since @ ¥
connected, there exists a simple path L in Q from z, to z,. Let L be of th°
form

Zy = Vg, Uy, ..., Uy = Z3.

We show that {vg, vy, ..., v,} = V(Q'). Otherwise, there exists ie{l, 2, -
n—1} such that v, ¢ V(Q’). Since L is simple, each of the paths vy, ..., v; and
Z3, Un—1, ++v) Uie1, U; iS simple. By Lemma 1, the control point c(Q") has *

ch

occur among vg, Uy, ..., j—; and among the vertices z,, ..., U;4,, WHI
contradicts the fact that L is a simple path.

LemMa 6. If Q and Q' are proper quasi-components of G, and

(1) VI\V(Q)# 0 # VNV, V@nVQ@)+#9,

then Q N Q' is a quasi-component of G iff c(Q)=c(Q).
Proof. Assume that (1) holds. Then, by Lemma 4, we hav*
c(Q), c(@)eV(@)nV(Q) and

I'(c@)n(VG\V(Q)# @ # I'(c(Q)(VIG\V(Q)).
Hence

Tc@)n(VONV@ V@) # 0 # T'e@)n(VO\(V(@) n V@) |
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Thus QN Q' is a quasi-component iff ¢(Q) = c(Q)).
THEOREM 2. If Q and Q' are quasi-components of a connected graph G,
then Q Q' is a quasi-component of G iff one of the following three cases holds:
I° V(Q) ¢ V(Q);
> V(Q) < V(Q);
3° both Q and Q' are proper, (1) holds and c(Q) = c(Q").
; Proof. We shall consider all possibilities for quasi-components Q
and @', |
If one of the assumptions of 1° and 2° holds, then Q N Q' is a quasi-
Component of G. '
If V(Q)nV(Q) =@, then obviously  nQ’ is not a quasi-component.
If (1) holds, then, by Lemma 6, Q nQ’ is a quasi-component of G iff
Q) = c(Q). R |
- - Case 3° is illustrated in Fig. 2a. The condition ¢(Q) = c{Q’) is essential,
Which is explained in Fig. 2b.

ﬁ '(o)

Fig. 2

Remark 1. The set Q(G) of all quasi-components of .G is obviously a
Poset with respect to the relation < defined by Q, <Q, if V(Q,) = V(Q,).
. ‘Owever, Q(G) is not a lattice. In fact, the example in Fig. 1 shows that the

um

inf({{vy, v, v, v4} ), {{v3, V4, Vs, V6, V1))

Uoes not exist. Similarly, sup(<{vs}>, <{ve}>) does not exist. We shall obtain
A lattice for g-partitions considered in the next section. However, the
Structure of Q(G) is also interesting. For example, we have

Turorem 3. Let L be a chain of non-empty subsets of V(G) ordered by
"elusion and such that, for every AelL, {{A}> is a quasi-component of G.
b (@) If L # Q, then the graph {\L)> is a quasi-component of G. More-

e, if L # V(G), then for some A,eL we have:

if B< Ag and B < L, then c¢({B)) = c({NL)).

. (b) {UL) is a quasi-component of G. Moreover, if \) L # V(G), then for
OMme A,eL we have:
if B2 A, and Bel, then c({B)) = c({UL)).
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Proof. Assume that {(\L) is not a quasi-<component. Then there exist
Wi, Wi, X1, X3€ V(G) such that wy, woe(\L, wy #w,, x;, x,e V(G)\ND
where {w;, x;}, {w;, x,}€ E(G). Hence there exist Ay, AseL such that
X1¢Ay, x¢A4;. Put A'=A,NnA,. Then A'¢L and w,, wye A’ x,, x,¢ A"
{wy, x1}; {ws, x,} € E(G). Hence (A’ is not a quasi-component, a contradic-
tion. Thus L is a quasi-component. If (\L# G, then there exists
ye V(G)\( L such that

{e(<NLY), y}eE@G).
There exists Age L such that y¢ 4,. But ¢({\L))e 4o and A, is a quasi-
component, so ¢({1L)) = c({4o)). If B < A, and BeL, then again y¢B
and ¢({NL))eB. Thus c({N\LD) = c(<BD).

The proof of (b) is similar.

2. The lattice of g-partitions of a graph. Let ¥ be a non-empty set. Recall
that a family P = (2" \{Q)) is a partition of V if |

Ud=v

AeP

and all members in P are pairwise disjoint. For ac V we denote by [a]p the
unique set in P to which a belongs. The set [a]p is called the class of a. We
denote by 2(V) the set of all partitions of V. For P,, P,e (V) we have:

P, < P, - if [a]p, S[alp, for every acV.

