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EXACT DISTRIBUTIONS FOR SOME RENYI-TYPE STATISTICS (%)

1. Imtroduction. Let X,, ..., X, be a random sample of size n with
common continuous distribution function ¥, and let ¥, denote the empi-
rical distribution function of this sample. Let U,,..., U, be the values
of ¥(X,),..., F(X,) ordered increasingly, i.e. so that U, is the smallest
of F(X;) and U, the largest of F(X;),1 <7 < n. Since U = F(X) has
the uniform distribution on [0,1], U,,..., U, are an ordered sample
from a wuniformly distributed random variable on [0, 1].

The purpose of this paper is to develop the exact distributions of
various statistics defined in terms of F,, F, and truncation or censoring
values.

In his basic paper [7], A. Rényi obtained the limiting distributions
of the statistics

- Fy(z)—F () Fy(w)—F (x)
a<F(£<b F(x) F@)>a F ()

M. Csorgo [4] later found the limiting distributions of

Fy (#)—F () Fo(x)—F () Fy () —F ()
sup ——, sup y sup ’
aFy(x)<b F,.(w) F,(x)>a Fn(w) asF(x)<b 1—F(w)
F,(x)—F(x F,(x)—F F,(x)—F
wp L2@=F@  F@)-—F@) (#)—F (@)
Fo<d 1—F(x) a<F@)<b 1—F,(x) Fuo<d 1—Fy(x)

In [3] Cs6rgdé obtained the exact distributions of

sup Fu(@)—F (@) and  sup Fu(@)—F(2) )

Fp@)>a F,(x) a<F(z) F(x)

(*) Research supported in part by the U.S. Office of Naval Research.



Both of the distributions given require corrections (see next section,
Corollary 2.4.1 and Corollary 2.6.1).
In this paper we consider the following Rényi-type statistics:

(1.1.1) agsr}g))gb **—W) *7
(1.1.2) sup (Fn(z)—F(2)),
a<F(x)<b
Fy(2)—F (x)
(1.1.3) agSFl'g?gb W’
Fy(2)—F ()
(1.2.1) Fi:lcl)lg)b F(T’
(1.2.2) sup (Fy(z)—F(x)),
F@y<b
(1.2.3) F?aggb _wl—F(w)—’
Fr(2)—F(x)
1.3.1 —
(131 rove  Fla)
11.3.2) sup (Fyn(x)—F(x)),
F(x)=a
Fn(x)—F(x)
(1.3.3) Fs(gga 1_F(2) )
1.4.1 up_ 22—
(141) rnes  Fal@)
(1.4.2) sup (Fn(z)—F(2)),
F,x)<b
Fy(w)—F(x)
(1.4.3) F:(I;)I;b 1—F,(2) ’
Fy(z)—F (x)
(1.5.1) F:(l;;[;a 7,(@) )
(1.5.2) sup (Fn(w>—F(m))7
Fp(r)=a

(1 5 3 - F'n(w)_F(w)
-0:3) roopa 1—Fo(@)
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In the remainder of the paper we obtain the exaect probability distri-
butions for these statistics. The distributions for (1.3.1) and (1.5.1),
presented in [3], are given here in a corrected version. The statistic (1.5.3),
listed above for the sake of completeness, is of no practical interest since

one can easily verify that the probability of its assuming a value <c¢
is 0 for every 0 <c¢ < oo.

2. Exact Distributions. The following lemma was obtained by R.
Pyke [6]. For the sake of completeness its proof is outlined here.

LemMMA 2.1. For any real d, s, and positive integer k, let

fis; d, k) = P[max (4—1U,) <s].

1<i<k
Then
(21)  f(s;d, k) =
0 it kd—s>1,
0<d<1,
1s/dy k . i .
fa+s—ra) 3 ()) (jd—s)f (14+s—jd1 it 0 <kd—s <1,
= 0<d<1,
1 if kd—s <0,
0<d<1,

where \p\ denotes the greatest integer smaller than p if p >0 and {p =0
if p <O0.

For example {3.6] = 3, {3\ =2, and {—2{ = 0.

