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SOME ANALYTIC ASPECTS OF PROBABILISTIC POTENTIAL THEORY

1. It is well known that not only can the Wiener-Perron extension
of classical (Newtonian) potential theory be conveniently formulated in
terms of the Brownian motion process but that also extensions to a much
wider class of sets become possible.

The idea which underlies this development goes back to Kakutani
and consists in defining the capacitory potential at y of a set K as the
probability that the Brownian motion starting from y will ultimately
hit K.

If instead of probability of hitting one considers the probability
of penetration i.e. the probability of spending positive time in K (having
started from y) one is lead to a different theory.

This theory is applicable to a narrower class of sets (i.e. one has
to assume that the Lebesgue measure of K is positive otherwise proba-
bility of penetration is trivially zero) and it may thus appear to be of
lesser interest. But what it looses in generality it gains in expliciteness
and one is rewarded by a number of new analytic formulas and facts.

2. Let K be a compact set in Euclidean three-space R* of positive
(three-dimensional) Lebesgue measure.

Let y be a point in R® and let Tx(y) be the total time the Brownian
motion starting from y spends in K. One can easily show that the random
variable Tx(y) is finite with probability 1 (in fact, the expectation of
Tx(y) is finite).

It 1s also not difficult to calculate the expectation

(2.1) B{e"TE®} 4 >0,

and the answer is expressible in terms of eigenvalues and eigenfunctions
of the integral equation
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where dz is a volume element and lx—y| the Euclidean distance between
the points x and y.
In fact, one has (see e.g. [3])

2.3)  1—E{e"TK®} = 2 f ")"( P
where A,,4,,... are the eigenvalues and ¢,, ¢,, ... the coresponding
normalized eigenfunctions of the kernel
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taken over the set K. The kernel (2.4) is well known to be positive defi-
nite a fact which simplifies the discussion considerably.
If one lets u approach infinity increasingly (v oo) one obtains

(2.5) U(y) = Prob.{Tx(y) > 0} =
: i ()
lim f dx
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for every ¥ in R3.

Outside K (y¢K) U(y) is harmonic and U(y) approaches 0 as the
distance between y and a fixed point in space approaches infinity.

If K, is the interior of the compact set K then U(y) = 1 for yeK,
(this is an immediate consequence of continuity of Brownian paths).
One therefore sees that U(y) is in some sense the solution of the exterior
Dirichlet problem with the boundary function being identically equal to 1.

If y is on the boundary of K one has (as one has also in K,)

( f g;(@ dw)%

2.6 U = Prob.{T 0l =1
(2.6) () = Prob.{Tx(y) > 0} ;’22

3. The question now arises whether
Uly) =1 if yeK\K,?

The answer depends on certain regularity properties of the boundary
point y. To state the pertinent result it is best to introduce the concept
of an s-regular point (see [2]).

First define T;(y) as the time spent in K up to time ¢. Then define
the first penetration time 7(y) as the least upper bound of t’s for which
Ty(y) = 0 i.e. .

(3.1) 7(y) = lu.b.{t: T;(y) = 0}.
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One can then show using Blumenthal’s zero-one law (see [1]) that
Prob.{r(y) > 0}

is either 0 or 1. For example if y¢ K, Prob.{r(y) = 0} = 0 but if yeK,
then Prob.{r(y) = 0} = 1. On the boundary both alternatives are possible
and one calls a boundary point y s-regular if Prob.{r(y) = 0} = 1. Other-
wise it is called s-irregular.

There is simple geometric sufficient condition for s-regularity [2]:
if the symmetric Lebesgue upper density of K at y is positive, then y
is s-regular. Since clearly U(y) = 1 if y is s-regular one infers immediately
that the subset of K where U(y) < 1 is of Lebesgue measure zero and
even more is true, the set of all y ¢ K which are s-irregular is of Lebesgue
measure Zzero.

For a wide class of sets K (e.g. if K is star-shaped) the concept of
s-regularity coincides with that of regularity in the sense of the Wiener-
-Perron potential theory. But now because of (2.6) we are led to a purely
analytic criterion of regularity.