It is known that the set 2(V) with the relation <_is a complete lattict

(see [1]). , ,
For a family {P,},.x of partitions of the set ¥ we put

- AP, =inf {P,},eR and \/P,=sup {P,},GR.
reR

reR
Obviously,
"AP.={N[als,: acV}.
reR reR
The partition \/ P, can be described as follows:

reR
For a, be V we have:

be[a] VP,

reR

if there exists a non-negative integer n and there exist TosTys .-, I€R and
ay, 4, ..., a,e V such that a, =a, a,=b and :

[ao]P,.o N [?1]?,1 -‘ﬁ Q, ... [a —1]1»,."_l n [an]P," #0
(see [1]).
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The partition \/ P, can be explained in terms of graphs. Let
reR
S=P,.

reR

Denote by Q(S) the intersection graph of the family S (two sets A, Be S are
adjacent if A "B # (). For DeS we denote by K (D) the component of the
vertex D in the graph Q(S). Then

VVP.={ (J F:DeS}

reR FeV(K(D))

This means that a class of the partitions \/ P, is the union of all sets
reR

belonging to the same component of the graph Q(S). Since every component
of a graph is connected, the last definition is equivalent to the classical one.
~ Let G be a graph. A partition Pe 2(V(G)) will be called a g-partition of
G if every class of P induces a quasi-component of G. For example,

{{Uh v, D3}, {v4, v5, Vs, 07}}

is a g-partition of the graph in Fig. 1, whereas

{{”1, Uzr}» {03, Vs ”s-}, {05, U7‘}}
- and
{o1, 01}, {02, 03, .., vs} }

are partitions but not g-partitions. In practice, finding a g-partition of some
area is nothing else but splitting this area into disjoint pieces with one
control point in ‘each.

~ Let us denote by £,(G) the set of all g-partitions of G. Obviously, the
set #,(G) with the relation < defined above is a poset.

LEMMA 7. Let {P,‘},.e,t be a family of q-partitions of a graph G. Then
\/ P,e Z,(G).
reR

Proof. Let
De\/ P,.

reR

If D = V(G), then (D) is a quasi-component of G. Let D  V(G) and assume
that (D> is not a quasi-component. Then there exist u, ve D such that u # v
and

r(un(V(G)\D) # @ ;é_l"(v) n(V(G)\D).
By the definition of the partition \/P,., there exist ry, 7y, ..., r,€¢ R and
. reR

%, a,, ..., a,e V(G) such that gy, =u, a, =v and

[aOJPrO n [al]Prl # (D’ T [all— I]P'n- 1 N [a"]P'n # @
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Put
D = [do]p, v [41]1', v...u [an]P, -

Since every graph ([a,‘]p ) 1s a quasi-component of G for k=0, 1, ..., n, by
Theorem 1 each of the graphs

<[a0]P v [al]P U...v [at]P,.

fort=2,3,...,nis a quasrcomponent Hence (D'> is a quas1-component
which gives a contradlctlon since u, ve D’ and

r@n(VG\D)=® and I'@)n(V(G)\D)=0.

- THEOREM 4. 1. The set #,(G) is a complete join subsemilattice of the
semilattice (#(G); v).

2. The poset (#,(G); <) is a complete lattice.

Proof. The first statement follows from Lemma 7. The second state-
ment follows from Lemma 7, from the existence of the least g-partition
{{v): ve ¥(G)} in #,(G) and from the fact that every complete join semilat-
tice (L; <) with zero is a complete lattice.

For the famlly {P,},cr of g-partitions of G, let us denote by /\,P, the
reR

infimum of {P,},.z in the set Z, (G). Obwously,

NePr < AP,
reR

reR

The following example shows that we may have
| NePr# \P.
reR
ExampLE 2. In the graph in Fig. 3 we have

Po={{1},{2.3,...,12}}, P, ={{1,2,...,9}, {10, 11, 12}}.
A P={{1},(2,3,..., 9}, {10, 11, 12}},

re{l,2}

{\ Po={{1},{2.3,4,5), {6}, 7, 8,9}, {10, 11, 12}}.
re{l,2)

e e e S e e
-
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The interesting question is what is an explicit form of the infinum of
two g-partitions. We deal with this problem in the next section.

3. Infimum of two ¢-partitions of a graph. First recall that if G is a
Connected graph, then the graph ba(G) is defined as follows (see [2]):
V(ba (G)) consists of all blocks and all articulation points of G. The set
E(ba(G)) consists of all pairs {B, a}, where B is a block of G, and a is an
articulation point of G such that ae V(B).

Let P, and P, be two g-partitions of a graph G. In the poset (#,(G); <)
we want to find inf{P,, P,} denoted by P; A, P,. Obviously, we have

Py AgP <Py AP, = {[a!l:»1 N[alp,: aeV(G)}.
If [alp, n[alp, induces a quasi-component, then it can be taken as

[q],l rgP2- Hence we get into trouble if for some aeV(G) the graph
([a],,1 N [alp,> is not a quasi-component of G. Then it must be decomposed

into as large as possible disjoint quaSI-components of G. We present a
procedure for such a situation.
Write

Q= qal) Q@ = dals,),

)
H=0nQ, w=c(@, w=c(@).