Proof. The first and the last line of (2.1) follow immediately from

P[max (dj—U;) <s]=P[U; > dj—s, for 1 <j <k]

1<i<k

and

PU,>1]1=0, P[U,>0]=1.
For 0 <kd—s <1, 0 <d <1, one has

1 Uy UL+1 Ur Uy

flssd, k) =k! | [ .. [ av,...

L’k:kd_s Uk_lz(k—l)d—s UL=Ld—S UL—1=0 U1=0

. dUgp_1dUg ... dU_,dUy

where L = {s/d\+1. Applying the method used in [2] one obtains the
expression in the middle line of (2.1).



THEOREM 2.2. For 0 < a <b<1, dreal, and 0 < 4 < b— a, one has

n

(2.2) P[U;>jA+d, for a < U; <b, 1<j<n]=2(;:) & (1—by**+

k=0
vy : (b—d—md)
" k m—k n—m —a—m
+ b— 1-b m—
= m=R+1k!(m—k)!(n_m)!a( \ a)" ) b—ay*
(k+1<m)
Sa_d_kAS
a4
X (mj_k) (G+k)A+d—aY(b—d—(j+ k) A"~ =14
7=0
k m—k n—m
szvm )l (n—m)! o (b—a) " (1—0b)
k=0 m=
(k+l<m)
where
(2.2.0.1) R=S'a;dS, g _ mm{SbAdS, }

If R = 0, define the last sum to be 0.
Proof. By decomposition one has

P[U;>jd+d, for a <U;<b, 1<j<n] = D P[Up<a, Uepy >b]+
k=0

n—1 n

D PIU;>jd+d, k+1<j<m, Ur <6< Upyyand Up <b< Unyal-
k=0 m=1
k+1<m)
For R and S defined by (2.2.0.1) one has RA+d < a <(R+1)4+d
and S44-d <b < (8+1)4+d. Also,
PlU; >ja+d, for k+1 <j<m, U< a < Ugy; and Up < b < Upyyl
=P[U;>jd4+d,for k+1<j<m|Ur<a< Upand U, <b < Upy]X

XP[Uk < a Uk+1 a:nd U b < Um+1].
The general summation can now be split into parts using

PlU; >jd4+ad, for k+1 <j < m|...}
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which is a consequence of the definition of B and §. Noting that
-P[Uk<a’ Uk—rly Um<b< Um+1]

n! k %
— o . b_ m-— 1 - b n—m
E'(m—Ek)!(n—m)! @ (b—a) )
one obtains, for m < R, the last sum in (2.2).
For R < m < S, one obtains ’

P[U; >jd+4d, for k+1 <j<ml...]

{(j—k)A U,-——a} La—d—ka ]

b—a b—a b—a

Set U;_r = (U;—a)/(b—a) and replace j—-k by j. This amounts to a
normalization of those U; where k41 <j < m so that the resulting U;
are the order statistics of a sample of size m—k from a uniform distri-
bution in (0,1). By Lemma 2.1 for 0 < 4/(b—a) < 1, one obtains

> v e
(2.2.0.2) P[ max (J —U,-)<1M|...]

= P[ max

1<f—kgm—k

1<i<m—k \0— @ b—a

a—d—k4a
7\

b—d—m4d m—k . 7 . . m—k_j—1
e Z ("7F) i+ 14 —a+ar p—a—(j+ b 4]
for (a—d)/4 <m < (b—d)/4, (R < m < §8), and the probability (2.2.0.2)
is 0 for m > (b—d)/4,(m > 8) and is 1 for m < (a—d)/4, (m < R).
Using these expressions one obtains the middle sum of (2.2). The first
sum is the probability that none of the U; fall into [a, b].
COROLLARY 2.2.1. For 0 <a <b <1land 0 <1/n(l+c) < b—a, one
has for the probability distribution function of the statistic (1.1.1) the expression

(2.2.1) P[ sup Ln@)=F@) c] — Z(:) a* (1—by"* 4

a<F(x)<b F (m) =

R-1 R

+Z st(m—k)z(n—m)!“k(b_“) =0

k=0 m=1
(k+1<m)

-1 S

ﬁ n! nem m
+ Z k1 (m— k) (n—m)! @(1-0) ( (1+0))><

k=0 m=R+1
x+1<m)

1na(1+-c)—ky

m— i+k J j+ & \moE-i-t
X 20: (jk)(nzl—}—c)—_a) (b—nzltrc))

1=

where B = Yan(1+4c¢)\ and 8§ = min{{bn(1+ )\, n}.