Thus if K is, for example, star-shaped a boundary point y is regular
if and only if

N K
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is clearly the Fourier series of the function f(z) = 1, zeK, with respeet
to the orthonormal set {¢;}, and 4;/(6-+4;) are the convergence factors
which define a summability method one can say that y is regular if and
only if the Fourier series (3.3) of f(x) = 1, zeK, is summable to what
it should be (i.e. to 1) by a certain summability method.

4. Nothing striking is found when one extends the theory
sketched above to spaces of dimensionality higher than three but
in the case of the plane (R?) one finds new and interesting analytic
phenomena.

Restricting ourself again to compact sets K of non-zero (two-dimen-
sional) Lebesgue measure we no longer can work with the total time
Tk(y) spent in K since now with probability 1

(4.1)




However Ty(y)(!) is perfectly well defined and so is the concept
, of s-regularity.
Instead of (2.1) we now consider

(4.2) B {e~ "7t

and it is convenient to work with the Laplace transform
(4.3) (H%Sﬂ”zsfde@w%MWL
(1}
The function G(y;s,u) satisfies the integral equation
(4.4) Glyss,u) =1—= [ K(V2slo—y))G(a; 3, u)da,
K

where K, is the Bessel function of second kind of imaginary argument.
One can show that

(4.5) lim @ (y; s, u) log]/ Q(y; u)

8N 0

exists for every y and that @ satisfies the integral equation

(46) Q(y3w) = R(w)—— [ log u)da,
K

|z —y|

where R(u) is defined as the limit

(4.7) B(u) = llm{l—— fG x38, U dw} log ]/—
30

which can be shown to exist.
As a consequence of (4.5) and the existence of the limit in (4.7) one
gets also that

u
(4.8) 1=—fmmmm.
Tk
The derivation of these results though not overly difficult is not
entirely trivial and requires certain amount of care.
5. It can be shown that
(5.1) lim R(u) = R < o©

u A 00

(1) As above we drop the subscript K but the reader will remember that unless
otherwise stated T refers to the time spent in K.
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exists and so does

(5.2) lim @(y; u) = U(y).

U 1 00

Also (because of (4.8)) one can show that the measures
u
(8.3) po (d2) = ;Q(w; u)dw

approach weakly as u oo a measure u(dz)
(5.4) to (A2) = p(dw)
and also that

: oy 1
(5.5) Uly) =lm Q(y; u) = R Kf log -~
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From (4.8) one has the normalization
(5.6) [ u(dz) = 1.
K

It follows quite easily that for ye K, U(y) = 0 and it is clear that
for y¢ K U(y) is harmonic. Moreover U(y) has a logarithmic pole at
infinity and it is not too difficult to conjecture that for wide class of
K’s U(y) is the capacitory logarithmic potential of K at y. Indead for
sets K with sufficiently smooth boundaries U (y) is the familiar logarithmic
potential.

The precise statement is that

U(y) >0

whenever y approaches an s-regular point and that for a wide class of
sets (e.g. for star-shaped K’s) the concept of s-regularity is the same
as that of ordinary regularity in potential theory.

6. The question which comes up now quite naturally is whether an
analytic criterion for s-regularity analogous to (3.2) can be established.
The integral equation analogous to (2.2) is now

(6.1) o f p(o)log ——da = plw), yeE,

but the kernel

(E°2) 1 g 1 ’

need no longer be positive definite.



In fact, one can establish the following result:

(a) if B > 0 the kernel (6.2) is positive definite (so that all eigen-
values are positive),

(b) if B = 0 the kernel (6.2) is non-negative definite and moreover
if zero is an eigenvalue then it must be simple,

(¢) if R < 0 the kernel (6.2) has exactly one simple negative eigen-
value and all other eigenvalues are positive ().

One is faced here (for wide class of K’s) with something like “mystery
of the vanishing eigenfunction” where the word vanishing is used in the
mystery story sense of disappearing into thin air rather than in the
mathematical sense of being equal to zero.

Suppose, in fact, that K is such that R = 0(®) and consider a des-
cending sequence of sets K,

K >oK,>o K;> ...
such that
limK, =K and R(K, <UR(K)=R.