Since 9 N Q' is.not a quasi-component, by Lemma 6 and Theorem 2 we have

B) V@\V@)#D#V@N\V(Q), w,weH and w#w.
Hence |

@) rwn(V@)\V (@) # @ £ F'w) ~(V@\V(Q)).

By (3) we obtain |V(H)| > 1, |V(Q)} > 1 and |V(Q)] > 1. Consequently, both
vertices w and w' are articulation points of the graph G.

Consider the graph ba(G). By Lemma 3 .we can distinguish the subgraph
D of the graph ba(G) induced by all blocks and articulation points belonging
to H. The graph ba(G) is a tree (see [2]), and H is a connected subgraph of
G by Lemma 5. Hence D is a subtree of ba(G). Consequently, in D there is
exactly one path connecting the articulation points w and w'. Denote this
path by

!

(5) ay, By, a,, B,, ..., By, @, where ap=w, g, =w.

Then we must have k > 1
Let H* denote the subgraph of G obtained from H by removing all
edges from the blocks B, B,, ..., B,. Then we disconnect the graph H.
We claim that P; A, P, is equal to the partition P* whose classes are of
two forms:
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If for some ae V(G) the graph lalp, n[alp,) is a quasi-component of
G, then [alp, N[alp, = [alp~
If H= Lalp, [a],.2> is not a quasi<component of G, then every

component K* of H* is a quasi-component of G. We take as [a]p. the
component of H* to which a belongs.
To show this we need two lemmas.

LemMa 8. Let H be a graph defined in (2) and assume that H is not a
quasi-component of G. If Qy is a quasi-component of G and Q, is a subgraph of
H, then Q, is a subgraph of some component of the graph H*.

Proof. It is enough to show that Q, contains no edge belonging to
E(H)\E(H*). Assume it is not the case and let

ec(E(H)\E(H") N E(Qo)-
Then e belongs to some block B; from (5), ie {1, 2, ..., k}. By Lemma 3, the
block B; is a subgraph of Q,.
Let
i, = min fie{1,2, ..., k}: B; = Q)
i, = max {ie{l, 2, ..., k}: By = Qy}.

Then I'(a;, 1) n(V(G)\V(Qo)) # @. In fact, if iy = 1, then a1 =w=c(Q)
and, by (4), ' |

rw)n(V@)\V(Qy) # 0.
If iy > 1, then I'(a,-,) NV (B;,-1) # @. Analogously,

I'(@,) A (V(G\V(Qo) # O.

Since G -1 7 &, and @,-1, @i,€ V(Qo), we get a contradiction with the
assumption that Q, is a quasi-component of G.

Lemma 9. Every component K of the graph H* is a quasi-component of G.

Proof. If |V (K)| = 1, then the statement is obvious. Let |V(K)| > 1 and

assume that K is not a quasi-component of G. Then there exist u,, uze V(K)
such that u, # u, and

I"(u,‘)n(V(G)\V(K)) £#Q fork=1,2.

Put M =B, UB, U...u B,. We show that u,c V(M) for k = 1 2. In fact, let
{uy, v} € E(G) and v¢ V(K). If v¢ V(H), then u, =c(Q) or u, = c(Q"), so
u;eV(M) by Lemma 3. If ve V(H), then {ul, vieE(M), so u,eV(M)
Analogously we prove that u,e V(M).

Since K is connected, there exists a simple path u,, v,, ..., v, = u, in K.
Let u; be the first vertex in this path belonging to V(M) such that uy # u;-
Then u; = v, for some se{l, 2, ..., n}. Obviously, {u,, v,}¢E(M). On the
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other hand, since M is connected, there exists a simple path u, = z,,
Zy, ..., 2, = Uz in M. So {uy, z,} e E(M). Thus

Uy, U1, ..., Vg, Zp—15--+5 21, Uy

is.a simple cycle in H. We have {u,, z,}€B; for some ie{l, 2, ..., k}. This
however gives a contradiction since then {u,, v,}eB; and, consequently,
{ul’ UI}EE(M)-

Now we are able to do the proof.

THEOREM 5. For Py, P,e #,(G) we have P, An,P, = P*,

Proof. Obviously, P* is a partition of G. By Lemma 9, P* is a g-
partition of G. We have P* < P, and P*< P, since P*< P, A P,. Let
Pye 2,(G), Py < Py, Po < P, and ae V(G). Then :

[a]Po = [a]Pl a [a]Pz‘
If [a]p, n[alp, is a quasicomponent of G, then Lalp, S [alp. If
[ale, N [alp, is not a quasi-component of G, then by Lemma 8 there exists a
component K of the graph

H* = {[a)p, n[alp,)*

such that ([a]p,> =K. Since ae V(K), by the definition of P* we have
(lalps) = K and, consequently, [alp, < [alp+. Thus P, < P*.
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