Proof. First, note that

F,(z)—F(x) _ F,(z)
P[KSI*%}))@ F(x) = c] =F [F(w) - 1+c¢

and a < F(x) <b]-

Since the supremum occurs at the sample points, one has

By (x)—F (@) ] [ J
Pl su <¢e|=P|U; > ——
[a<F(£<b F(x) T (140
Setting d = 0 and 4 = 1/n(14¢) in (2.2) one obtains (2.2.1).
COROLLARY 2.2.2. For 0 <a<b<1 and 0 <1l/n(b—a) <1, one
has for the probability distribution function of the statistic (1.1.2) the expres-
ston

and a < Uy-gb]-

(22.2) P[ sup (Fu(z2)—F(@) < c] =Z(Z) d(1— by
k=0

a<F(x)<b

R—-1 R
n! - .
k=0 m=1

(k+1<m)
S—1 S n' m
+Z Z k' (m— k) (n—m)! “k(l_b)n_m(b+c—7) %
k=0 m=R+1 : )
(k+1<m)
In(a-+c)—ky

T L e

where B = \n(a+c)\ and § = min{\n(b+¢){, n}.
Proof. As in the proof of 2.2.1, one has

P[ sup {Fnp(zx)—F(2)} <c] =P[F(x)>TFy(x)—c¢ and a< F(z) <b]

a<F(x)<b

=P[U,'>%—c and a<U,-<bj|-

Substituting 4 = 1/n and d = —¢ in (2.2), one obtains (2.2.2).

COROLLARY 2.23. For 0 <a<b<1l and 0<l/n(l—c)<b—a,
one has for the probability distribution function of (1.1.3)

Fo@)—F(@) | NO(n\ hyr i
(2.2.3) P[ sup <0J= a (1—b)"""+
) 2

a<F@)<d 1—F(x

/n" k m—k n—m
+Z Z L (m— o)yt © 0@ (=0
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S—1 S

n! k nem ¢ m
+Z Z M m— ) n—my! * 7Y (b+1—0_ n(l—c))x

k=0 m=R+1
(k+1gm)

fan(1—c)+nc—kg

m—k j+k c YV ¢ jak \mok-i-a
* 2 ( J )(n(l—c) - 1-—0) (b+1——c N n(l—c))

7=0

where R = {an(1—c¢)+nel and 8 = min{{bn(1—c¢)+ ncy, n}.
Proof. As in 2.2.1 one has

F,(z)—F(») ] [ F,(») ¢
P _— =P|F —
[agsl;l‘};:[;gb l—F(a:) <¢ (w) = 1—e¢ 1—e¢
and a < F(x) <b:| [U > (1]_—0)—_1—1; and a < Ujgb].
Substituting 4 = 1/n(1—¢) and d = —¢/(1—c¢) in (2.2) gives (2.2.3).

The following Theorems 2.3 and 2.4 are immediate consequences of
Theorem 2.2 and each in turn has a number of useful corollaries.

THEOREM 2.3. For 0 <b <1, d real, and 0 < 4 <b

(2.3) P[U;>j4+d,U;<b,1 <j<n]=(1-0b)"+
S

+ (m)(l—b)""m(b—d—mA)x
mER+1
1—-dj43

R
X Z ( )JA—I—d Y (b—d—jA)y™ "+ Zl(m)bm(l_b)n_m

m=
b—d —d
where 8 = min {S—A—L n} and R = XTX'

Proof. Set ¢ = 0, and k¥ = 0 in theorem 2.2 to obtain (2.3). Note
that the last sum in (2.2) disappears.