N—00
It is also supposed that our potentials corresponding to the K,’s and K
are identical with the classical capacitory potentials of these sets.
Clearly E(K,) < 0 and consequently by (¢) above the kernel (6.2)
considered over K, has for each n one negative eigenvalue. Let the cor-
responding normalized eigenfunction be denoted by

p(z; Ky), xeK,.

The eigenfunctions corresponding to the positive eigenvalues of (6.2)
over K, approach the eigenfunctions of (6.2) over K but y(x; K,) cannot
approach in any sensible way a non-vanishing L* function over K for
this would be in contradiction with completeness of the eigenfunctions
of (6.2) over K. What does then happen to y(z; K,)?

The answer is simple, not unexpected and one. which would be
guessed by discussing the case of the circle.

It is that the measure u,(dr) defined by the formula

y(x; Ky)
(6:9) il d) = oy Ko do

n

(?) While this paper was in print we have learned that zero is not an eigenvalue.

(®) Since it is no doubt clear to the reader that for “reasonable” sets R is the
Robin constant (i.c. minus the logarithm of the logarithmic capacity) the simplest
example of a set with B = 0 is provided by a circle of radius 1.
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(it follows easily that the denominator does not vanish) is non-negative
and it approaches weakly as # — oo the measure u defined in the for-
mula (5.4). This measure as can be seen from (5.5) and from the fact
that U(y) is the logarithmic potential is concentrated on the boundary
of K. Moreover one shows that except for a set of logarithmic capacity

Zero
1
f log
2, ¥4

1
—1a(22) Kf log -~ (@),

_z!

Speaking somewhat loosely we can thus say that as n — oo y(x; K,)
becomes an eigendistribution belonging to eigenvalue zero since for R = 0
equation (5.5) becomes

1
(6.4) 0 — Kflog oy )

for p almost all y.

7. Returning to the question posed at the begining of section 6 as

to whether an analogue of formula (3.2) holds for plane sets the answer
is in the afermative if R # 0.

In fact, one has the following more general result(®):
If R+ 0 and f(x) is continuous on K thenm

(7.1) J(@) _}&TZ oy (f% (¥)f(y) dy @i (@

at every s-regular point. Conversely, if (7.1) holds for all f continuous on K,
then x is s-regular.

The situation is radically different if B = 0 as can be seen by con-
sidering the case when K is a circle of radius 1.

For a circle of radius a (and center at the origin) one finds by direct
calculation that

Qw;u) I,(V2uz))

7.2 I\ e .
(7.2) E(u) I,(V2ua)—V2ualogal,(V2ua)

where I, and I, are the familiar Bessel functions of first kind of imaginary
argument.

() A similar generalization holds also in R3 (see [4]).

Zastosowania Matematyki, tom X (]



If ¢ =1 and z is on the circumference of the circle (|z| = 1) one has

Q(w;u)
R(u) =1

which implies by letting # oo that

0— }32 i (Kf«my)dy)%-(w).

Thus the Fourier series of the function f = 1 is summable on the
circumference of the circle to 0!
If |z|] < 1 nothing out of the ordinary happens and one has

1= }’1\1132 l;ﬁé (Kf%(y)dy)%(w)

as expected.

A heuristic explanation is simple and immediate. On the boundary
of the circle we have the eigendistribution discussed in section 6 which
must be included in the expansion.

In fact, for functions f which are orthogonal to the eigendistribution,
which in our case means that

[ 100 — o,

formula (7.1) can be shown to hold.
It is highly probable, though we do not have a proof yet, that (7.1)
holds for general sets whose Robin constant is zero provided

(7.3) J f(@)u(dz) = 0.
K
However we can prove that (7.1) holds always in the interior of K.

Our pleasure in being able to dedicate the note to Professor Steinhaus
on the occasion of his eightieth birthday is hightened by the realization
that it seems to fulfill & dictum he voiced to one of us over thirty years
ago in Lwow.

He said that no general theorem on sets or curves is interesting
unless it is already interesting for a circle.
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