COROLLARY 2.3.1. For 0 <b <1l and 0 <1l/n(l4c¢) <b, one has
for the statistic (1.2.1) the probability distribution function

(2.3.1) P[ sup Fol@)—F(a) < c] = (1-0)"+
Fx)<b F(-’U)

+ 3 (oo ""(”‘7%7))’{20 ) Gaka) b-asal )
(1=5) +Z( ) =5y 1(b—"fn,(lm—l—c))

where S = min{n, \bn(1+¢)\}.




Proof. As in Corollary 2.2.1, one has

P[ sup {fﬁw} < c] — P[F(m) > F’i‘? and F(z) < b]

F(@)<b F(x)
Vi
PlU >———, U; <b|.
[’>n<1+o>’ ’ ]

Set 4 =1/n(14¢) and d =0 in (2.3) to obtain (2.3.1).
COROLLARY 2.3.2. For 0 <b <1 and 0 < 1/n < b, one has for the
Statistic (1.2.2) the probability distribution function

S
(2.3.2) P[ sup (P, (2)—F(x)) < c] - (1—b)”+2(j) (1—B)" ™ x

F(r)<b

ncy

o) SOV o2

where 8 = min{n, \n(b+ c)\}. i

Proof.
Pl sup {Fn(x)—F(2)} < ¢] = P[F(x) > F,(x)—c and F(z) < b]
F(x)<b
=P[U,- >—jn——c and U; < b].
Putting 4 =1/n and d = —¢ in (2.3) one obtains (2.3.2).

COROLLARY 2.3.3. For 0 <b<1 and 0 <1l/n(l—e¢)<b, one has
Jor the statistic (1.2.3) the probability distribution function

8
F’n(w)_F(m) . n E ' (n n—m

ey . y
¢ m m J e
x(b-{— 1—¢ n(l—c))g(i)(n(l—c) - 1—0) X

‘where 8§ = min {{bn (1— ¢)-+ nck, n}.
Proof.

su
P —cC 1—e¢

F(z)<b 1—F (a:)

j c
— , — ;<< b|.
P[U’ = n(l—c) 1—0+U’ ]

Set 4 =1/n(1—¢) and d = —¢/(1—¢) in Theorem 2.3 to produce (2.3.3).
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THEOREM 2.4. For 0 <a <1l and 0 < 4/(1—a) <1

1

(24) P[U;>j4+d,U;>a,1<j< n]_an—l-Z() (1—nd—d) X

Xa_d;kAS

X (n;k) ((G+F) Ad—a+ay(1—d—(j+ k) 4)"~*7

=0

1—d
where 8 = min{S—A—X, n}.

n
Proof. Set b = 1, m = »n and note that > P[a > Uy , Uy, > 1] = a™
k=0

in (2.2). Then the last sum in (2.2) disappears and the result is (2.4).

COROLLARY 2.41. For 0 <a<1l and 0<c¢/(l4¢) <b, the pro-
bability distribution function of the statistic (1 3.1) s

F(2)—F () _
(2.4.1) P[ngga @) <c] a—}—Z() 1—|—c

fan(14c)— kg

- n—k\[ J+Fk ’ j+k P
* 2 "3 )(n(1+c> _“) (1_ n(1+o)) '
Proof.
F,(z)—F (2) _ Fo (@)
P[F?;}'ga_—ﬁ—r(r <G]—P[F(.’D)> 1+teo ,F(w)}a]

pu— .—.‘7 .
—P[U;> %(1+0) y U, 2@]

Set 4 =1/n(l+c) and d =0 in (2.4) to obtain (2.4.1) (2).

COROLLARY 2.4.2. For 0 < a <1, the probability distribution func-
tion of the statistic (1.3. 2) 18
(2.4.2) P sup {Fo(z)—F(z)} <ec]=a"+
F(T)>a
Sn(a+6) kg

- S 2 A o et

where R = {n(a+¢)y.

(2) As mentioned in the introduction, M. Csérgé in [3] obtained for the exact
distribution of the random variable in 2.4.1. the expression

(- 1) ars t1ee)
7' - - .
15 n(l4¢) 14¢ n(l+4+c) l14e¢ 14¢
It is easily verified that this is not the same as (2.4.1). For example for n = 3, ¢ = 1/3,
a = 1/2, (2.4.1) and direct calculation gives a probability of 45/64 while Csorgo’s

expression yields 25/64.



Proof.

P[ sup {Fn(2)—F(x)} < ¢] = P[F(x) > Fp(x)—c and F(z) > a]

F(r)y=a
=P[Uj>l—0, Uj Zd].
n

Substitution of 4 =1/n and d = —¢ in (2.4) yields (2.4.2).

COROLLARY 2.4.3. For 0 < a < 1, the probability distribution function
of the statistic (1.3.3) s

043 L
4. u R cl=a.
repe 1—F (o)
Proof.
B, (v)—F () ] [ J ¢ ] n
[Filg’a 1—F@) ° 1 ali—e) 1_g izt
Since
rlu ] ¢ U>]<P[U> " ¢ —1]—0
1T g 1= ST T nae 1= T

one has (2.4.3).

THEOREM 2.5. For v integer, 1 <v<1n,0< 4/(vd+4+d) <1,
0<vd4+d<1, and 4 > 0,

(2.5) P[U;>jd+d,1<j <]

M—_1

= (1—vd—ay'+ Y (7)@a+aya—va—ay i+

=1

o1 {—djdag . .
+ ) (?)(1—041_@”“'((«;—@')41) 2, (;)(J'Aer)"((v—i)A)””_l
=M 7=0

where M is such that MA+d >0 > (M—1)A+d, and ¢f M =0 or 1,
set the first sum equal to zero.

Proof: The pattern of the proof follows that of Theorem 2.2. How-
ever, instead of “splitting” at b, the method will be to “split” at L4+ d
which by hypothesis lies in (0, 1).

One notes that if v4+d < 0 there is nothing to compute and if
v4d+4+d > 1, then set the new v equal to the maximum integer ¢ < v
such that ¢4+ d < 1. The same argument that appears below then applies
to this new wv.
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By decomposition one has

v-1

(2.5.0.1) PUL>jA+de<j<v}=28PU%;jA+dg1<j<i|Ui

<ovd4+d < U JP[U; < v4+d < U; | 1+P[U, > vA+d].
Examining the general conditional probability term, one has
PlU; >jd4+d,1 <j<i]...]

L { jA U }< —d |
o [Eixa vA+d vAtd vA+dJ°“]'

Applying Lemma (2.1) one obtains for this term the values

.  id+d
1 it vA+d <9
iA+d
0 i >,
vA+d
(v—3) 4 "IN y id+d
7 1—-7—1 . <
oA Lar 7';0: ()(yA—{—d) (v—3) 4) it 0< T s

Summing in (2.5.0.1) gives (2.5).
COROLLARY 2.5.1. For 0 < b < 1, one has for the probability distri-
bution function of the statistic (1.4.1) the expression

_ [F,(v) —F (x) v "
(2.5.1) P[ sup —— < c] = [1——(1—0)] +

Fp(z)<b Fn(97) n
+Z( )[1—— c)] . ”;z(l—c‘)[%(l—c)]

1
Proof. Follows from Theorem 2.5 by setting 4 = —(1—¢),d = 0.
n

where v = [nb].

COROLLARY 2.5.2. For 0 < b < 1, one has for the probability distri-
bution function of the statistic (1.4.2) the expression

(2.5.2) P[ sup {F.(2)—F(2)} <c] = (1——”—4-0) N
Fy(x)<b n
v—1 . {ncy . L
n v n—t g4 2 i i p—jy\i-i-t
" ig(i) (1_—7; +0) " = (J')(; —0) (_M’n—'—) =+

<2 o

where M is such that M/n—c¢ >0 > (M —1)/n—c¢ and v = [nb].
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Proof.

P sup {Fp(r)—F(2)} <c] = [U >l-—0,] <v = [nb]]

Fp(®)<b

and set 4 =1/n, d = —c¢ in (2.5) to obtain (2.5.2).

COROLLARY 2.5.3. For 0 < b < 1, one has for the probability distri-
bution function of the statistic (1.4.3) the expression

2s3) P sup 2O F”<c)=(1_3(1+c>+c)n+
Fp(2)<b Fo(x) n
v n—1
+Z()( 1+c>) (1—;(1+c)+c) +

Tzel

+Z( )(1—— 1+c)+c)"_i(”%i(1+c>) PHE:

7=0
(—“‘ (l—l—c)——c) (—— (1+c))
. n

n

O . |

M
where v = [nb] and M is such that —(1+¢)>¢ >
n

Proof.

W(@)—F(@) | _ B
P(F:}alc)gb_l_—_ﬁT(:v) < c) = P(U (1—|—c) c,j<v= [nb])

1
and set 4 = ——(1+c), d = —c in (2.5) to obtain (2.5.3).

THEOREM 2.6. For k integer, 1 <k+1 <mn, 4 >0,

(2.6) P(U;<(j—1)4+4d,1<j<k+1)
k

—1— 2(?)(1——d—jA)"“"(d—l—jA)"“d.

i=o

Proof. This theorem is an immediate consequence of a theorem
in [2] since

P(U; < (j—1)d+d, j <k+1)

d d+d kd4-d 1
=n! [ [ .. f . [ x
U1=0 Up=U; Uk+1=Uk Ugs2=Ugxy1  Up=Up-1

XAUp ... AUxy2dUsy, ... dU,4T,.
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COROLLARY 2.6.1. For 0 < a < 1, the probability distribution function

of the statistic (1.5.1) is

k
(2.6.1) P( sup F”(??j(m) < c) — 1—2(;.‘)><

Fp(x)=a =0

X (1—0——.—(1—0

where k = min{0, [n(1—a)]—1}.
Proof. By replacing F(z) by 1—F(—x),
—2 by x in the statistic we obtain

F,(x)—F(x)
P( sup @) @) < 0) = P( sup
Fp@)>a Fn ($) Fpo<l-a

F,(x) by 1—F,(—x), and

() F() )
7o (a) <ec

(U < %( —c)t¢ j<[n(l—a)] = k+1).

1—
(2.6.1) is obtained by substituting 4 = -—;—Ed = ¢ in (2.6). (3)

COROLLARY 2.6.2. For 0 < a < 1, the probability distribution function

of the statistic (1.5.2) s

(2.6.2) X ; »
AN E
P Fo.(z)—F(x) < ¢) = 1— ’?(1_——) (‘2 )
(s Fala)—F(e) <o ;(,) o—3 +e) o
where k = min{0, [n(1—a)]—1}.
Proof. By replacing F(z) by 1—F(—x), F,(x) by 1—F,(—z), and

—a by « in the statistic we obtain
P( sup Fn(x)—F(z)<¢) = P( sup F(x)— F (z) < ¢
Fp@®<l-a

Fp(@)>a
Jj—1 :
=P U,' < T +e¢,7 < [n(l—a)] .
(2.6.2) is obtained by substituting 4 = —d = ¢ in (2.6).
n

(3) As mentioned in the introduction, M. Csorgo in [3] obtained for the exact

distribution of the random variable in 2.6.1. the expression
k+1 . \n—j Y
B J J J
1- Y@ i-L- (1__)) (1__) .
% (,)( " ¢ n + ¢ o c

It is easily verified that this is not the same as (2.6.1). For example for n = 4, ¢ = 1/2
a = 1/2, (2.6.1) and direct computation give a probability of 213/256 while Csorgo’s

expression yields 177/256.



3. Concluding Remarks. Some of the Rényi-type statistics discussed
above are of particular importance for estimating the probability distri-
bution functions, or for testing hypotheses dealing with probability distri-
bution functions, of random variables for which only truncated or cen-
sored samples are available. This is typically the case for observations
of life-lengths when n specimens are tested but observation is terminated
after &k of them have failed (censoring), or when the experiment is stopped
after a preassigned time regardless of the number of failures occurring
within that time (trunecation). An extensive program is now being earried
out which includes the derivation and calculation of limiting distribu-
tions and the numerical tabulation of the exact probability distributions
(for finite sample size n) for these statistics, as well as a study of the
power of the corresponding tests. It is hoped that the results of these
studies will be ready for publication in the near future.

In concluding, the authors wish to thank Professor R. Pyke for the
helpful advice he has given them in a number of conversations.
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